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ABSTRACT 

When a shock wave having variable concave curvature propagates, it can develop a kink followed by the 

development of a reflected shock. A typical example is a plane incident shock encountering a surface with 

concave curvature, the part of the shock adjacent to the surface curves forward and subsequently develops into 

a Mach reflection with a Mach stem, shear layer and reflected shock. The physical mechanisms associated with 

the evolution of the shock profile was evaluated for shock waves with initial profiles comprising a cylindrical 

arc, placed in-between two straight segments, propagating in a converging channel. The temporal variation of 

the pressure distribution immediately behind the shock wave was studied using CFD. This revealed a pressure 

imbalance in the region where the curved (which was initially cylindrical) and straight shock segments meet. 

This imbalance occurs due to the difference in the propagation behaviour of curved and planar shock waves, 

and results in the development of reflected shocks on the shock front. The angle at which the channel walls 

converge, the initial curvature radius, and the shock Mach number, was varied between 40 and 60 degrees, 130 

and 190 mm and 1.1 to 1.4, respectively. The variation with time of the pressure-gradient distribution and the 

maximum pressure gradient behind theshock wave was evaluated. From this, the trajectory angle of the triple 

points, and the rate at which the reflected shocks develop, was deduced. It was found that when shock waves 

with larger curvature radii propagate in channels with lower wall angles, the reflected shocks develop at a 

slower rate, and the triple points follow a steeper trajectory. Consequently, the likelihood of reflected shocks 

emerging on the shock front, within the duration of the shock propagation, is reduced. This is due to the triple 

points intersecting the walls, before reflected shocks can fully develop. Similarly, when the shock Mach number 

is higher, the trajectory angle of the triple points is greater, and they intersect the walls before the reflected 

shocks can emerge. 

Keywords: Curved shock waves; Shock diffraction; Shock reflection. 

 

 

1. INTRODUCTION 

When a cylindrical shock wave converges, it 

increases in strength (Payne 1957). This has been 

demonstrated experimentally by Perry and 

Kantrowitz (1951), and numerically by Sod (1977). 

A number of typical applications of shock waves 

with wave fronts concave in the direction of 

propagation has been given by Grönig (1986) . These 

works concentrate on cylindrically imploding 

shocks. 

A general case is given in Skews et al. (2008), in an 

investigation into the generation of unsteady flows 

from rapidly moving boundaries. The contraction of 

a parabolic wall at a constant velocity produces a 

shock wave. The shock wave at distinct times during 

its motion is given in Fig. 1. The shock wave initially 

has the profile similar to that of the surface. It then 

develops kinks (second frame) with strong gradients 

propagating out from the centre. In the final frame a 

three-wave system develops with a Mach stem and 

reflected wave. 

A well known case is the propagation of a plane wave 

onto a concave surface as shown in Fig. 2. The 

compression waves arising from the curved surface, 

using the technique of generating small perturbations 

arising from tiny steps of the surface (Skews and 

Kleine 2009), shows the evolution of the shock 

profile. This illustrates how the compression behind 

the incident shock develops, resulting in its forward 

curvature due to its increasing strength. The top 

image shows how the compression wavelets 

congregate, bunching up causing a change in the 

curvature of the shock. In the second image some of 

the wavelets, but not all, combine causing the 

development of a kink in the shock. Those above and 

below the kink still continue to modify the shape of 

the section of the shock they interact with. In the final 
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image the central grouping of wavelets combine to 

form a reflected shock, forming a Mach reflection 

with its associated shear layer. 

 

Fig. 1. Waves from a collapsing parabolic 

surface. 

 

 

 
Fig. 2. Modification of the profile of a shock 

wave on a curved surface due to influence of 

compression wavelets. 

 
A third example arises from a suggestion in a 

doctoral project dealing with the reflection of 

cylindrical waves off a wedge (Gray 2014). This was 

part of a project dealing with the generation of 

twodimensional shocks of arbitrary profile. The 

numerical results of one of the profiles that was 

suggested, are shown in Fig. 3. This profile 

comprises a cylindrical arc placed in-between two 

straight segments which are in a converging channel 

made up of a pair of straight converging walls. 

Initially, the shape of the shock wave resembles its 

original profile. Compression waves emanating 

behind the central region of the shock wave 

propagate outwards along the shock front and 

gradually coalesce. Immediately behind the shock 

front, this occurs in the region where the cylindrical 

and straight shock segments meet. As a result of the 

extent to which the compressions steepen two 

discontinuities in the form of kinks develop on the 

shock front. As the propagation of the shock wave 

progresses, two secondary shock waves eventually 

emerge from the kinks. The profile of the resulting 

shock wave has effectively transitioned from what 

was initially one curved shock wave, to a 

configuration which is a symmetrical pair of Mach 

reflections. The originally straight segments of the 

shock wave represent the incident wave (i), the 

cylindrical segment, the Mach stem (m), the 

secondary shocks being the reflected waves (r), and 

the kinks becoming, the triple points (t). The process 

on either side of the symmetry plane is very similar 

to that in Fig. 2. 

All three of the above examples exhibit the same 

physical phenomena. In order to explore them the 

aim of the current investigation is to evaluate the 

physical mechanisms responsible for the 

development of reflected shocks on an initially 

smooth and continuous shock front. It uses the 

geometry of Fig. 3 to numerically investigate the 

effect of the initial curvature radius, shock Mach 

number and wall convergence angle on the 

characteristic aspects of the shock propagation. 

 

 
Fig. 3. Propagation of a compound shock wave. 
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2. NUMERICAL METHOD 

The geometry of the computational domain was 

constructed with Autodesk Inventor, while ANSYS’ 

Meshing and Fluent packages were used to generate 

the mesh and solve the governing equations of the 

flow. Post-processing of the subsequent results was 

performed with Tecplot 360, and scripts were written 

in MATLAB to analyse and generate plots of the 

relevant data. This section details how the flow was 

modeled and solved, and how the data required for 

analysis was obtained from the simulation. 

2.1 Geometry 

Due to the inherent symmetry of the geometry, it was 

only necessary to compute half the domain. A typical 

geometry is shown in Fig. 4. The left boundary was 

defined by the profile of the initial shock wave, 

which comprises a cylindrical arc and a straight 

segment. The straight segment is tangent to the 

cylindrical segment so that the composite profile is 

smooth and continuous. It is also normal to the walls 

of the propagation chamber. The length of the 

straight segment is thus determined by the length 

required to satisfy these conditions. The length of the 

computational domain was truncated. The radius of 

the cylindrical segment (referred to as the curvature 

radius of the shock wave) and the angle at which the 

chamber walls converge (referred to as the 

convergence angle of the walls) was varied in the 

different simulations. 

 

Fig. 4. Typical geometry of computational 

domain. 

 
2.2 Mesh 

To ensure that the curved surface at the inlet of the 

domain, (Fig. 4), was accurately represented, the 

initial mesh was generated based on curvature, with 

a curvature normal angle of 5 degrees, and a 

maximum cell size of 2 mm. It was also necessary to 

utilize adaptive mesh refinement during the 

simulations so that the shock wave was sufficiently 

resolved. Cells were marked for either refining or 

coarsening based on normalised gradients of 

pressure, density, temperature and velocity 

magnitude. Cells were refined up to four times if the 

normalised gradients were greater than 3% of the 

maximum and coarsened if the normalised gradients 

were less than 1.5% of the maximum. A typical 

adapted mesh is shown in Fig. 5. 

2.3 Solver 

The flow field under investigation contained shock 

waves so was analysed using ANSYS Fluent’s 

density-based solver. The speed at which the solution 

converged, the memory requirements, as well as, 

solution accuracy, were considered when specifying 

the various settings of the density-based solver. The 

ideal settings were those which resulted in the fastest 

solution convergence and required the least memory, 

while simultaneously maintaining sufficient 

accuracy. As a result, the explicit formulation of the 

density-based solver was selected, with the Roe flux-

difference splitting (Roe-FDS) and Least Squares 

Cell Based Spatial Discretization schemes. The first 

order implicit transient formulation was used, and the 

default Courant number (CFL) of 1 was retained. 

These settings provided the optimal combination of 

the afore-mentioned criteria.The size of the time step 

was determined so that the shock would be 

sufficiently resolved . A time step of 1 x 10−7 s was 

found to be appropriate. The air inside the domain 

was modelled as an inviscid, ideal gas and initialized 

with atmospheric conditions (pressure of 101325 Pa 

and temperature of 300 K). A shock wave was 

simulated at the pressure inlet boundary by 

specifying the conditions (static pressure, total 

pressure, total temperature) behind the shock wave 

of the desired strength. 

 

Fig. 5. Typical adapted mesh. 

 
2.4 Extracting the Properties behind the 

Shock Wave 

In order to provide a physical description of the 

shock propagation, it was necessary to obtain a 

temporal profile of the properties (specifically the 

pressure) immediately behind the shock wave. This 

required the nodes in the interior of the domain that 

represented the shock wave to be identified, so that 

the corresponding properties at these nodes could be 

exported into a suitable file for further analysis in 

MATLAB. The post-processing suite available in 

ANSYS Fluent allows cells with constant values of a 

specified variable to be distinguished and grouped 

together as a distinct surface. Since the shock wave 

was captured during the simulations with adaptive 

mesh refinement, it was possible to generate an 

isosurface representing the shock wave based on 

constant values of adaption space gradient. At each 

instant in time for which an analysis was required, 

the iso-value corresponding to the shock wave was 

selected interactively. As the iso-value was varied, 

an instantaneous preview of the corresponding 

isosurface was created. Superimposing this preview 

on a contour of the entire domain enabled an isovalue 

that accurately captured the shock wave to be 

determined. 
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Figure 6 demonstrates an example preview for one of 

the numerical simulations that was carried out. A 

preview of the surface corresponding to an isovalue 

of 0.05 is shown in Fig. 6a. In Fig. 6b, this is 

superimposed on a pressure contour of the domain, 

which shows that this specific iso-value corresponds 

to the shock wave. Once the shock wave was 

successfully detected, the properties (particularly the 

static pressure and x and y coordinates) at the iso-

surface’s constituent nodes were exported to an 

ASCII file. This file was then imported into 

MATLAB for further processing. 

Since the shock is detected based on the property 

gradients across it, the iso-surface that is generated 

comprises two lines of nodes corresponding to the 

fluid immediately behind and in front of the shock 

wave. This is evident in the magnified view of the 

iso-surface in Fig. 6b. In order to evaluate the 

temporal variation of the properties of the fluid 

immediately behind the shock wave, it is the 

information at the corresponding line of nodes that is 

pertinent. As the fluid in front of the shock wave is 

undisturbed, the pressure at the corresponding line of 

nodes is atmospheric. Using this fact, the data at the 

line of nodes representing the fluid immediately 

behind the shock wave was distinguished for use in 

the subsequent analyses, by examining whether the 

static pressure at these nodes was significantly 

greater than atmospheric. 

 

Fig. 6. Selection of a suitable iso-value. a: 

Preview of the iso-surface corresponding to an 

isovalue of 0.05. b: Iso-surface superimposed on 

pressure contour. 

 

3. RESULTS 

Simulations were run for a variety of independent 

variables. The angle at which the channel walls 

converged (Wall Convergence Angle), the initial 

Mach number and the initial curvature radius of the 

shock wave, ranged from 40 to 60 degrees, 1.1 to 1.4 

and 130 to 190 mm, respectively. 

The shock waves investigated have initial profiles 

comprising a cylindrical and straight segment. It will 

be shown that during the course of the shock 

propagation, the initially cylindrical shock segment 

is distorted, and hence, does not remain cylindrical. 

Thus, from here on, this portion of the shock will be 

referred to as the curved shock segment. Similarly, 

the straight section becomes slightly distorted, even 

though it appears straight in the figures presented. 

This is similar to the situation described when 

dealing with Fig. 2; the incident wave is almost 

always treated as being plane up to the triple point 

whereas it is actually influenced by compression 

waves arising above this point. Thus in the current 

study this segment will be identified as being 

nominally straight. The implications that the 

interaction of the curved and straight shock segments 

have on the phenomena that occur as the shock wave 

propagates in the channel is elucidated below. 

3.1 General Description of Shock 

Propagation 

The results for a typical case, in which the profile of 

the initial shock wave transitioned into a 

configuration resembling a symmetrical pair of 

Mach reflections, is shown in Fig.7. Pressure 

contours show the flow at different times from when 

the shock was at the inlet. Initially, the shock front is 

smooth and continuous. As the shock wave 

converges, the curved segment straightens, and two 

kinks develop on the shock front from which 

reflected shocks emerge. As the shock continues 

down the channel, the triple points of the Mach 

reflection pair follow a divergent trajectory towards 

the channel walls with increasing Mach stem length. 

Eventually, the reflected shocks and triple points 

meet the walls. 

An evaluation of the pressure distribution 

immediately behind the shock wave demonstrates 

the mechanisms responsible for the phenomena 

depicted in the figure. For any time during the 

shock’s progression, the x and y coordinates of the 

nodes representing the fluid immediately behind the 

shock wave, and the corresponding values of static 

pressure at those nodes, were obtained using the 

method described above. At any node, the length of 

the shock wave relative to the axis of symmetry was 

determined with numerical integration using the 

trapezoidal rule. It was then possible to plot the 

temporal variation of the pressure distribution along 

the length of the shock (Lshock). This is shown in 

It is evident that throughout the duration of the 

shock’s progression, the pressure distributions are 

analogous. For each curve, the distribution from the 

origin (which is at the axis of symmetry) to where the 

end of the shock wave meets the channel wall is 

obtained. The pressure is initially approximately 

constant up until some point, where there is a drop in 

the pressure. Beyond this region, the pressure is once 

again constant; until the weak compression waves 

reach the wall. Over time, the pressure increases 

before the pressure drop, while the pressure after it 

remains essentially constant. The increase in the 

slope of the curve at the pressure drop indicates that 

this drop becomes steeper with time. 
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Fig. 7. Pressure contours for the propagation of a 

curved shock wave in a converging channel 

(Wall Convergence Angle: 50 Degrees; Initial 

Shock Mach Number: Mach 1.3; Initial Shock 

Curvature Radius: 160 mm). 

 

 

Fig. 8 for the case portrayed in Fig. 7. 

It is well-established, that the strength of planar 

shock waves is constant as they propagate. In 

contrast, cylindrical shock waves increase in strength 

as they converge. The pressure before the pressure 

drop, at the pressure drop, and after the pres-sure 

drop, corresponds to the pressure behind the curved 

shock segment, the region where the curved and 

straight shock segments meet, and the straight shock 

segment, respectively. The result of the pressure 

difference between these two regions manifests in 

the phenomenon shown in Fig 7. To adjust for this 

imbalance, compression waves, emanating from the 

region behind the curved segment, propagate 

outwards towards the region behind the straight 

segment. The effect of these compressions is to 

distort the shape of the curved shock segment, (this 

effect is discussed further later). As the strength of 

the curved shock segment increases as an imploding 

wave (and consequently, the pressured difference 

steepens), the strength of the subsequent 

compressions increases. As a result, they eventually 

coalesce into a pair of shock waves on the originally 

smooth shock front resulting in the configuration of 

a symmetrical pair of Mach reflections. 

 
Fig. 8. Temporal profile of pressure distribution 

along the length of the curved shock wave (Wall 

Convergence Angle: 50 Degrees; Initial Shock 

Mach Number: Mach 1.3; Initial Shock 

Curvature Radius: 160 mm). 

 
3.2 Influence of Critical Parameters 

The initial Mach number and initial curvature radius 

of the shock wave, as well as the angle at which the 

walls of the propagation channel converge, are 

critical in determining how certain features of the 

shock evolution are manifested. The influence of 

these parameters on this process is discussed in the 

following sections. 

3.21 Trajectory of Pressure Variations 

The pressure distribution behind the shock wave was 

numerically differentiated using finite difference 

approximations. This gave the distribution of the 

pressure gradients along the length of the shock 

wave. The temporal variation of the pressure gradient 

distribution is shown in Fig. 9 for the case portrayed 

in Fig. 7. 

 

Fig. 9. Temporal profile of the pressure gradient 

distribution along the length of the curved shock 

wave (Wall Convergence Angle: 50 Degrees; 

Initial Shock Mach Number: Mach 1.3; Initial 

Shock Curvature Radius: 160 mm). 

 
At any time during the shock’s progression, the 

pressure gradient distribution is characterised by a 

rapid rise, followed almost immediately by a sharp 

dip in the pressure gradient. This occurs at some 

distance above the axis of symmetry (located at 

Lshock equals zero in Fig. 9), and is a consequence 
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of the pressure drop behind the shock wave (Fig. 8). 

The pressure drop behind the shock wave 

corresponds to the region behind the intersection of 

the curved and nominally straight shock segments. 

Therefore, here too, this rise and fall in the pressure 

gradient, and in particular, the pressure gradient 

peak, must correspond to this intersection. 

As the shock progresses through the channel, the dip 

in the pressure gradient becomes steeper, and the 

pressure gradient peak increases. This is in 

accordance with the increase in the strength of the 

curved shock segment with time. The pressure 

gradient peak increases rapidly until some time, after 

which the increase is relatively gradual. The 

implications of this is discussed later. 

It is apparent that the position behind the shock wave, 

at which the pressure gradient peak occurs, varies 

over time. Since this position corresponds to the 

region where the curved and nominally straight 

shock segments meet, it follows that by plotting the 

temporal variation of its position, the trajectory of 

this region can be obtained. This is shown in Fig. 10, 

where the position of the pressure gradient peak, 

represented by the filled circles, has been plotted on 

the shock wave at various times during its 

propagation. 

 

 
Fig. 10. Progression of a curved shock wave with 

an initial Mach number and curvature radius of 

1.3 and 160 mm (Wall Convergence Angle: 50 

Degrees). 

 

At first, the pressure gradient peak moves towards 

the axis of symmetry (the x-axis in the figure), and 

then after reaching some minimum distance above it, 

it diverges away from the symmetry axis. Therefore, 

the propagation of the curved segment can be 

inferred from the trajectory of the pressure gradient 

peak. This conforms with what is known regarding 

the propagation of cylindrical shock waves; Initially, 

the curved segment (which was initially cylindrical) 

converges towards its focus, shown as a star, and 

then expands as it moves away from the focus. The 

minimum height that the pressure gradient peak 

reaches, before diverging away from the symmetry 

axis, must then be the apparent focus. The influence 

of the critical parameters on the trajectory of the 

pressure gradient peak (and by inference, the 

intersection of the curved and nominally straight 

shock segments), as the shock wave moves towards 

and away from the focus, is discussed below. The 

coordinates corresponding to the position of the 

pressure gradient peak over time were divided into 

two sets; one representing the positions before the 

apparent focus, and the other representing the 

positions after focus. 

3.22 Prior to Focus 

The pressure gradient peak moves towards the plane 

of symmetry during this stage. Thus, even though 

there is some distortion of the circular profile with 

time, it still is an imploding curved wave 

strengthening as it propagates. The variation of the 

y-coordinate of the pressure gradient peak with time, 

and the time it takes for the shock wave to reach the 

focus was determined for all cases studied. 

The variation of time to focus with the convergence 

angle of the channel walls, with different initial 

curvature radii and Mach numbers, is given in Fig. 

11. Although there is some scatter in these plots, the 

dotted lines do capture the general trends. It is clear 

that when the angle at which the channel walls 

converge is greater, the time to focus is longer. It is 

also evident that when the initial curvature radius of 

the shock wave is larger, and the initial shock Mach 

number is lower, it takes longer for the shock to reach 

the focus. This result is in accordance with what one 

would expect, given that shock waves with larger 

curvature radii and lower Mach numbers are 

synonymous with weaker, and hence, slower shocks. 

angle. Left-hand plot: Mach number 1.1. Right-hand 

plot; initial radius 160 mm. 

Intuitively, the rate at which the shock focuses (and 

consequently, the time to focus) is dependent on the 

rate at which the shock increases in strength before 

the focus. The Rate of Change (ROC) of the 

maximum pressure gradient over time is a 

convenient measure of the rate at which the shock 

increases in strength, and hence, of the acceleration 

of the shock wave. The rate at which the maximum 

pressure gradient changes with time before the focus 

is shown in Fig. 12 for the propagation of shock 

waves, with different initial Mach numbers and 

curvature radii, in channels with varying wall 

convergence angles. In all cases, at some time after 

the start of the shock propagation, there is an 

exponential growth in the rate at which the maximum 

pressure gradient increases, and hence, in the 

acceleration of the shock wave. Therefore, the earlier 

this increase occurs, the sooner the shock wave 

moves towards the focus. It is evident, that shock 

waves experience this exponential increase earlier, 

and therefore, arrive at the focus sooner, when the 

initial Mach number is higher, the initial curvature 

radius is smaller, and the wall convergence angle of 

the propagation channel is lower. This corresponds 

with the results presented in Fig. 11. Finally, the 

slope of the curves in Fig. 12a is steeper when the 

initial shock Mach number is higher. Therefore, the 

shock wave accelerates at a greater rate when the 

initial Mach number is higher. In contrast, the slopes 

of the curves in Fig. 12b and c are almost 

indistinguishable. This implies that the initial Mach 

number of the shock wave has a more significant 

influence on the rate at which the shock wave 

accelerates and reaches the focus than the initial 

curvature radius and wall convergence angle. 
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Fig. 11. Variation of time to focus with wall convergence. 

 

 
 

 

 
Fig. 12. Rate of change of maximum pressure gradient. 

 
 

3.23 Post focus 

For the case shown in Fig. 7 and 10 the apparent 

focus is at approximately 209µs. Between 150 and 

250 µs the curved wave has become increasingly 

distorted and considerably less cylindrical and no 

longer propagates as an imploding shock. 

At this time, the reflected shocks have not yet 

developed. The dashed line on the left, plotted in Fig. 

10, represents the initial propagation toward focus of 

the shock wave, and the line on the right (with the 

positive slope) corresponds to the trajectory of the 

peaks away from the focus. The pressure gradient 

peak behind the shock wave occurs in the region 

where the curved and nominally straight shock 

segments meet, and the subsequent drop in the 

pressure gradient becomes steeper with time (Fig. 9). 

As the drop in the pressure gradient becomes steeper, 

a discontinuity in the pressure behind the shock 

wave, in this region, begins to develop, as the 
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compression waves start to bunch together. This 

bunching together means less of the compression 

waves propagating ahead of the developing 

discontinuity affect the shock profile and therefore 

have less influence on its shape. Thus as the shock 

moves from 250µs to 600µs it becomes straighter 

aproaching the surface, as the curved portions 

contain the compressions eventually contributing to 

the reflected shock. This is analogous to the example 

in Fig. 2 where the more remote compressions do not 

contribute to forming the reflected shock. Since, 

discontinuities in the thermodynamic properties of a 

fluid are characteristic of shock waves, it follows that 

the reflected shocks eventually emerge in this 

bunched up region. Therefore, the upward sloping 

curve on the right in Fig. 10, not only describes the 

trajectory of this developing discontinuity region, 

and the development of a kink in the shock, away 

from the focus, it also represents the development of 

the trajectory of the triple points of the eventual 

Mach reflection pair. Thus, the slope of this line 

tends to that of the triple point trajectory. 

 

 
 

 

Fig. 13. Variation of the trajectory angle. Top: 

variation with initial curvature radius, wall 

angle 50◦. Bottom: variation with wall angle, 

curvature radius 130 mm. 

 

An approximate estimate of the trajectory is obtained 

by a linear fit to the data. The variation of the 

trajectory angle with the initial curvature radius and 

wall convergence angle, for shock waves with 

different initial Mach numbers, is given in Fig. 13. 

The higher the initial Mach number, the steeper the 

trajectory angle of the triple points. It is also steeper 

when the initial curvature radius of is larger, and the 

convergence angle of the channel walls is lower. 

Additionally, since the slopes of the different lines in 

the plots are almost identical, it can be inferred, that 

the rate at which the trajectory angle varies with the 

initial curvature radius and wall convergence angle 

is essentially independent of the shock Mach 

number. 

3.3 Transition 

In Fig. 14, the influence of the convergence angle of 

the channel walls, the initial shock Mach number, 

and the curvature radius, on the temporal variation of 

the pressure gradient distribution behind the shock 

wave is shown. The position behind the shock wave, 

where the pressure gradient peak and the subsequent 

drop in pressure gradient occurs, corresponds to 

where the reflected shocks eventually emerge. Thus, 

at any given time, the slope of the pressure gradient 

distribution at the drop is an indication of the degree 

to which the reflected shock has developed. 

Furthermore, the rate at which this slope becomes 

steeper over time indicates the rate at which the 

reflected shocks develop. Therefore, a comparison, 

at corresponding times, of the slope of the curves of 

the various cases in each plot allows the influence of 

the critical parameters on the rate at which the 

reflected shocks develop to be deduced. 

Initially, the slope at the pressure gradient drop is 

steeper when the wall convergence angle is lower 

(Fig. 14a). This is because shock waves propagating 

in channels with lower wall angles converge to the 

focus at a faster rate. However, at later times during 

the shock’s progression, the slope at the pressure 

gradient drop is steeper when the wall convergence 

angle is higher. The reason for this is that the strength 

of the shock wave (and accordingly, the magnitude 

of the maximum pressure gradient) when it arrives at 

the focus, is greater when the wall convergence angle 

is higher. Since the increase in the strength of the 

shock wave, as it moves away from the focus is 

gradual relative to the increase in its strength as it 

focuses, shock waves propagating in channels with 

higher wall convergence angles exceed in strength 

shock waves in channels with lower wall angles. 

Therefore, the rate at which the reflected shocks 

develop is greater when the wall convergence angle 

is higher. Hence, the reflected shocks emerge on the 

shock front earlier than when the wall angle is lower. 

In Fig. 14b and Fig. 14c, it is evident that when the 

initial Mach number of the shock wave is higher, and 

the curvature radius is smaller, the slope at the 

pressure gradient drop becomes steeper at a greater 

rate. This is especially apparent at 200µs in Fig. 14b, 

and at 300µs in Fig. 14c. From this it can be inferred, 

that a reflected shock emerges on the shock front 

sooner when the initial Mach number of the shock 

wave is higher, and the curvature radius is smaller. 

In order to gain insight into the effect of the critical 

parameters on whether the profile of the shock wave  
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Fig. 14. Temporal variation of the pressure gradient distribution behind the shock wave for different 

wall angles, shock Mach numbers, and curvature radii. 
 

 

transitions within the duration of its propagation, the 

temporal evolution of the shock profile was 

evaluated. A shock wave was considered to have 

transitioned, if reflected shocks of comparable 

strength to the primary shock front had emerged 

before the region where the curved and nominally 

straight shock segments meet (representative of the 

locus of the eventual triple points), intersected the 

walls of the propagation channel. 

In Figs. 15 to 17, pressure contours depicting the 

progression of the shock wave for different cases are 

shown, to illustrate how the various cases were 

assessed. 

In Fig. 15, the shock wave, at 550µs, is just prior to 

the instant the triple points meet the walls of the 

propagation channel (Fig. 15f). Although the 

compressions behind the shock wave have begun to 

coalesce into the start of reflected shocks, this has not 

occurred to the same extent as the compression of the 

primary shock wave. Therefore, in this case, it was 

considered that the shock wave had not yet 

transitioned before its triple points interacted with 

the channel walls. In contrast, in Fig. 16, even though 

the reflected shocks emerge only just before the triple 

points intersect the channel walls (Fig. 16f), the 

compressions have coalesced to a similar extent as 

those defining the primary shock wave. Thus, for this 

case, the shock wave was determined to have 

 

Fig. 15. Propagation of a shock wave in a 

channel converging at 45 degrees. The shock 

wave has an initial Mach number and curvature 

radius of 1.4 and 190 mm. 
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The transition classification of the various cases that 

were evaluated is presented in Fig. 18, for shock 

waves with initial curvature radii of 130 mm 

(coloured blue), 160 mm (coloured green) and 190 

mm (coloured red). For each case, if the shock wave 

was determined to have transitioned, it was 

represented by a filled triangle in the figure. In the 

figure each distinct case can be identified by the 

initial Mach number of the shock wave (y-axis) and 

the wall convergence angle of the propagation 

channel (x-axis). 

When the initial curvature radius was 130 mm, 

transition occurs for all wall angles and Mach 

numbers tested. However, where the initial curvature 

radius of the shock wave was 160 mm, when the 

convergence angle of the propagation channel was 

less than 45 degrees, and the shock Mach numbers 

was greater than 1.2, transition did not occur. 

Similarly, when the initial curvature radius is 190 

mm, for wall angles less than 50 degrees and shock 

Mach numbers greater than 1.2, and for wall angles 

less than 45 degrees and shock Mach number greater 

than 1.1, transition does not occur. 

 

 

 
Fig. 16. Propagation of a shock wave in a 

channel converging at 50 degrees. The shock 

wave has an initial Mach number and curvature 

radius of 1.4 and 190 mm. 

 
Although qualitative, the results of this evaluation do 

provide an indication of the influence of the critical 

parameters on transition. The likelihood of transition 

occurring during the shock’s progression decreases 

when the initial Mach number and curvature radius 

of the shock wave is higher, and the convergence 

angle of the propagation channel is lower. This 

agrees with the earlier comments which showed that 

for the corresponding conditions, the trajectory angle 

of the triple points is greater. As was discussed there, 

when the trajectory angle of the triple points is 

greater, the triple points meet the walls of the channel 

earlier. Another aspect to consider is that when the 

initial curvature radius of the shock wave is larger 

and the wall convergence angle is lower, it takes 

longer for reflected shocks to develop. 

Consequently, for these conditions, the likelihood of 

transition occurring is reduced even further. 

 

 

 
Fig. 17. Propagation of a shock wave in a 

channel converging at 55 degrees. The shock 

wave has an initial Mach number and curvature 

radius of 1.4 and 190 mm. 

 

1. CONCLUSION 

The propagation in a converging channel, of shock 

waves with initial profiles comprising a cylindrical 

arc in-between two straight segments was evaluated 

through various numerical simulations. The 

characteristic features of the change in the shock 

profile over the duration of its propagation were 

evaluated. In general, the curved segment of the 

shock front is distorted and flattened as the shock 

wave converges to its focus. As the shock propagates 

away from the focus, two kinks develop on the shock 
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front, from which reflected shocks emerge. This 

results in a configuration resembling a symmetrical 

pair of Mach reflections. The triple points of the 

Machreflection pair follow a divergent trajectory, 

away from the axis of symmetry. 

The physical mechanism responsible for the 

development of the reflected shocks was elucidated 

by an evaluation of the temporal variation of the 

pressure distribution behind the shock wave. This 

showed that the pressure behind the curved shock 

segment increases over time, while the pressure 

behind the straight segments are essentially constant. 

Compressions propagate along the shock front 

towards the straight shock segments to correct this 

pressure imbalance. As the pressure behind the 

curved shock segment increases, subsequent 

compressions propagate at a greater velocity and 

eventually, they coalesce into reflected shocks. As a 

result of the increase in the pressure behind the 

curved shock segment with time, this portion of the 

shock front is distorted and flattened. 

 

Fig. 18. Transition classification. Closed symbols 

represent development of Mach reflection. Initial 

curvature radius: Blue 130 mm; Green 160 mm: 

Red 190 mm. 

 

The initial Mach number and curvature radius of the 

shock wave, as well as the wall angle of the 

converging channel was varied. It was found that: • 

When the wall convergence angle is lower, the initial 

curvature radius is smaller and the shock Mach 

number is higher, the shock wave moves towards 

focus sooner. The reason for this was that the rate at 

which the shock increases in strength, and hence 

accelerates, is greater. • When the wall convergence 

angle is lower, the initial curvature radius is larger, 

and the shock Mach number is higher, the trajectory 

angle of the triple points is greater. As a result, the 

triple points intersect the walls of the channel earlier. 

The likelihood of reflected shocks developing within 

the duration of the shock’s propagation in the 

channel is thus reduced. This effect is further 

exacerbated in cases where the wall convergence 

angle is lower and the initial curvature radius is 

larger since under these conditions, the rate at which 

the reflected shocks are formed is slower and 

therefore, the triple points intersect the channel walls 

before the reflected shocks can completely develop. 
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