
 

 
Journal of Applied Fluid Mechanics, Vol. 13, No. 4, pp. 1245-1252, 2020.  

Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. 
DOI: 10.36884/jafm.13.04.30574  

  

 
 

 

Inertia Effects in Rheodynamic Lubrication of an 

Externally Pressurized Converging Thrust 

Bearing using Herschel-Bulkley Fluids 

G. Alexander Raymand† and I. Jayakaran Amalraj 

Department of Mathematics, SSN College of Engineering, Kalavakkam, Chennai, 603110, India 

†Corresponding Author Email: alexanderraymand@gmail.com 

(Received May 27, 2019; accepted December 17, 2019) 

ABSTRACT 

Extreme industrial conditions require a bearing which can withstand high-speed operations, heavy load, high 

stiffness and so on. Therefore in this study, the combined effects of fluid inertia forces and non-Newtonian 

characteristic with Herschel-Bulkley fluid as lubricant in an externally pressurized converging thrust bearing 

have been contemplated. Avoiding complex calculation, the term inertia in the momentum equation is estimated 

by the mean value average method across the film thickness. A mathematical model for converged thrust 

bearing has been introduced. Using appropriate boundary conditions, thickness of the core, velocity profile, 

film pressure and the load carrying capacity of the bearing for various values of Herschel-Bulkley number (N), 

Reynolds number (Re), Power-law index (n) and angle of convergence (φ) have been numerically computed. 

Having worked with an externally pressurized flow through a narrow clearance between two convergent disks 

symmetrical with respect to r and z axis, it is found that the converged bearing performance such as pressure 

distribution and load carrying capacity increases notably. The results obtained in this study is found to be in 

agreement with the results of Jayakaran et al. (2012), for a particular case. 

Keywords: Rheodynamic lubrication; Externally pressurized thrust bearing; Herschel-bulkley lubricants, 

Angle of convergence; Inertia effects. 

NOMENCLATURE 

H-B Herschel-Bulkley 

h(r ) varying film thickness 

h0 maximum film thickness 

h∗, p∗,r ∗, z∗ non-dimensional parameters of 

h,p,r z 

m stress growth exponent 

n power law index 

N Herschel-Bulkley number 

η1 consistency index 

η2 yield value 

p pressure of the film  

pa atmospheric pressure 

Q flow rate 

R1 radius of film inlet 

R2 radius of film outlet 

r,θ,z cylindrical polar coordinates 

vc velocity of the core region  

vr velocity component in r direction 

vr velocity component in z direction  

W load carrying capacity 

 

δ(r ) thickness of the yield surface 

𝛾 ̇  shear rate 

τ deviatoric stress components  

φ angle of convergence  

ρ density of the fluid  

𝛿∗, 𝑣𝑐
∗, 𝑣𝑟

∗, 𝑣𝑧
∗ non-dimensional parameters of  

δ(r ), vc , vr , vz 

1. INTRODUCTION 

Thrust bearings are innately developed to with-stand 

heavy axial load. The extreme operations of the 

bearing results in the development of friction 

between the plates. In order to reduce this friction, 

the bearing is lubricated with mineral oil or greases. 

Generally, lubricants are classified into two types: 

Newtonian and non-Newtonian. At present, 

tribologists focus on non-Newtonian fluids that is 

characterized by yield value such as Bingham, 

Casson and Herschel Bulkley as its performance is 

high compared to Newtonian fluids. To optimize the 

performance of the bearing, the study of fluid inertia 
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forces and a change in its design have been 

prioritized. 

By principle, the considered bearing surfaces are 

separated by a fluid film which is created and 

maintained by external means. In the bearing 

considered for the study, the fluid film thickness 

varies according to angle of convergence (φ); this 

likely leads to many advantages. Tribologists have 

keenly studied these advantages of rheodynamic 

lubrication in an externally pressurized thrust 

bearing by considering both Newtonian and non-

Newtonian fluids. 

In an externally pressurized thrust bearing, Amalraj 

et al. (2012) used Herschel-Bulkley fluid as lubricant 

to analyze the sinusoidal flow rate. Jurczak and 

Falicki (2016) investigated the externally 

pressurized bearing and squeeze film bearing with 

rough surface lubricated with non-Newtonian fluid 

analytically. Walicka et al. (2017a) analyzed the 

performance of externally pressurized curvulinear 

thrust bearing influenced by the rough surface and 

wall porosity lubricated by non-Newtonian fluid. 

In rheodynamic lubrication, inertia forces are inertly 

developed as the fluid flows. This contributes to the 

performance of the bearing. Batra and Kandasamy 

(1989) analyzed the effects of inertia forces in the 

squeeze film bearing lubricated with viscoplastic 

fluid. Khalil et al. (1993) investigated the effects of 

convective and centrifugal inertia forces on the 

performance of an externally pressurized conical 

thrust bearings under a turbulent flow Usha and 

Vimala (2000) discussed inertia effects in a circular 

squeeze film bearing containing central air bubbles . 

The combined effects of fluid inertia and viscous 

forces have been investigated theoretically by 

Jayakaran et al. (2012) in an externally pressurized 

thrust bearing with circular geometry using 

Herschel-Bulkley fluid as lubricant. Walicka et al. 

(2017b) investigated the inertia and couple-stress 

effects on the pressure distribution and load-carrying 

capacity in a couple stress fluid flow with the 

clearance of a bearing formed by two coaxial 

surfaces of revolution. Shapour and Najafi (2017) 

analyzed the effect of inertial term of viscoplastic 

fluid flowing through a channel lined with higher 

compliant polymeric gel on hydroelastic stability of 

pressure driven flow. Udaya et al. (2011) 

theoretically investigated the effect of rotational 

inertia and pseudoplastic in an externally pressurized 

flow between parallel plates and concentric spherical 

surfaces. Alexander and Jayakaran (2019) 

theoretically investigated the inertial effects in 

Rheodynamic lubrication using Bingham fluid as 

lubricant. 

H-B fluids are a class of non-Newtonian fluids that 

require a finite stress known as yield stress, which 

assists in the deform. Therefore, when the applied 

shear stress is below the yield stress value, these 

materials behave as a rigid body. Once the yield 

stress exceeds the material flow with a non-linear 

stress-strain relationship, it exhibits itself either as a 

shear thinning or shear thickening fluids. Many 

researchers like Alexandrou et al. (2001), Chan and 

Baird (2002), Huilgol et al. (2005), Vishwanath and 

Kandasamy (2010) and Ponalagusamy and 

Priyadharshini (2019) have used H-B fluids to study 

their flow problems. 

Tribologists have investigated inertial effect in 

externally pressurized thrust bearing with different 

types of fluids as lubricants, but only a few have 

analyzed the combined effects of fluid inertia 

forces and angle of convergence. Roy et al. (1993) 

analyzed the advantages of inertial effects for a 

converging film bearing over the uniform film 

bearing using visco-elastic fluid. He has observed 

that the converging bearing has more load carrying 

capacity and required less pump work for its 

functioning. 

In this research work, a mathematical model Eq. (23) 

for novelly designed converged thrust bearing is 

introduced. Also, the combined effects of fluid 

inertia forces and angle of convergence on the 

performance of externally pressurized converging 

thrust bearing using Herschel-Bulkley fluid have 

been analyzed quantitatively. The core thickness, 

velocity, pressure and load carrying capacity for 

various values of Herschel-Bulkley number, 

Reynolds number and angle of convergence for 

visco-plastic fluid were computed numerically. 

2. MATHEMATICAL FORMULATION 

OF THE PROBLEM 

The investigation is presented in the upper half 

portion of the bearing by considering the 

symmetriness of the region between the circular 

plates of the bearing. The geometry of the 

converging bearing is as shown in Fig. (1) 

The constitutive three−dimensional equation of a H-

B fluid is given by (Alexandrou et al. 2001) 

𝜏 = [𝜂1 (
𝐷ΙΙ

2
)

(𝑛−1)

2
+

𝜂2[1−exp (−𝑚|√𝐷ΙΙ/2|]

√𝐷ΙΙ/2
] *D,         (1) 

The second invariant of rate strain tensor DII is given 

by DII = Di j Di j , where D = [u + (u)T]. Further, for 

all practical purposes, one dimensional analog of Eq. 

1 can be used, and it is given by Whorlow (1980) 

𝜏 = 𝜂2 + 𝜂1�̇�𝑛 , where �̇� represent shear rate  (2) 

There is a region called core region where shear stress 

is less than the yield stress which moves with the 

constant velocity, vc . Let the boundaries of the core 

be 𝑧 = −
−𝛿(𝑟)ℎ

2
 and 𝑧 =

𝛿(𝑟)ℎ

2
 as shown in Fig. (2). 

 

 
Fig. 1. Geometry of an Externally Pressurized 

Convergent Thrust Bearing. 
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Fig. 2. Shape of the Core in an Externally 

Pressurized Thrust Bearing. 

 
2.1 Governing Equations & Boundary 

Conditions 

Applying basic assumptions of the lubrication theory 

for thin films, the governing equation of Herschel-

Bulkley fluid in an externally pressurized converging 

thrust bearing including inertia forces can be 

expressed as, 

Equation of Continuity: 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑣𝑟) +

𝜕𝑣𝓏

𝜕𝓏
= 0                                                (3) 

Equation of Momentum: 

𝜌 [𝑣𝑟
𝜕𝑣𝑟

𝜕𝑟
+ 𝑣𝓏

𝜕𝑣𝑟

𝜕𝓏
] +

𝜕𝑝

𝜕𝑟
= −

𝜕𝜏𝑟𝓏

𝜕𝓏
                            (4) 

𝜕𝑝

𝜕𝓏
= 0                                                                      (5) 

𝜏𝑟𝓏 = 𝜂2 + 𝜂1|
𝜕𝑣𝑟

𝜕𝓏
|𝑛                                               (6) 

The Eq.(3) - Eq.(6) are to be solved under the 

following boundary conditions 

𝑣𝑟 = 0   at    𝓏 = ±
ℎ

2
                                                (7) 

𝑣𝑟 = 𝑣𝑐   , a constant, at    𝓏 = ±
𝛿ℎ

2
                      (8) 

𝑣𝑟  is continuous, and 
𝜕𝑣𝑟

𝜕𝓏
= 0 at τ = 𝜂2                (9) 

                                           𝑝 = 𝑝𝑎 at 𝑟 = 𝑅2              (10)    

where vc is the core velocity and pa is atmospheric 

pressure. 

3. SOLUTION OF THE PROBLEM 

Now, by using the method of averaging inertia term 

in the Eq. (4), the following equation has been 

arrived at: 

𝜌

ℎ
[∫ [𝑣𝑟

𝜕𝑣𝑟

𝜕𝑟
+ 𝑣𝓏

𝜕𝑣𝑟

𝜕𝓏
]

ℎ

2

−
ℎ

2

𝑑𝓏] +
𝑑𝑝

𝑑𝑟
= −

𝜕𝜏𝑟𝓏

𝜕𝓏
            (11) 

Using continuity Eq. (3) and boundary condition (6) 

and (7), the following equation has been arrived at: 

2𝜌

ℎ
[

𝜕

𝜕𝑟
∫ 𝑣𝑟

2
ℎ

2
0

𝑑𝓏 +
1

𝑟
∫ 𝑣𝑟

2
ℎ

2
0

𝑑𝓏] +
𝑑𝑝

𝑑𝑟
= −

𝜕𝜏𝑟𝓏

𝜕𝓏
         (12) 

Now, the modified pressure gradient has been 

introduced as 

𝑓 ≡
2𝜌

ℎ
[

𝜕

𝜕𝑟
∫ 𝑣𝑟

2
ℎ

2
0

𝑑𝓏 +
1

𝑟
∫ 𝑣𝑟

2
ℎ

2
0

𝑑𝓏] +
𝑑𝑝

𝑑𝑟
                (13) 

Equating (12) and (13), the following equation has 

been arrived at: 

𝑓 = −
𝜕𝜏𝑟𝓏

𝜕𝓏
                                                             (14) 

Integrating Eq. (14), 

𝜏𝑟𝓏 = −𝑓(𝓏) + 𝐶                                                  (15) 

By substituting τr z from Eq. (6) in to Eq. (15) and 

using the boundary conditions (7) and (8), the 

velocity distributions for the flow region is 

𝑣𝑟 = [
𝑛

𝑛+1
] [

−𝑓

𝜂1
]

1

𝑛
∗ 𝐴    

Where,𝐴 = [(𝓏 −
𝛿ℎ

2
)

1

𝑛
+1

− (
ℎ

2
−

𝛿ℎ

2
)

1

𝑛
+1

]    

Where,
𝛿ℎ

2
≤ 𝓏 ≤

ℎ

2
                                                  (16) 

The velocity of the core region as 

𝑣𝑐 = − [
𝑛

𝑛+1
] [

−𝑓

𝜂1
]

1

𝑛
 [

ℎ

2
−

𝛿ℎ

2
]

1

𝑛
+1

      

Where,0 ≤ 𝓏 ≤
𝛿ℎ

2
                                                  (17) 

The equation of conservation of mass for externally 

pressurized bearing in an integral form is given by 

𝑄 = 4𝜋𝑟 ∫ 𝑣𝑟 𝑑𝓏
𝜋

2
0

                                                  (18) 

where Q is the flow rate per unit width. 

Using velocity distributions in (18) and integrating, 

we obtain 

𝑄 = − [
𝑛 (𝑛𝛿+𝑛+1)

(𝑛+1)(2𝑛+1)
] [

−𝑓

𝜂
]

1

𝑛
∗ 𝐵     

Where,𝐵 = [
𝜋𝑟ℎ

[
1
𝑛

+2]
(1−𝛿)

[
1
𝑛

+1]

2
[
1
𝑛

]
]                                   (19) 

Considering the equilibrium of an element in the 

yield surface −
𝛿ℎ

2
≤ 𝓏 ≤

𝛿ℎ

2
, it is found that 

𝑓 =
2𝜂2

𝛿(𝑟)ℎ
                                                                  (20) 

Hence, Eq. (19) becomes 

𝑓 =
2𝜂1𝑄𝑛[

 (𝑛+1)(2𝑛+1)

𝑛
]

𝑛

𝜋𝑛𝑟𝑛ℎ(2𝑛+1)(1−𝛿)(𝑛+1)                                         (21) 

Elimination f from (20) and (21), the algebraic 

equation for determining the thickness of the yield 

surface δ(r ) can be obtained as 

𝛿
1
𝑛

(1 − 𝛿)(
1
𝑛

+1)(𝑛𝛿 + 𝑛 + 1)

= [
 𝑛

(𝑛 + 1)(2𝑛 + 1)
] ∗ 𝐶 

Where,𝐶 = [
𝜋𝑟ℎ2

𝑄
(

𝜂2

𝜂1
)

1

𝑛]                                           (22) 

The variation of film thickness of the lubricant in the 

converging bearing can be defined as 



G. Alexander Raymand and I. Jayakaran Amalraj / JAFM, Vol. 13, No. 4, pp. 1245-1252, 2020.  

 

1248 

ℎ(𝑟) = ℎ0 − ℎ0 (
𝑟

𝑅2
) tan 𝜙                                    (23) 

where, h(r ) represents the varying film thickness 

between the plates, h0 is the maximum film thickness 

at the center of the bearing, and φ is the angle of 

convergence.The following non−dimensional 

parameters are introduced. 

𝑟∗ =
𝑟

𝑅2
; 𝛿∗ = 𝛿(𝑟∗); 𝑝∗ =

𝑝

(
𝑄𝑛𝜂1

𝜋𝑛ℎ0
2𝑛+1𝑅2

𝑛−1)
      

 ℎ∗ =
ℎ

ℎ0
 ;  𝓏∗ =

𝓏

ℎ
 ; 𝑁 =

𝜋𝑅2ℎ0
2

𝑄
(

𝜂2

𝜂1
)

1

𝑛                       (24) 

Using the non−dimensional quantities in 

Eq.(16),(17) we get the velocity of the fluid in the 

flow region as 

𝑣𝑟
∗ =

3

2
[

(1 − 𝛿∗)2 − (2𝓏∗ − 𝛿∗)2

𝑟∗(1 − 𝑟∗ tan 𝜙)(2 + 𝛿∗)(1 − 𝛿∗)2] ; 

Where     
𝛿∗ℎ∗

2
≤ 𝓏∗ ≤

ℎ∗

2
                                            (25) 

Also, the velocity of the core region is 

𝑣𝑐
∗ =

3

2
[

1

𝑟∗(1−𝑟∗ tan 𝜙)(2+𝛿∗)
]  

Where     0 ≤ 𝓏∗ ≤
𝛿∗ℎ∗

2
                                        (26) 

Substituting vr , vc and f from Eqs.(16),(17) and (21) 

in Eq. (13) non-dimensionalized pressure gradient 

has been obtain as 

𝑑𝑝∗

𝑑𝑟∗ =
2[

 (𝑛+1)(2𝑛+1)

𝑛
]

𝑛

𝑟∗𝑛(1−𝑟∗ tan 𝜙)2𝑛+1(1−𝛿)𝑛+1(𝛿+𝑛+1)2 − {Ε}  

where, 

Ε = 𝑅𝑒 ∗ [

 (2𝑛+1)

(3𝑛+2)

4𝑟∗2(1−𝑟∗ tan 𝜙)2(𝑛𝛿+𝑛+1)2 ] ∗ [𝛫1 − 𝛫2]  

where, 

𝛫1 = [𝛿∗(4𝑛 + 3) + 2(𝑛 + 1)2] (
−1

𝑟∗ +
tan 𝜙

1−𝑟∗ tan 𝜙
)  

𝛫2 =
𝜕𝛿∗

𝜕𝑟∗ (
4𝑛3𝛿∗+3𝑛2𝛿∗+𝑛2+𝑛

𝑛𝛿∗+𝑛+1
)                                 (27) 

A non-dimensinalized non linear algebraic equation 

has been obtained to determining the core thickness 

from Eq.(22) 

𝛿∗
1
𝑛

(1−𝛿∗)
1
𝑛+1(𝑛𝛿∗+𝑛+1)

= [
𝑛∗𝑁(1−𝑟∗ tan 𝜙)2𝑟∗

(𝑛+1)(2𝑛+1)
]               (28) 

The roots of the the Eq.(28) determine the shape of 

the plug core region. By differentiation Eq.(28) w.r.t 

r∗ it is obtained that 

𝑑𝛿∗

𝑑𝑟∗ =
(𝑛+1)(2𝑛+1)

𝑁∗𝑛
(

−1+3𝑟∗tan 𝜙

𝑟∗2(1−𝑟∗ tan 𝜙)3) *

[
𝛿∗

1−𝛿∗]

1

𝑛
(

𝑛𝛿∗

−2𝑛2𝛿∗2
−2𝑛𝛿∗−𝑛−1

)                                    (29) 

The pressure distribution can be obtained by 

substituting (28) in (26) and integrating using 

boundary condition (8), 

𝑃∗ − 𝑃𝑎
∗ = ∫ [

𝑑𝑝∗

𝑑𝑟∗] 𝑑𝑟∗1

𝑟∗                                                (30) 

where, 𝑅𝑒 =
𝜌𝑄2−𝑛ℎ0

2𝑛−1

𝜂1𝜋2−𝑛𝑅2
𝑛−3  is Reynolds number. The 

pressure distribution has been calculated for different 

values of Herschel-Bulkley number, Reynolds 

number and Angle of convergence numerically. 

Again, the load carrying capacity W for the 

externally pressurized thrust bearing can be obtained 

by integrating the pressure over the entire region. By 

this 

𝑊 = ∫ [𝑃∗ − 𝑃𝑎
∗]𝑟∗𝑑𝑟∗1

𝑅∗                                         (31) 

where, 𝑅∗ =
𝑅1

𝑅2
 is the ratio of inside to outside radius 

of the bearing. This integration is performed 

numerically for various values of the Re, B, and φ. 

4. RESULTS AND DISCUSSION 

The behavior of the core (h∗) for various values of 

power-law index (n), Herschel-Bulkley number (N), 

and angle of convergence (φ) at every point of radius 

(r∗) is computed numerically and the results are 

shown in Figs. (3)-(6). 

 

 
Fig. 3. Core thickness for variation along the 

radius for n = 0.7. 

 

 
Fig. 4. Core thickness for variation along the 

radius for n = 1. 

 

 
Fig. 5. Core thickness for variation along the 

radius for n = 1.3. 
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Figures (3), (4) and (5) depicts core thickness for 

power-law index n = 0.7, 1, 1.3 along the radial 

direction. It increases gradually from the center and 

decreases as it approaches the periphery as the angle 

of convergence increases for a given H-B number (N 

= 5 & 15 ). In Fig. (6), when φ = 30 variation in Core 

thickness is marginal between power-law index n = 

0.7, 1, 1.3 for particular H-B number (N=15). The 

formation of unyielding core occurs symmetrically 

in the middle of the region between the circular disc 

of the bearing. Moreover, the core thickness 

increases as the power-law index increases for a 

particular Herschel-Bulkley number. 

 

 
Fig. 6. Core thickness variation for particular 

Herschel-Bulkley Number N = 15. 

 

 
Fig. 7. Velocity profile for particular power-law 

index n = 1. 
 

The velocity profile for various angle of 

convergence, H-B number & power law-index (φ, N 

& n) along the axial direction(z*) for various values 

of the radius(r*) are depicted in the Fig. (7). The 

thickness of the core as observed earlier, is reflected 

in the velocity profile. The velocity profile becomes 

parabolic if we consider the symmetric region 

between the plates as H-B number limN→0, which 

represents Newtonian fluid. The distribution of the 

film pressure in the radial direction has been 

obtained for various values of H-B number (N=5), 

Reynolds number (Re=0, 0.1, 0.2), power-law index 

(n=0.7, 1, 1.3) and angle of convergence (φ= 0, 20) 

these are shown in Figs. (8)-(11). There is a 

considerable increase of inertial effect in pressure 

distribution as power-law index increases. This is 

depicted in Figs. (8)- (10) respectively, moreover, 

the pressure is maximum at the orifice and gradually 

decreases as it moves towards the periphery of the 

bearing along the radial direction. 

It is observed that an increase in pressure is more 

significant when angle of convergence (φ) is 

increased for specific power-law index (n). 

However, the quantum of increase is marginal for 

high Reynolds number. The inertial effect on 

pressure distribution near the orifice of the bearing is 

found to be appreciable and this is shown in Fig. (11) 

for a particular angle of convergence (φ=5). 

 
Fig. 8. Inertia effect in Pressure distribution for 

particular Power-law index n = 0.7. 

 

 
Fig. 9. Inertia effect in Pressure distribution for 

particular Power-law index n = 1. 

 

 
Fig. 10. Inertia effect in Pressure distribution for 

particular Power-law index n = 1.3. 

 

 
Fig. 11. Inertia effect in Pressure distribution for 

particular Angle of Convergence φ = 5. 

 

The numerically computed results of load carrying 

capacity for particular Herschel-Bulkley number N = 

5 & specific power-law index value n=0.7, n=1 & 

n=1.3 are given in the table (1)-(3) for various 
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Reynolds number (Re) & angle of convergence (φ). 

The load carrying capacity of the bearing has been 

found to increase significantly as the power-law 

index (n) of the fluid increases for a fixed H−B 

number. 

Also, there is a significant increase in load carrying 

capacity as the angle of convergence increases for a 

particular power-law index (n). Further, as the 

Reynolds number increases the increase in load 

carrying capacity is marginal for the particular 

power-law index (n), angle of convergence and H-B 

number. 
 

Table 1 Load Capacity for different value of Re 

& φ for n = 0.7 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 0 2.40 2.54 2.69 2.83 2.99 

𝜑 = 5 2.60 2.75 2.90 3.05 3.20 

𝜑 = 10 2.87 3.02 3.17 3.33 3.48 

𝜑 = 15 3.23 3.38 3.54 3.70 3.84 

 

Table 2. Load Capacity for different value of Re 

& φ for n = 1 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 0 4.25 4.39 4.53 4.67 4.81 

𝜑 = 5 4.72 4.86 5.00 5.14 5.28 

𝜑 = 10 5.32 5.46 5.60 5.74 5.89 

𝜑 = 15 6.13 6.27 6.42 6.56 6.70 

 

Table 3 Load Capacity for different value of Re 

& φ for n = 1.3 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 0 8.8 8.9 9.1 9.2 9.3 

𝜑 = 5 9.9 10 10.1 10.3 10.4 

𝜑 = 10 11.3 11.4 11.6 11.7 11.8 

𝜑 = 15 13.2 13.4 13.5 13.7 13.8 

 

Table 4 Load Capacity for different value of Re 

& N for n = 0.7 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 5 2.60 2.75 2.90 3.05 3.20 

𝜑 = 10 3.25 3.40 3.55 3.70 3.85 

𝜑 = 15 3.78 3.94 4.09 4.24 4.39 

 

Table 5 Load Capacity for different value of Re 

& N for n = 1 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 5 4.72 4.86 5.00 5.14 5.28 

𝜑 = 10 6.95 7.09 6.81 7.37 7.51 

𝜑 = 15 9.09 9.23 9.37 9.51 9.65 

 

Table 6 Load Capacity for different value of Re 

& N for n = 1.3 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 5 9.9 10.0 10.2 10.3 10.4 

𝜑 = 10 17.7 17.8 17.1 18.1 18.2 

𝜑 = 15 26.3 26.4 26.5 26.7 26.8 

 

Table 7 Change in Percentage in load Capacity 

with respect to Re=0 for different values of φ and 

n = 0.7 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 0 6.21 12.42 18.62 24.83 31.04 

𝜑 = 5 5.76 11.52 17.28 23.03 28.79 

𝜑 = 10 5.27 10.55 15.82 21.09 26.36 

 

Table 8 Change in Percentage in load Capacity 

with respect to Re=0 for different values of φ and 

n = 1 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 0 3.26 6.52 9.79 13.05 16.31 

𝜑 = 5 2.97 5.94 8.91 11.89 14.86 

𝜑 = 10 2.66 5.33 7.99 10.66 13.32 

 

Table 9 Change in Percentage in load Capacity 

with respect to Re=0 for different values of φ and 

n = 1.3 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 0 1.52 3.04 4.56 6.08 7.60 

𝜑 = 5 1.37 2.74 4.10 5.47 6.84 

𝜑 = 10 1.21 2.42 3.63 4.84 6.05 

 

The results of load carrying capacity for a particular 

angle of convergence (φ=5), different Herschel-

Bulkley numbers, Reynolds number & specific 

power-law index values n=0.7, n=1 & n=1.3 are 

given in the table (4)-(6). It is observed from the 

analysis that there is an appreciable increase in the 

value of the load capacity as H-B number increases. 

This is due to the fact that Herschel-Bulkley fluids, 

being a thick viscous model, show a high load 

carrying capacity. However, the inherent inertial 

effect is marginal. 

The percentage of increase in load carrying capacity 

for different values of Reynolds number (Re), Angle 

of convergence(φ), power-law index (n=0.7, n=1 & 

n=1.3 ) and Herschel-Bulkley number (N=5) are 

given in the tables (7)-(9). It has been observed that 

due to inertia effect the percentage of increase in load 

carrying capacity is significant for low Angle of 

convergence. 
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Tables (10)-(12) shows that due to inertia effect the 

percentage of increase in load carrying capacity is 

significant for low Herschel-Bulkley number. 

 

Table 10 Change in Percentage in load Capacity 

with respect to Re=0 for different values of φ and 

n = 0.7 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 5 5.76 11.52 17.28 23.03 28.79 

𝜑 = 10 4.64 9.29 13.93 18.57 23.21 

𝜑 = 15 4.00 8.00 12.00 15.99 19.99 

 
Table 11 Change in Percentage in load Capacity 

with respect to Re=0 for different values of φ and 

n = 1 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 5 2.97 5.94 8.91 11.89 14.86 

𝜑 = 10 2.00 4.01 6.01 8.02 10.02 

𝜑 = 15 1.52 3.05 4.57 6.10 7.62 

 

Table 12 Change in Percentage in load Capacity 

with respect to Re=0 for different values of φ and 

n = 1.3 

N=5 Reynolds number (×10−1) 

 0 1 2 3 4 

𝜑 = 5 1.37 2.74 4.10 5.47 6.84 

𝜑 = 10 0.75 1.51 2.26 3.01 3.77 

𝜑 = 15 0.50 1.00 1.50 2.00 2.50 

 

Moreover, the percentage of increase in the load 

carrying capacity increases significantly as the 

Reynolds number increases. The inertia plays a small 

role in the bearing performance. For a particular 

angle of convergence (φ = 0) which corresponds to a 

flat externally pressurized thrust bearing, these 

results on pressure distribution and load carrying 

capacity of the bearing are found to be in agreement 

with the results of (Jayakaran et al. 2012) for a 

particular case. 

5. CONCLUSION 

The above investigation shows: 

1. Using Herschel-Bulkley fluid as lubricant in the 

bearing increases the pressure and load carrying 

capacity. 

2. Angle of convergence in bearing design also 

significantly enhances the bearing 

performance. However, the effect of fluid 

inertia on the bearing performance is found to 

be marginal. 
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