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ABSTRACT 

The knowledge of pollutants dispersion in water bodies is a matter of concern in water quality control, 

especially when a new industrial development is installed e.g. near riverbanks. To predict pollutants dispersion 

in rivers, analytical, experimental and in-situ measurement can be performed. However, analytical estimation 

usually results in low accuracy, while experimental or in situ measurement are quite expensive in time and 

equipment. Hence, Computational Fluid Dynamics (CFD) approach is other alternative that can be used to 

obtain simple and accurate results for mass transport in rivers. In other words, it is a good alternative to analyse 

pollutants dispersion. As it is known, longitudinal diffusion coefficient (E) has strong influence on pollutants 

spreading into the water body. Therefore, the purpose of this paper is to analyse the effects of E on the mass 

transport of a conservative pollutant in rivers and channels via CFD. Contaminant dispersion is carried out by 

a scalar advection-diffusion transport equation that represents the conservation of mass. The velocity and 

pressure fields are calculated, considering an incompressible fluid, through the Navier-Stokes and the continuity 

equations. Numerical and analytical results, for one-dimensional (1D) flow, are compared in order to obtain the 

concentration field, over time and space, using different parametric equations. The concentration field showed 

significant differences of concentration peak and arrival time of the plume depending on the equation used to 

predict E. Numerical results, for two-dimensional (2D) flow, are compared with the experimental data from 

Modenesi et al. (2004). Such analyses are necessary to establish an appropriate correlation between simulated 

and real channel. The use of different parametric equations for the E in a 2D channel reveals significant 

differences of concentration peak and arrival time of the plume. As expected, the numerical results of the 

transport of pollutants show the dependence on the parameterization of the longitudinal dispersion coefficient. 

The one that best represents the distribution of pollutants is that proposed by Kashfipour & Falconer. 
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NOMENCLATURE 

B average width     

C concentration    

C0 initial concentration 

E longitudinal diffusion coefficient 

ED coefficient calculated by Devens et al. 

(2006)  

EF coefficient calculated by Fischer et al. 

(1979)  

EKF coefficient calculated by Kashfipour & 

Falconer (2002)  

Et coefficient equal eddy viscosity  

H average depth  

KD coefficient calculated by Devens et al. 

(2006)         

KF coefficient calculated by Fischer et al. 

(1979) 

KKF coefficient calculated by Kashfipour & 

Falconer (2002)  

P modified pressure 

S slope 

Sc Schmidt number 

t time  

t0 initial time 

U average velocity 

�⃗�  velocity field 

u* friction velocity 

v velocity of the river 

x length 

 
δ(x) Dirac function 

µ viscosity 

υ turbulent kinematic viscosity   

ρ density   
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1. INTRODUCTION 

Water resources have always been important to 

humanity. Since ancient times, civilization has been 

developing its society near places that offer access to 

water sources. Nowadays, researchers are looking 

for methods to preserfve or minimize the water 

pollution implication of excessive water usage that 

has already been caused by humans. Advanced 

knowledge of fluid dynamics and the dispersion of 

pollutants in rivers became important to overcome 

future endeavours related to river pollution. The 

necessity of knowledge in predicting, monitoring 

and controlling pollutant transport in open channels 

has encouraged many studies related to dispersion in 

stream flows.  (Dimian et al. 2013; Pannone et al. 

2014 and Pannone et al. 2018).  

In general, a partial differential equation (PDE) for 

movement and mass transport has an analytical 

solution when it is linearized. Even whether it is 

simplified, it can be used as boundary condition 

and/or geometry simplification. The analytical 

solution provides important information about the 

physical problem and it can be useful to identify 

important parameters to be take into account during 

CFD analyses. Another way to obtain a solution from 

non-linear PDE is through numerical modelling. As 

general rule, numerical results are compared with in-

situ measurements, experimental tests or analytical 

data to validate their veracity. Validation through in-

situ measurements is the best approach to prove that 

the numerical solution is representing the reality, 

because it is the most realistic procedure to obtain 

data from river fluid dynamics (Modenesi et al. 

2004). On the other hand, in-situ measurements are 

quite expensive and they are usually prohibited for 

safety reasons or due to non-authorization from 

environmental agencies to access the area. An 

alternative to obtain reliable data is through 

controlled laboratory experiments. Thus, 

mathematical modelling can be improved to 

realistically represent the problem (Launder and 

Spalding 1974).  

The longitudinal diffusion coefficient (E) is an 

important parameter in open channel flow. It is 

directly related to the dispersion of the pollutant 

along the water channel. Therefore, understanding its 

role is essential for the numerical solution (Zhang 

2011). There are many parametric equations able to 

predict E. These equations were proposed to be used 

as a way to predict the value of E using the river 

and/or flow characteristics without the necessity for 

laboratory or in-situ measurements (Taylor 1954). 

In this paper the hydrodynamics and the kinetics of 

the effluent discharge are simulated using COMSOL 

Multiphysics® 4.4, which is a solver and simulation 

software/package for different physics and 

engineering applications, especially coupled 

phenomena (COMSOL Multiphysics Reference 

Manual 2013). The measurement of concentration 

and arrival times of the plume are analysed and 

compared with the classical linear transport model 

for instantaneous and continuous discharges. 

2. COMPUTATIONAL PROCEDURE 

The non-linear transport equation for concentration 

of a given conservative effluent is given by: 

𝜕𝐶

𝜕𝑡
+ �⃗� . ∇𝐶 = 𝐸∇2𝐶                                                (1) 

where C, �⃗� , and E represent, respectively, the 

concentration field (mol/m³) , the river velocity field 

(m/s) and  the longitudinal diffusion coefficient 

(m²/s). 

The equations for one-dimensional flow and 

semiempirical model for concentration of a given 

pollutant, at time t and space x can be linearized. For 

a continuous pollutant load with constant inlet 

velocity, the differential Eq. (1) has the following 

analytical solution (Tucci 1998). 

𝐶 =
𝐶0

2
{𝑒𝑟𝑓 [

𝑥+𝑣(𝑡−𝑡0)

√4𝐸(𝑡−𝑡0)
] − 𝑒𝑟𝑓 [

𝑥−𝑣𝑡

√4𝐸𝑡
]}                    (2) 

where C0 is the initial concentration considering a 

homogeneous mixing. According to Devens et al. 

(2006), for an instantaneous discharge with initial 

concentration C0, the differential Eq. (1) is linearized 

using Eq. (5) and it has the following analytical 

solution Eq. (3); 

𝐶(𝑥, 𝑡) =
𝐶0

√4𝜋𝐸𝑡
𝑒

−(
(𝑥−𝑣𝑡)2

4𝐸𝑡
)
                                        (3) 

To perform the instantaneous discharge simulation, 

the concentration of the plume follows Eq. (4): 

𝐶 = 𝐶0𝑒
−(

𝑡

3
)
2.1

                                                           (4) 

Note that the 1D linear solution given by Eq. (3) was 

deducted using the Eq. (5), instead of the Eq. (4), 

because there is not a possibility to implement the 

Dirac function in COMSOL. Consequently, an 

exponential equation (Eq. 4) was applied to simulate 

a pulse discharge.  

𝐶 = 𝐶0𝛿(𝑥)                                                                               (5)  

The unknown river velocity field  �⃗�   can be 

determined by assuming an incompressible fluid 

with the conservation of both mass and momentum 

respectively given by the Eqs. (6) and (7). 

∇. �⃗� = 0                                                                   (6) 

𝜌
𝐷�⃗⃗� 

𝐷𝑡
= −∇𝑃 + 𝜇∇2�⃗�                                                 (7) 

where ρ, µ and P are, respectively, the density, the 

dynamic viscosity of water and the modified 

pressure. A RANS (Reynolds Averaged Navier-

Stokes) turbulence model is introduced based on the 

k-ε formulation (Launder and Spalding 1974). 

Neumann and Dirichlet conditions are applied to the 

channel's boundaries i.e. impermeability and no-slip 

boundary conditions are imposed to its surface. 

COMSOL Multiphysics release 4.4 with the CFD 

module was used to simulate 1D and 2D problems. 

This software uses the finite element method in 

combination with adaptive meshing and error control 

using variety of numerical solvers. It is a commercial 

CFD tool, which can be used to analyse multiphysics 

phenomena solving the governing partial differential 
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equations with its proper boundary conditions 

(COMSOL Multiphysics Reference Manual 2013). 

The simplest way to address the 1D problem is a 

single-line mesh. In 2D problem, the triangular 

element mesh is commonly used with refinement in 

specific spots to capture particular perturbation (see 

Fig. 8) (Reddy 2006). 

The computational model used is an Eulerian 

approach coupled with κ-ε turbulence model to solve 

the turbulence in the system. The boundary 

conditions applied in the simulation are velocity inlet 

for river and pollutant inlet, atmospheric pressure 

outlet for outlet boundary. The problem was divided 

in two steps. At the first step, the velocity and 

pressure fields are calculated using steady state 

approach and it stopped when the residue for 

continuity is equal to 1x10-3. The second step, the 

mass concentration profile, transient approach, is 

calculated until the residue for continuity is equal to 

1x10-6. 

In Table 1, some parametric expressions for the 

longitudinal dispersion coefficient are shown. Where 

EF, EKF and ED are, respectively, the dispersion 

coefficient proposed by Fischer et al. (1979), 

Kashfipour & Falconer (2002) and Devens et al. 

(2006) (Ritta et al. 2016; Soares et al. 2013). 
 

Table 1 Empirical models used to predict E in 

rivers 

Parametric equation Equation 

𝐸𝐹 = 0.011
𝑈2𝐵2

𝐻 𝑢∗
 

(8) 

𝐸𝐾𝐹 = 10.612𝐻𝑈
𝑈

 𝑢∗
 

(9) 

𝐸𝐷 = 0.729
𝑈0.774𝐵1.031𝑆0.036

𝐻0.151  
(10) 

 

At the Table 1. U is the average river velocity (m/s), 

B is the average width (m), H is the average depth 

(m), u* is the friction velocity (m/s), S is the slope 

(dimensionless), (Ritta et al. 2016; Soares et 

al.2013). 

3. RESULTS AND DISCUSSION 

3.1   One-Dimensional Analysis 

The line graph (Fig. 1) outlines the trend of the 

pollutant dispersion along a 1D channel with 15km 

length and E equal to 11.57m2/s. Analytical and 

numerical results are compared for a continuous (a) 

and instantaneous (b) discharge. At the first glance, 

Fig. 1.a demonstrates a good agreement between the 

analytical and numerical results, both lines present a 

plateau, and suddenly they sharply dropped from 

1000 mol/m³ to almost zero. On the other hand, the 

curves in Fig 1.b present a descending trend 

meanwhile the numerical profile (dotted line) goes 

down slightly less than the analytical profile. That 

difference is attributed to the particular initial 

conditions used to deduct Eq. (3), because the Dirac 

function (Eq. 5) can reproduce an instantaneous 

discharge more realistically than an exponential 

equation (Eq. 4). 

 

 
 

 
 

Fig. 1. Analytical (solid line) versus numerical 

(dotted line) results for a) continuous discharge 

and b) instantaneous discharge over 104s 

(C0=103mol/m³; U=1.0m/s; E=11.57m2/s). 

 
 

3.2   Two-Dimensional Analysis 

3.2.1. Verification Case using the Data from 

Modenesi 

As already was mentioned, there are many 

parametric equations able to predict the value of E 

only using values from the river fluid dynamics 

and/or from the river layout such as average velocity, 

average width, average depth, friction velocity and 

slop. In this article, three equations were chosen to 

demonstrate how E affects the results. Fischer et al. 

(1979) proposed the first parametric equation (Eq. 

(8), the second one was deducted by Kashfipour & 

Falconer (2002) (Eq. (9)) and Devens et al. (2006) 

developed the third one Eq. (10).  

The experiment carried out by Modenesi et al. (2004) 

is used to validate the numerical results. This article 

was chosen because the channel studied has some 

similarities with Caceribu River, a rectified channel 

with a side effluent discharge. In Fig. 2, four 

horizontal parallel lines were design at 3, 11, 22 and  
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Fig. 2. Schematic representation of the sampling points in the channel examined by  

Modenesi et al, (2004). 
 

 
Fig. 3. Zoom in the channel to show the numerical results along the 2D scheme. a) Velocity field (m/s), 

b) the steady state concentration field (mol/m³). 
 

30 meters away from the effluent river margin, which 

correspond, respectively, to line A, B C and D. 

Figure 3 illustrates the velocity (m/s) and 

concentrations (mol/m³) of the pollutant. The values 

of the parameters applied in this simulation are listed 

in Table 2. The numerical results are compared with 

experimental data from Modenesi et al. (2004) and 

they are illustrated in Figs. 4, 5, 6 and 7. In order to 

verify the numerical solutions, some simulations are 

carried out replacing the value of E by the parametric 
equations given by Eqs. (8), (9) and (10).  

 

Table 2 Parameters used in the simulations 

Parameter Value Unit 

Averaged channel velocity 0.10 m/s 

Averaged effluent velocity 0.12 m/s 

Effluent inlet concentration 1.00 mol/m³ 

Fluid viscosity 1.0x10-3 Pa.s 

Longitudinal diffusion 

coefficient 
0.02 m²/s 

Fluid density 1000 kg/m³ 

 

Figure 4 displays the results from longitudinal line 

A. The CFD results obtained with the parametric 

equations show good agreement with the 

experimental data from Modenesi et al. (2004). 

However, for E equal to 0.02 m²/s, the concentration 

profile from numerical analysis is higher than the 

concentration profile from experimental data.  

 

 
Fig. 4. Profile of chloride concentration obtained 

numerically (dotted lines) and experimental 

results (points) from Modenesi et al. (2004) for 

the longitudinal line of 3m. 

 

As might be seen in Fig. 5, results from longitudinal 

line B, the method proposed by Kashfipour & 

Falconer demonstrates practically the same pattern 
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as the experimental data. While, Devens and Fischer 

present a similar behaviour, the concentration profile 

obtained is under the values predicted by 

experimental data. When E equal to 0.02 m²/s, the 

curve does not show similarities with experimental 

and numerical results.  

 

 
Fig. 5. Profile of chloride concentration obtained 

numerically (dotted lines) and experimental 

results (points) from Modenesi et al. (2004) for 

the longitudinal line of 11m. 
 

 

According to the Fig. 6, results from longitudinal line 

C, which is outside the mixing zone. The numerical 

curves plateaued after 40 meters. However, their 

behaviour are not identical with experimental results. 

The curve for E equal to 0.02 m²/s demonstrates an 

analogue tendency with the experimental data; the 

only exception is the concentration measured at 

250m by Modenesi et al. (2004). The measured value 

is presenting an upward trend, which is not observed 

numerically.  

 
 

 
Fig. 6. Profile of chloride concentration obtained 

numerically (dotted lines) and experimental 

results (points) from Modenesi et al. (2004) for 

the longitudinal line of 22m. 

It is interesting to note in Fig 7, results from 

longitudinal line D, that the numerical outcomes 

showed good results. Due to the zoom given on the 

y-axis, it appears that the experimental data are 

discrepant, but the difference between maximum and 

minimum is less than 0.009 units.  

 
Fig. 7. Profile of chloride concentration obtained 

numerically (dotted lines) and experimental 

results (points) from Modenesi et al. (2004) for 

the longitudinal line of 30m. 
 

In summary, the parametric equations proposed by 

different authors and deducted under specific 

channel’s conditions are able to predict the 

concentration profile. Categorically speaking, the 

Kashfipour & Falconer (2002) generates curves with 

higher concentration values than the other numerical 

curves. Meanwhile, Devens et al. (2006) and Fischer 

et al. (1979) presented a small difference in all cases, 

the concentration obtained by Fischer et al. (1979) 

showed a slightly higher value. 

3.2.2.   Case study – Caceribu River 

In the present study, field data from Caceribu River 

were taken from Ritta (2016) (Table 3). These 

parameters were replaced in Eqs. (8), (9) and (10) to 

make equations that are only function of river 

velocity. They are going to analysis whether the 

longitudinal dispersion coefficient affects the CFD 

results.  

Table 3 Parameters from Caceribu River 

Parameter Value 

Length (km) 15 

Averaged width of the channel (m) 24.3 

Averaged depth of the channel (m) 1.70 

Declivity (dimensionless) 0.04 

Friction velocity (m/s) 0.10 

 

Substituting the values from Table 3 into Eqs. (8), (9) 

and (10), one finds that, the equations to be applied 

in the numerical analyses are:  

𝐸𝐹 = 𝐾𝐹𝑈2                                                            (11) 

𝐸𝐾𝐹 = 𝐾𝐾𝐹𝑈2                                                        (12) 

𝐸𝐷 = 𝐾𝐷𝑈0.774                                                      (13) 

When Schmidt number is equal to one, the 

momentum diffusivity (kinematic viscosity) is equal 

to mass diffusivity (Eq. 14). Therefore, E becomes 

equal to eddy viscosity (see Eq. (15)).  

𝑆𝑐 =
𝑣𝑡

𝐸
=

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑚𝑎𝑠𝑠 𝑑𝑖𝑓𝑓𝑢𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒
                               (14) 
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Fig. 8. Computational grid of a part of 15km channel for a 2D analysis. 

 

 

𝐸𝑡 = 𝑣𝑡                                                                   (15) 

Where EF, EKF, ED and Et are, respectively, the 

constant value for Fischer et al. (1979), Kashfipour 

& Falconer (2002), Devens et al. (2006) and E = 𝑣𝑡 . 

The constant values are KF = 38.21(s), KKF = 

180.40(s) and KD = 16.07(m1.226/s0.226). These 

equations were implemented in COMSOL 

Multiphysics® to compute the effluent dispersion 

along the river.  

The grid used in all simulations is showed in Fig. 8 

(the scale is meter). In 2D analysis, a higher refined 

mesh is used in order to compute the results more 

accurately. Owing to the necessity to investigate the 

changes in detail, mesh is more refined near the inlet. 

A triangular discretization is made with base size of 

0.1m, five boundary layers and a refinement near the 

pollutant entrance. For convenience, the effluent 

inlet is positioned at the channel border and it is 70m 

from the beginning of the channel. To analyse the 

concentration field in this section, a central line is 

traced. All parameters utilized in this section are 

indicated in Table 4.  

Figure 9 displays the velocity field, which is the 

same for all simulations, because E is the only 

variable different in all cases and it does not affect 

the velocity field. For continuous discharge, Figures 

10 and 11 illustrate a continuous pollutant plume 

discharged into the river after 500 seconds. 

According to the Fig. 10, E equal to 0.243m2/s, the 

pollutant spreading is significantly concentrated 

adjacent to the pollutant inlet. Its plume is barely 

well diffused along the river and it reaches less than 

500m after 500s. On the other hand, when E is equal 

to 11.57m2/s, the plume propagates quickly (see Fig. 

11). It is fully dispensed and it reaches more than 

500m after 500s. It can be clearly observed that the 

dispersion is proportional to E, as it was expected. 

Table 4 Parameters used in the case study – 

Caceribu River 

Parameter Value Unit 

Averaged channel velocity 0.75 m/s 

Averaged effluent velocity 1.00 m/s 

Effluent inlet concentration 1000 mol/m³ 

Fluid viscosity 1x10-3 Pa.s 

Fluid density 1000 kg/m³ 
 

Figure 12 is plotted in order to demonstrate the 

difference of the concentration profile along the 

entire channel. The longitudinal diffusion coefficient 

is the only variable different in both cases. As can be 

noted in Fig. 12, the greater E is, the higher the 

steady-state concentration and the travelled distance 

are.  

 

 

 
Fig. 9. Velocity field (m/s) a) Zoom showing 1300 meters of channel b) Zoom showing the inlet velocity 

field. 
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Fig. 10. Numerical analysis with E=0.243m2/s. 

 

 
Fig. 11. Numerical analysis with E=11.57m2/s. 

  

 

 
Fig. 12. Concentration of the pollutant along the 

channel for a continuous discharge over 15,000s 

(Δt=1,000s). 

 
The numerical results from continuous cases are 

illustrated in Fig. 13. The maximum concentration 

value shows a different plateau and it decreases 

depending of the parametric equation implemented. 

The Kashfipour & Falconer curve shows the highest 

value for steady-state concentration and it has the 

biggest effluent displacement along the channel. The 

curves from Fischer and Devens, demonstrate a 

similar behaviour, but Devens’ maximum 

concentration value is smaller than the Fischer. The 

stead steady concentration calculated by Fischer is 

half the value estimated by Kashfipour & Falconer. 

Differently, Fig. 13 shows how the turbulence flow 

affects the dispersion of the effluent near the inlet 

and the pollutant concentration computed is the 

smallest value. For an instantaneous discharge, Figs. 

14 and 15 present an instantaneous pollutant plume 

discharged into the river after 500s. When E equal to 

0.243m2/s is used (Fig. 14), the distribution of the 

effluent is furtherly concentrate near the inlet wall, it 

has a non-homogeneous dispersion and it is smaller 

than in Fig.15. Nevertheless, both plumes do not 

have a total mixture. In Fig. 15, it is easy to realise 

that the plume is more homogenous and it slightly 

diffused.   

 

 
Fig. 13. Concentration of the effluent along the 

channel.
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Fig 14. Numerical analysis with E=0.243m2/s. 

 

 
Fig 15. Numerical analysis with E=11.57m2/s. 

 

 

 
Fig. 16. Concentration of the effluent along the 

channel. 

 
As previously done, one curve for each equation was 

plotted to demonstrate the effects of E. As might be 

seen in Fig. 16, both curves keep the same pattern, 

but with different peaks of concentration. Depending 

on the value of E the curves become more or less 

dispersed. 

Figure 17 illustrates the pollutant concentration 

along a 2D channel using Eqs. (8), (9) and (10). The 

eddy viscosity, from Eq. (15), is also implemented in 

the software. Each model has its own concentration 

peak, which decreases with time, when instantaneous 

discharge occurs. Kashfipour & Falconer gives the 

broadest concentration profile whereas the eddy 

viscosity equation has the smallest diffusion effects. 

Figure 17 shows significant differences, peak 

concentration and plume arrival time, depending on 

the parametric equations employed in the simulation.   

 

 
Fig. 17. Concentration of an instantaneous 

discharge for different diffusion models. 

 

4. CONCLUSIONS  

To predict pollutant dispersion in rivers, analytical, 

experimental test and in situ measurement are 

currently being used. Analytical estimation usually 

results in low accuracy, while experimental or in situ 

measurement are quite expensive in time and 
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equipment. Because of that, CFD can be a good 

alternative to analyse pollutant dispersion. 

Simplified approach, 1D model, can be used to 

determine the effects of E in river dispersion and to 

obtain important information about the plume. In 1D 

analysis, a small difference is found between the 

profiles, and it is due to the different initial 

conditions used to deduct the equation. Despite the 

good agreement between numerical and analytical 

results, models employed to predict mass transport in 

a channel need improvement and this necessity is 

attracting much attention of researchers and 

engineers. For the 2D analyses, the results for each 

parametric equation show significant difference 

between them. As a result, the equation proposed to 

Kashfipour & Falconer generated better results. 

Application of this method depends highly on river’s 

characteristic such as velocity, declivity, length, 

depth and so on. While there are many simplification 

applied in this study, the numerical results showed 

that CFD could be applied to predict pollutant plume 

accurately. As found in literature, different rivers 

have different coefficients. Therefore, more 

systematic studied must be done and any 

generalization must be carefully examined.  
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