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ABSTRACT 

This work numerically investigates the effects of combined rotational and transverse oscillations of a square 

cylinder on the flow field and force coefficients. The primary non-dimensional parameters that were varied are 

frequency ratio fR (0.5, 0.8), Re (50-200), phase difference (ϕ) between the motions and rotational amplitude 

(θ0) with the influence of the last three parameters being discussed in detail. The amplitude of transverse 

oscillations is fixed at 0.2D, where D is the cylinder width. The study has been validated using the mean drag 

coefficient for stationary and transversely oscillating square cylinders from literature. Output data was obtained 

in the form of force coefficient (Cd), vorticity and pressure contours. The governing equations for the 2-

dimensional model were solved from an inertial frame of reference (overset meshing) using finite volume 

method. The interplay between the convective field and prescribed motion has been used to explain many of 

the results obtained. The relative dominance of cylinder motion over the flow stream was determined using 

Discrete Fast Fourier Transform. The influence of Re on Cd disappears when the motions are completely out of 

phase (ϕ = π). In general, the Cd for low Re flows exhibited low sensitivity to change in other parameters. Direct 

correlation has been observed between frontal area, vortex patterns and drag coefficient 

 

Keywords: Bluff body flow; Prescribed motion; Combined oscillations; Vortex shedding; Square cylinder; 

Two-dimensional laminar flow. 

NOMENCLATURE 

A reference frontal area 

Cd coefficient of drag 

Cl coefficient of lift 

D side length of square cylinder 

f forcing frequency 

f0 natural vortex shedding frequency 

fR frequency ratio (f/f0) 

H0 amplitude of transverse oscillations 

L length of computational domain 

Re Reynolds Number 

St Strouhal Number 

t flow time in seconds 

T time period of oscillation 

U∞ free stream velocity 

v transverse velocity of cylinder 

 

α angle of attack 

ϕ phase difference 

θ angular displacement due to rotational 

oscillation 

θ0 rotational oscillation amplitude 

ω angular frequency of oscillation 

 

 

1. INTRODUCTION 

The majority of natural and man-made flow 

scenarios can be categorized as flow over bluff 

bodies characterized by interesting phenomena such 

as flow separation and periodic vortex shedding. 

Cylinders form an important subset of bluff bodies 

and studies have focused largely on cylinders of 

circular, square/rectangular and elliptical cross-

sections. This class of fluid dynamic problems has 

been meticulously studied over the past century. 

Canonical bluff body flows have wide ranging 

applications: FSI problems (Hou et al. 2012), 

oceanography (Chakrabarti 1994), design of 
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buildings (Taniike and Inaoka 1989), bridges (Irwin 

2008) and automobiles (Hucho and Sovran 1993), 

aeronautical and nautical engineering on the macro-

scale and bio-fluid mechanics, especially heart valve 

design (Dasi et al. 2009) and MEMS (Ho and Tai 

1998) on the micro-scale. 

Extensive literature exists for flow over circular and 

square cylinders, owing to their geometric simplicity 

and widespread applicability. The early studies by 

Strouhal (Strouhal 1878), Rayleigh and von Karman 

laid the foundation for further studies. Roshko 

(Roshko 1993) provided a detailed review on bluff 

body flows for circular cylinder and bluff plates over 

a wide range of Re (10 to 107), with clear 

demarcation of different flow regimes (2D,3D, 

steady and unsteady). Studies have also been 

conducted to study the effect of prescribed motions 

(Ongoren and Rockwell 1988) of the cylinder on the 

flow field. 

The existing literature for circular cylinders is 

humongous. Fixed circular cylinder has been studied 

(Tritton 1959, Bishop and Hassan 1964, Sarpkaya 

and Schoaff 1979, Williamson 1996, Silva et al. 

2003, Parnaudeau et al. 2008, Rajani et al. 2009) 

experimentally and numerically. The work by Rajani 

et al. (2009) in particular establishes the onset of 

three-dimensionalities in the flow field beyond 

certain Re which forms the upper bound of the 

present study. Later studies shifted focus to 

oscillating circular cylinders undergoing transverse 

oscillations (Stansby 1976, Bearman 1984, 

Williamson and Roshko 1988, Blackburn and 

Henderson 1999, Celik and Beskok 2009, Kumar and 

Roy 2016) and rotational oscillations (Thiria et al. 

2006, Du and Dalton 2013, Kumar et al. 2013) 

separately. The combination of rotational and 

transverse oscillations significantly widens the 

parameter space and affords better flow control. 

Blackburn et al. (1999) discovered a propulsive 

streaming jet regime in quiescent fluid for such 

combined motion when translation and rotation were 

completely out of phase (Φ=π), known as the 

“swimming cylinder”. De-constraining the cylinder 

in the horizontal direction produced a propulsive 

motion with a terminal velocity of 0.33 times the 

peak translational velocity. This was further pursued 

using LBM (Beigzadeh-Abbassi and Beigzadeh-

Abbassi 2012) and in uniform cross flow (Nazarinia 

et al. 2009, Nazarinia et al. 2012). Koehler et al. 

(2015) provided a more extended parameter space 

( 3𝜋/8 ≤ 𝐾𝐶 ≤ 2𝜋 , 30𝜋 ≤ 𝑅𝑒 ≤ 160𝜋 , 0 ≤ 𝛷 ≤
𝜋) and identified several new flow regimes broadly 

classified as horizontal flow, deflected wake, double 

jet and chaotic regimes. Three-dimensional stability 

was also investigated 

Flow over square cylinders differ considerably from 

circular cylinders due to the presence of flat faces 

and sharp corners. An experimental study on fixed 

square cylinders (Lee 1975) presented pressure fields 

with special emphasis on onset of turbulence. The 

experiment was conducted at a fixed Re of 1.76 ×
105 and the surface pressure (average and 

fluctuating), force coefficients (lift and drag) and 

base pressure were plotted with respect to angle of 

attack. In an earlier study (Bearman and Trueman 

1972), a correlation is provided between wake 

vorticity strength, distance of vortex shedding and 

base pressure, which in turn can be related to drag. 

This correlation finds significant use in the present 

study. Another experimental study of significance 

was conducted by Igarashi (1984) in the laminar 

regime, which studied effects of angle of attack on 

flow field, especially the leading-edge wake region. 

The numerical study of laminar flow over fixed 

square cylinder which set the tone for further work 

was that by Sohankar et al. (1998). Laminar flows in 

the range of 45<Re<200 and 0<α<45 was 

considered. In addition to identifying the Recr for 

various α, the influence of Re and α on drag, lift, St, 

moment and base suction was numerically 

determined. Similar work by Lankadasu and 

Vengadesan (2008) with special focus on the effect 

of shear was conducted using an inlet of non-uniform 

velocity. Mat et al. (2011) numerically studied the 

effect of a splitter plate placed behind the cylinder, 

similar to the study by Roshko on circular cylinder. 

Square cylinders undergoing oscillations have also 

been studied in detail in the recent years. Drag and 

lift data, power spectra as well as description of 

observed phenomena such as lock-in, wake 

synchronization, vortex switch, etc. were provided at 

frequencies close to synchronization by Singh et al. 

(2009) for a transversely oscillating square cylinder 

at low Re. Another study (Chauhan et al. 2016) 

experimentally studied flow over a transversely 

oscillating square cylinder and achieved significant 

drag reduction with increase in forcing frequency. 

Other phenomena associated with oscillating square 

cylinders have also been explored, such as mixing 

efficiency (Ortega-Casanova 2016), multiple square 

cylinders (Sewatkar et al. 2011, More et al. 2015, 

Zhao et al. 2015) and FIV (Joly et al. 2012, Zhao 

2015).  

The effects of rotation of square cylinders has not 

been as widely studied (Ohba and Kuroda 1993, Zaki 

and Gad-El-Hak 1994, De-Ming and Jian-Zhong 

2010, Chatterjee and Gupta 2015). Free rotations in 

cross flow were investigated by Zaki and Gad-El-

Hak (1994). Ohba and Kuroda (1993) provided force 

coefficient signals, surface pressure distribution and 

flow visualizations for rotating square at high Re and 

low angular velocities. Chatterjee and Gupta (2015) 

identified suppression of shedding beyond a critical 

angular velocity along with drag suppression and lift 

enhancement for a rotating square cylinder. The 

change in vortex structures when the square is 

rotated impulsively was studied numerically (1 ≤
𝑅𝑒 ≤ 300) by De-Ming and Jian-Zhong (2010). 

As evident from the literature review, translational 

and rotational oscillations have been studied 

separately for square cylinders. The phenomena of 

lock-in, galloping and better mixing which 

accompany transversely oscillating square cylinders 

are of great engineering relevance. Similarly, the 

occurrence of drag suppression and lift enhancement 

has been established for rotationally oscillating 

square cylinders. On the other hand, circular 

cylinders undergoing combined transverse and 

rotational oscillations have been observed to produce 

interesting phenomena such as propulsion (the 
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swimming cylinder) and other novel flow regimes 

(Koehler et al. 2015). However, the effect of this 

combined motion applied to a square cylinder has not 

been investigated. The focus of the present work 

therefore lies in the study of laminar flow over square 

cylinders undergoing combined transverse and 

rotational oscillation. This study involves variation 

of non-dimensional parameters like frequency ratio 

fR (0.5, 0.8), Re (50-200), phase difference (ϕ) 

between the motions and rotational amplitude (θ0).  

2. PROBLEM DESCRIPTION 

The objective of the present work is to study flow 

over a square cylinder undergoing combined 

transverse and rotation oscillatory motions. The 

amplitude of oscillation (H0) in the transverse 

direction is 0.2D, where D is the cylinder width and 

the amplitudes (θ0) for the rotational oscillation 

varies from π/6 to π/2. The frequency of oscillation 

(f) is the same for both the motions and it is non-

dimensionalized with the corresponding Strouhal 

frequency (f0) for each Reynolds Number. The 

Reynolds Numbers (Re) under consideration are 

from 50 to 200. The frequency ratios fR (f/f0) are 0.5 

and 0.8 and the phase difference (ϕ) between the two 

prescribed motions are π/4, π/2, π, 3π/2. By varying 

the above-mentioned parameters, the interaction of 

the vortices, their formation mechanism and the 

effect of their interaction on drag coefficient have 

been studied. 

2.1 Kinematics of Motion 

The square cylinder oscillates transversely with 

respect to flow, about the x axis with its centroid 

always on x=0. The rotational oscillation of the 

cylinder is always about its centroid. As shown in 

Fig. 1a, at any given instant, y(t) is the displacement 

of centroid of square cylinder along y axis due to 

transverse oscillations, measured from x axis and 

θ(t) is the angular displacement of the cylinder due 

to rotational oscillations, with respect to positive x 

axis. The following equations describe the 

kinematics of the prescribed motion. 

𝑣 = 𝐻˳𝜔𝑐𝑜𝑠(𝜔𝑡)   (1) 

�̇� = 𝜃˳𝜔𝑐𝑜𝑠(𝜔𝑡 − 𝜙)   (2) 

Where, �̇�  is the angular velocity of the square 

cylinder at an instant about its centroid. 

The waveforms of the two oscillations have been 

plotted for two extreme cases of phase difference, ϕ= 

π/2 and 3π/2, in Fig. 1b. 

2.2 Computational Domain and Grid 

The computational grid was modelled as two 

separate grids i.e, foreground mesh and background 

mesh and these interfaced using an overset interface 

in ANSYS FLUENT 18. The motion is prescribed to 

the foreground mesh (represented as ① in Fig. 2a) 

which consists of the square, enclosed by a circular 

mesh of diameter (J) 40D, with the centroid of the 

square as its center. The far wake length must be 

sufficiently large enough to avoid distortion of shed 

vortices due to insufficient wake length. With 

reference to Koehler, Beran et al. (2015), the 

downstream wake length was set as 32D. Thus, the 

background stationary mesh (represented as ② in 

Fig. 2a) to which the circular mesh is appended to is 

a square with width (L) 64D. At any instant of time, 

the centroid of the background square mesh and the 

square cylinder always lie on x=0. With respect to 

the flow domain as illustrated in Fig. 2b, each side of 

the square cylinder has been spatially discretized into 

75 grid elements each (i.e 300 grids in total on the 

square). Also it can be seen in Fig. 2(b), grid was well 

resolved near to the wall with first grid distance 

normal to the wall was kept as D/1000 and growth 

factor as 1.2. The grid ratio (largest to smallest grid 

size) was maintained to 3 upto square domain size of 

4D.  

 

 
(a) 

 

 
(b) 

Fig. 1. (a) General depiction of problem 

Kinemactics and (b) Waveforms of the 

transverse and rotational motions. 

 

3. COMPUTATIONAL 

METHODOLOGY 

Two-dimensional, unsteady, incompressible Navier-

Stokes equations are solved for flow around the 

rotating and oscillating square from an inertial frame 

of reference. COUPLED scheme is used for 

pressure-velocity coupling.  The convective terms in 

momentum equations are discretized using second 

order upwind scheme. The temporal discretization is 

first order. The convergence criteria for momentum 
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and continuity equations is set to be 10-6. The 

computations were performed using commercial 

CFD solver, ANSYS FLUENT 18. 

As shown in Fig. 2a, at the velocity inlet represented 

by side eh, 𝑈∞= constant and there is no fluid flow 

in the y-direction. For the far stream longitudinal 

boundaries, sides ef and gh, free slip boundary 

condition is applied. The pressure outlet boundary 

condition specifying gauge pressure to be zero has 

been specified at side fg.  The surface of the square 

abcd is a wall, and thus no-slip condition is applied.  

The foreground circular mesh zone (①) was moved 

according to prescribed combined rotational and 

translational motion using compiled zone_motion 

UDF. The periphery of the foreground circular mesh 

is the overset interface through which data is 

interpolated and transferred between the two zones. 

The working fluid is air. 

Since there is a phase difference between the two 

oscillations, the square cylinder is translated along y 

direction by a distance from the x axis corresponding 

to each phase difference at t=0. The free stream 

velocity for each case based on the parameters of the 

present study is dependent on the Reynolds number. 

 

 
(a) 

 

 
(b) 

Fig. 2. (a) Computational Domain (b)Close-up 

view of mesh around the solid body. 

4. VALIDATION 

4.1   Stationary Cylinder 

Incompressible flow past a stationary square cylinder 

for Reynolds numbers 100, 150, 200 was simulated 

for validating the computational model and the 

obtained values of Strouhal number (St), average 

drag coefficient (𝐶�̅�), are compared with the existing 

data in the literature. Strouhal number is defined as  

𝑆𝑡 = 𝑓0𝐷/𝑣   (3) 

The wake oscillation frequency (f0) is calculated 

from the spectra of the cross-stream velocity (uy) 

recorded at a distance of 5D downstream of the 

cylinder’s rear face along the center-line of the 

cylinder (y=0) as done by Singh et al. (2009). The 

comparison of C̅d and St of present work with data 

existing in literature is shown in Fig. 3a and Fig. 3b 

respectively. It can be observed that, both C̅d and St 

of the present work are well in accordance and within 

the range of data available in the literature (Sohankar 

et al. 1998, Darekar and Sherwin 2001, Sahu  et al. 

2009, Singh et al. 2009, Sen et al. 2011, Ali et al. 

2012, Joly et al. 2012, Zhao 2015). 

4.2   Transversely Oscillating Cylinder 

Validation is also done for transversely oscillating 

square cylinder. Simulations have been run for fR of 

0.5 and 1.5 and for Re=100. The obtained values of 

C̅d and Cd,rms are compared and plotted with that of 

Singh et al. (2009) in Fig. 3c and 3d respectively. 

Singh et al. (2009) has obtained a higher value of C̅d 

for flow at Re=100 for a stationary square cylinder 

compared to other values in the literature as 

illustrated in Fig. 3c. However, as observed, since 

both (Singh et al. 2009) and present study have 

similar profiles i.e. similar slope, it can be concluded 

that the results obtained for the case of transversely 

oscillation square cylinder at Re=100 are consistent 

with that of Singh et al. (2009). 

4.3   Time Step and Grid Independence Test 

Flow past a square cylinder transversely oscillating 

and rotating at fR=0.8, with θ0 and ϕ= 90°, at Re=200 

was simulated for different time increments (Δt) to 

verify the independence of the solution from them. 

C̅d for the different time increments tested is shown 

in Fig.  4a, where T is the time period of oscillation 

for a corresponding frequency. The difference in C̅d 

values for T/400 and T/800 increment size is 1.65% 

whereas for T/800 and T/1000 increment size is 

0.002%. Since the change is negligible, T/800 was 

chosen as the time increment. To check the effect of 

grid refinement on coefficient of drag and other 

desired outputs, computations are done on three 

grids, coarse grid (G1) having 65230 cells and grid 

size on square to be D/50, base grid (G2) having 

99986 cells in total and grid size on square to be 

D/75, finer grid (G2) with 306848 cells in total and 

grid size on square to be D/150. The average drag 

coefficient obtained for the refined grid, G3 is 3.263, 

for the base grid (G2) is 3.262 and for coarse grid is 

3.124. The Cd variation with respect to time has been 

plotted in Fig.  4b. Also, coefficient of lift variation  
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(a) 

 

 

 
(b) 

 
(c) 

 

 

(d) 

Fig. 3. Validation curves of stationary square cylinder for (a) mean drag coefficient and (b) Strouhal 

Number. Validation curves of transversely oscillating square for (c) mean drag coefficient and (d) RMS 

fluctuating drag coefficient. 

 
 

 

with time and snapshot of velocity contours for G2 

and G3 were presented in Fig. 4 (c) and (d) 

respectively. It can be seen from all the flow 

parameters that solution remains same even when 

grid in resolved to higher grid density G3, hence all 

the computations in the present work were simulated 

using grid G2. 

4.4   Third Dimensionality Test 

As the Reynolds number increases, the flow becomes 

3D due to instabilities in the third dimension as 

reported by Rajani et al. (2009). To check for two 

dimensionality of present study, the extreme case 

from the parameter domain, i.e., Re=200, fR=0.8with 

θ0 and ϕ of π/2 was chosen. For the third dimension 

in the 3D mesh, the length of the square cylinder 

along the z-axis is set at 4D. The spanwise 

distribution of vorticity magnitude in the z direction 

is illustrated in Fig. 4(e). It can be observed that there 

is no variation in the z direction, concluding that the 

flow remains two-dimensional. 

5. RESULTS AND DISCUSSION 

The effect of Reynolds number, phase difference 

between the two prescribed oscillations and the 

amplitude of rotational oscillations on the force 

coefficients is examined in the present work. To 

avoid the effect of transience of the flow initiation, 

each case was simulated for at least 20 cycles to 

obtain asymptotically cyclic results before analyzing 

them. Chatterjee and Gupta (2015) and Singh et al. 

(2009) have studied the problems of only rotating 

and only translating square cylinder respectively. To 

the best of our knowledge there is no past work that 

studies drag signals and flow fields for a square 

undergoing combined rotational and transverse 

oscillation. 

5.1 Effect of Reynolds Number 

Simulations were done for Re= 50, 100 and 200, with 

θ0 and ϕ=90̊, to understand the effect and influence 

of Reynolds Number of the free stream, on the 

coefficient of drag and the flow features. Fig. 5 

shows the variation of drag coefficient with the 

frequency ratio for different Reynolds Numbers. The 

C̅d value initially decreases and then increases as Re 

is varied from 50 to 200. It can be seen that C̅d for 

Re=50 increases almost linearly as fR is increased 

from 0 to 0.8. At Re=50 for stationary square 

cylinder, there is no vortex shedding and instead the 

wake is a steady recirculation region attached to the 

bottom and top surfaces of the square. 
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

 

 
(e) 

Fig. 4. (a) Time-step independence and (b) grid 

independence with Cd plot (c) grid independence 

with Cl plot (d) Velocity contours for G2 and G3 

grids at t/T= 0.05  (e) Third Dimensionality test 

for Re=200, fR=0.8. 

 
Fig. 5. Variation of mean Cd with fR. 

 

As the induced oscillation frequency is increased, the 

wake region destabilises and transitions into vortices 

that are alternately shed from the top and bottom 

edges. This results in increased Reynolds stresses in 

near wake and along with the increase in shear stress 

on the surface due to rotation, there is an increase in 

C̅d. Since the wake region is highly dependent on the 

prescribed motion, it can be inferred that this linear 

increase in C̅d  for Re=50 is dominated by the 

induced oscillatory motion compared to the effect of 

convective field. 

 
(a) 

 
(b) 

Fig. 6. FFT Spectrum for (a) Re=50 and (b) 

Re=200. 

 

To further ascertain the dominant frequency in the 

near wake, spectrum of drag coefficient is obtained 

by Fast Fourier Transform of the obtained Cd signals  
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(a) 

 

 
(b) 

 
(c) 

Fig. 7 (a) Variation of Cd with to non-dimensional flow time for Re=50 and 200, fR=0.8. Vorticity 

magnitude contour plots for fR=0.8 at (b)Re=50 and (c)Re=200. The images l, m, n and o 

correspond to the non dimensionalized time marked with the corresponding letters in Fig 7a. 
 

 

for Re=50 and 200 as shown in Fig. 6. The frequency 

obtained in the Cd  spectra is twice the actual 

frequency as observed by Singh et al. (2009). In Fig. 

6a and 6b, it can be observed that peaks are obtained 

at frequencies corresponding to induced frequency 

for both Re=50 and 200 respectively. For fR= 0.5, 

from Fig. 6a and 6b, it can be observed that small 

peaks are also obtained at frequencies corresponding 

to the natural frequency for both Re 50 and 200. Since 

Re=50 has higher value of mean Cd than Re=200 at 

fR=0, though the increase in C̅d as fR increases from 0 

to 0.5 is dominantly influenced by the prescribed 

motion, due to the discernible effect of the convective 

flow, Re 50 has higher value of C̅d than Re=200 at 

fR=0.5 as seen in Fig. 5. Also, at fR=0.5 both the 

prescribed motion and convective field control the 

near-wake region. This is similar to the phenomena 

observed by Singh et al. (2009) outside the lock-in 

regime for oscillating square cylinder. As the 

frequency ratio is increased from 0.5 to 0.8, there is a 

non-linear increase in C̅d for Re=200. This increase 

in C̅d  for Re=200 is due to the combined effect of 

convective flow and prescribed motion. From Fig. 6, 

for Re=200, there are much more conspicuous peaks 

at points corresponding to frequencies other than 

induced frequency, compared to that of Re 50 arising 

due to the combined effect of both convective flow 
and prescribed motion. 

To better understand the effect of convective flow 

field on the drag forces induced on the cylinder, Cd 

with respect to nondimensionalised time for Re=50 

and Re=200 have been plotted in Fig. 7a. On 

observing, Cd profile is similar for both Re=50 and 

200. Thus, it can be inferred that the mechanism that 

is initiating the formation of vortices, the interaction 

of vortices and other factors that affect the drag force 

on the cylinder are similar for both the Reynolds 

Numbers. Vorticity magnitude contour plots at the 

times marked by lines l, m, n and o on the time scale 

corresponding to the overlapping inflection points of 

both the Re as shown in Fig. 7a have been illustrated 

for both Re=50 and Re=200 in Fig. 7b and Fig. 7c 
respectively. 

On comparing Fig. 7b and Fig. 7c, it can be observed 

that both Re=50 and Re=200 have similar vorticity 

magnitude contours at the inflection points.  This 

confirms that the mechanism initiating vortex 

formation in both the cases is same. Thus, it can be 

concluded only the prescribed motion of the cylinders 

is initiating the formation of vortices. But it can also 

be observed that the magnitude of the vortices for 

Re=200 in Fig. 7c is much higher compared to the 

magnitude of vortices for Re=50 in Fig. 7b. When the 

flow encounters the leading-edge corners of the 

square, circulation regions are produced which then 
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break away from the surface of the cylinder and are 

carried away into the wake by the flow velocity. 

When the flow velocity is high, the intensity of the 

circulation region produced is also high. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Variation of mean Cd with phase 

difference for (a) fR=0.5 and (b) fR=0.8. (c) 

Variation of Cd with non-dimensional flow 

time for Re=50 and 200, fR=0.8. 

 
 

This non-linear increase in Cd  is previously 

unreported in literature. This is completely opposite 

to what Chatterjee and Gupta (2015) have observed. 

For a rotating square cylinder, as fR is increased from 

0.5 to 0.8, Cd reduces in value. 

5.2 Effect of Phase Difference 

To understand the effects of the phase difference 

between the rotational and transverse oscillations 

on C̅d and flow features, Reynolds numbers 50 and 

200, θ0=π/2 with ϕ values of π/4, π/2, π and 3π/2 are 

considered. Fig. 8a and Fig. 8b illustrate variation 

of C̅d for fR= 0.5 and 0.8. In both Fig.  8a and 8b, 

there is no significant variation in C̅d  as ϕ is 

increased from π/4 to π/2 for both Re=50 and 200 

and for Re=50 there is very less variation in the 

values of C̅d  for all the phase differences under 

consideration. In Fig.  8b for  Re = 50, the values of 

C̅d for ϕ= π/4, π/2, π and 3π/2 are 2.44, 2.34, 2.37 

and 2.76 respectively with a standard deviation of 

0.04 and in Fig. 8a, even for fR=0.5, the standard 

deviation of the values of C̅d  for Re=50 is 0.16.  

Thus, it can be inferred that C̅d is not affected by 

phase difference change for a frequency ratio for 

Re=50. At Re=50, as stated in the preceding 

section, there is no vortex shedding happening for a 

stationary square cylinder. The subsequent wake 

regimes obtained which can be categorized as 

“Horizontal streaming to horizontal vortex 

shedding transition regime”, as described by 

Koehler, Beran et al. (2015), is only due to the 

increase in oscillation frequency. In both Fig. 8a 

and Fig.  8b, both Re=50 and 200 have almost the 

same value of C̅d  at ϕ=180̊. For further 

understanding, variation of Cd with respect to flow 

time non-dimensionalized with time period (T) of 

oscillation has been plotted for a single period in 

Fig. 8c. 

In Fig. 8c, the variation of Cd for both the Reynolds 

Numbers, 50 and 200, has similar pattern with 

different magnitude of troughs and crests. Thus, it can 

be understood that the dominant mechanism behind 

the formation of vortices, the interaction of vortices 

and their resulting effect on Cd is the same. For further 

examining, vorticity magnitude contour plots for both 

Re=50 and Re=200, for ϕ= π and fR= 0.8 at non-

dimensionalized time intervals 0.01, 0.36, 0.49 and 

0.53 represented by images A, B, C and D 

respectively, have been illustrated in Fig. 9a. In Fig. 

9.a.A, vortices are being formed from the corners w 

and z. As the square rotates anti-clockwise about its 

centroid, it can be observed in Fig. 9.a.B, that a 

circulation region is getting formed around corner y. 

As the cylinder further rotates, circulation region 

produced around y begins to interfere with the 

circulation region produced by x, as seen in Fig. 9.a.C 

and 9.a.D. Since the cancelling of leading corner 

circulation regions by circulation regions around 

trailing corner as the cylinder rotates happens at both 

Re=50 and 200, due to the nature of motion (phase 

difference), there is no effect of Re at ϕ= π. Drag 

reduction is a widely studied topic for bluff bodies in 

fluid flow. For higher Re, this can be seen as a drag 

suppression mechanism.  

The same phenomena is not observed in Koehler, 

Beran et al. (2015). For a circular cylinder 

undergoing combined rotational and transverse  

oscillations, there are no sharp edges that lead to the 

formation of circulation regions around them. 
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(a) 

 

 
(b) 

Fig. 9. Vorticity magnitude contour plots for (a) Re=50 and Re=200, ϕ= π, fR= 0.8, t/T= 0.01, 0.36, 

0.49 and 0.53. (b) Re=200, fR=0.8, ϕ=3π/2. 

 

 

As seen in Fig. 8a and 8b, C̅d for Re=200 is higher 

compared to Re=50, when ϕ=3π/2.Vorticity 

magnitude contour has been plotted for Re=200, 

fR=0.8, ϕ=3π/2 in Fig. 9b. As seen in Fig. 9b, unlike 

for phase difference π, here the top leading-edge 

corner circulation region is taken forward in positive 

x direction by flow, thus avoiding it interfering with 

the circulation region formed around the trailing 

edge. Since the convective flow complements the 

effect of the prescribed motion, C̅d  for Re=200 is 

higher compared to Re=50 when ϕ=3π/2. The above-

mentioned effect is not seen for Re=50. 

5.3 Effect of Rotational Amplitude 

The rotational amplitude of the square cylinder was 

varied among π/6, π/4, π/3 and π/2 for frequency 

ratios of 0.5 and 0.8 and Re of 50 and 200. The phase 

difference (ϕ) between the motions for all the cases 

was set at π/2. The effect of θ0 on the mean Cd is 

plotted in Fig. 10a and 10b. A local minimum is 

observed at θ0= π/4 for all Re and fR, suggesting an 

underlying drag reduction mechanism. Moreover, for 

low Re (50) and fR=0.5 (Fig.  10a), the variation of Cd 

with θ0 is not appreciable (2.6%, 5.9% and 2.2%). 

Also, the mean CD is observed to increase after θ0= 

π/4, for all Re and fR except for one case (Re=200 and 

fR=0.5). Significant drag reduction is observed in this 

case. The opposite occurs for the same Re and θ0 at 

higher fR. Considering Re of 200, as θ0 is increased 

from π/4 to π/2, the mean Cd increases by 59.7% for 

fR=0.8 but drops by 12.3% for fR=0.5 displaying an 

interesting inversion in trends. 

The discussion in this section is based on the 

following points. First, the generated vorticity is 

directly related to the surface tangential acceleration, 

a fact that has been established in literature (Morton 

1984).Varying the rotational amplitude, in effect 

varies the maximum surface velocity and acceleration 

since the rotational frequency is fixed. Second, the 

frontal area projected perpendicular to the flow has 

the strongest influence on the drag value. The minor 

variations can be deduced from the vorticity field. 

Representative tangential acceleration curves of the 

corner points of the square over one time period have 

been plotted in Fig. 11. A comparison of magnitudes 

shows that the transverse amplitude (0.002) is 0.3% 

of even the minimum rotational amplitude (π/6). As a 

result, with increase in rotational amplitude, the effect 

of superposition subsides, and the effect of rotation 

dominates the acceleration curve. In fact, Fig.  11b is 

almost a pure sinusoid. This superposition leads to 

non-uniform distribution of surface acceleration 

which is the primary surface vorticity production 

mechanism. 

The instantaneous drag coefficient profiles have been 

plotted at Re=200 for one period (Fig. 12). All 

profiles display multiple peaks. For instance, θ0= π/4, 
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two separated peaks are observed whereas for θ0=π/3, 

three distinct peaks are seen (Fig. 12c). The profile 

for θ0= π/2 resembles that of π/4 but with two twin 

peaks. 
 

 
(a) 

 
(b) 
Fig. 10. Variation of mean Cd with θ0 for fR of (a) 

0.5 and (b) 0.8. 

 

The following considerations are necessary for 

explaining these profiles. It is an established fact that 

for all Re (except creeping flow), flow separation for 

square cylinder always occur at the leading edge 

(Igarashi 1984). Above a critical Re, this ‘leading-

edge tripping’ induces vortex shedding. Also, since 

the square is a bluff body, form drag or pressure drag 

is the major cause of drag. As the cylinder rotates, the 

projected cross-sectional area normal to the flow 

varies. The expression for drag coefficient is given 

by, 

C𝑑 = (∫(p − p0)(n̂ ∙ î)dA) ρvA2⁄

+ (∫τ(t̂ ∙ î) dA) ρvA2⁄  

(4) 

The second term on the right can be ignored since 

viscous drag is relatively negligible for bluff bodies. 

The reference area A is the frontal area when the 

angle of attack is zero. However, the actual frontal 

area changes with rotation and this significantly 

affects the drag. The wedge position of the square 

(θ=π/4) has the maximum frontal area and 

corresponds with instances of maximum drag for 

most cases. The vortices that form behind the cylinder 

are indications of high drag because they are regions 

of low pressure. This inverse relationship between 

vorticity and pressure field helps in correlating the 

drag to the vortex structure. 

 

 
(a) 

 

 
(b) 

Fig. 11. Surface tangential acceleration of one 

corner of the square over a time period for 

Re=200 and (a) θ0= π/6 and (b) θ0= π/2. 

 

During a single time period, the wedge position 

occurs twice, thrice and four times for θ0 of π/4, π/3 

and π/2 respectively. Fig. 13a depicts the vorticity 

field at for Re=200 and fR=0.5 at two moments. On 

comparison with Fig.  12b, the relationship is evident. 

Maximum drag occurs when maximum frontal area is 

projected to the flow, albeit with a minor time lag. 

Similar relationship is observed for Fig.  13b which 

resembles a HS regime and Fig. 12d. The twin peaks 

for θ0=π/2 are caused by the occurrence of wedge 

form twice during each sense of rotation. The 

variation observed between different peaks can be 

understood from the differences in vorticity intensity 

behind the cylinders. In general, the drag is higher 

when the vorticity magnitude is higher and when the 

vortices are in proximity to the cylinder. The same 

can be observed in Fig.  13b (comparing with Fig.  

12d) - Fig. 13b.B and 13b.D have vortices almost on 

the surface of the cylinder. Moreover, a point of high 

localized vorticity is seen on the trailing corner for 

these two instances corresponding with the higher Cd 

peaks among the twin peaks. It is to mention that the 

high vorticity is not the cause of high drag but a side 

effect of low pressure, which is the actual cause of 

both higher drag and vorticity. This relationship can 

be directly exploited to qualitatively predict drag 

from vorticity contours. 
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(a) fR=0.5, θ0= π/6 

 

 
(b) fR=0.5, θ0= π/4 

 

 
(c) fR=0.5, θ0= π/3 

 

 
(d) fR=0.5, θ0= π/2 

 
(e) fR=0.8, θ0= π/6 

 

 
(f) fR=0.8, θ0= π/4 

 

 
(g) fR=0.8, θ0= π/3 

 

 
(h) fR=0.8, θ0= π/2 

Fig. 12. Instantaneous Cd profiles for one time period for Re = 200. 
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(a) 

 

 
(b) 

Fig. 13. (a) Vorticity Contours for Re=200, fr=0.5 and θ0=π/4 at t*=(A) 0.26 and (B) 0.75. (b) Vorticity 

Contours for Re=200, fR=0.5 and θ0=π/2 at four t*:(A)0.17 (B)0.33 (C)0.67 and (D)0.83. 

 
 

6. CONCLUSION 

The effect of combined rotational and transverse 

oscillations of a square cylinder on the flow field and 

drag are investigated numerically. Four non-

dimensional parameters (Reynolds Number, 

frequency ratio, phase difference, rotational 

amplitude) are varied individually and the following 

results were observed.  

C̅d  increases almost linearly with increase in 
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oscillation frequency for Re=50 when phase 

difference and rotational amplitude are constant and 

this linear increase in C̅d is dominated by the induced 

oscillatory motion compared to the effect of 

convective field.  

There is no significant change in C̅d for Re=50, when 

frequency of oscillation is maintained constant and 

other parameters are varied. 

 For Re=200, as the frequency ratio is varied from 0.5 

to 0.8, there is a non-linear increase in C̅d. This non-

linear increase is because of the combined effect of 

convective field and prescribed oscillations. 

 For ϕ= 180°, for a particular oscillation frequency, 

C̅d is independent of Reynolds number. Irrespective 

of Re, the interaction of the vortices is the same due 

to the nature of prescribed motion (phase difference). 

 For ϕ= 270°, for an oscillation frequency, C̅d  is 

always higher for Re=200 as the convective field due 

to higher flow velocity complements the effect of the 

prescribed motion.  

The C̅d exhibits lower sensitivity to θ0 at Re=50 than 

at Re=200. 

The instantaneous drag profiles are directly related to 

the projected frontal area. The vorticity induced due 

to cylinder motion plays a secondary role in deciding 

Cd.   
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