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ABSTRACT 

In this work, we present a numerical study of the magnetic field effect on double diffusive natural convection 

in a square porous cavity saturated with an electrically conducting binary mixture. The cavity is heated from 

below and cooled from the top, while its vertical walls are adiabatic and maintained at constant but different 

concentrations. The numerical results are obtained for a Lewis number Le = 10 and the following ranges for the 

other controlling parameters: 40 ≤ RT ≤ 1000, -0.2 ≤ N ≤ 0.2 and -0.5 ≤ Ha ≤ 0.5, where RT, N and Ha are the 

thermal Rayleigh number, the buoyancy ratio and the Hartmann parameter, respectively. First, the effect of the 

Hartmann parameter on the maintenance and disappearance of the multiple steady state solutions obtained in 

the case of purely thermal convection is examined. Then, the combined effect of N and Ha on the existence of 

these steady solutions is analyzed. It is found that the critical values of N corresponding to the transitions 

between the different solutions are modified by the application of a magnetic field. However, the nature of the 

transitions is unchanged. It is shown that the magnetic field may affect considerably the flow intensity and the 

heat and mass transfer in the medium. 

Keywords: Numerical study; Porous media; Rayleigh-Benard flow; Natural convection; Heat and mass 

transfer; Magnetic field. 

NOMENCLATURE 

𝐵0 strength of the magnetic field 

BF Bicellular Flow  

BAF Bicellular Anti-natural Flow  

BNF Bicellular Natural Flow  

D mass diffusivity 

Ha Hartmann number 

g gravitational acceleration  

K permeability of the porous medium 

𝐿′ length of the porous cavity  

Le Lewis number 

MF Monocellular Flow 

MCF Monocellular Clockwise Flow 

MTF Monocellular Trigonometric Flow  

N buoyancy ratio  

Nu Nusselt number  

RT thermal Rayleigh number  

S dimensionless concentration 

𝑆0
′  dimensional concentration of the left wall 

𝑆1
′  dimensional concentration of the right 

wall 

Sh Sherwood number 

∆𝑆′ concentration difference 

𝑇𝑐
′ dimensional temperature at the upper 

horizontal wall of the cavity 

𝑇ℎ
′  dimensional temperature at the lower 

horizontal wall of the cavity 

∆𝑇′       temperature difference 

(𝑢, 𝑣) dimensionless velocities in (𝑥, 𝑦) 
directions 

(𝑥, 𝑦)    dimensionless coordinates 

𝛼     thermal diffusivity 

𝛽𝑆     solutal expansion coefficient 
𝛽𝑇     thermal expansion coefficient 

𝜀     normalized porosity 
𝜀′     porosity of the porous medium 

     thermal conductivity of the saturated  

porous medium 

𝜈     kinematic viscosity of the fluid 

𝜇     dynamic viscosity of the fluid 

𝜖     electrical conductivity of the fluid 

𝜌     density of the fluid mixture 

(𝜌𝑐)𝑓  heat capacity of the fluid mixture 

(𝜌𝑐)𝑝  heat capacity of the saturated porous 
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t dimensionless time 

T  dimensionless temperature 

TCF  tricellular flow with a clockwise central 

cell 

TF  tricellular flow 

TTF  tricellular flow with a trigonometric 

central cell  

medium 

𝜎     heat capacity ratio 

𝛹     dimensionless stream function 

 

Subscripts 

cr     critical value 

ext     extremum value 

max     maximum value 

Superscripts 

′    dimensional variable  

 
 

 

1. INTRODUCTION 

The magnetic field is a good control parameter on 

heat transfer and fluid flow and is also used to reach 

maximum efficiency in thermodynamics in different 

fields (Kabeel et al. 2015; Kasaeian et al. 2017). The 

problem of natural convection in an electrically 

conducting fluid under a magnetic field has been the 

subject of numerous studies (Hussein et al. 2014; 

Bahiraei and Hangi 2015). This interest stems from 

the implication of the phenomenon in many 

engineering applications such as crystal growth 

processes.  

Several researchers have studied the effect of the 

magnetic field on pure thermal convection. Here 

we cannot quote all these works but we will present 

some investigations. In fact, the influence of a 

uniform magnetic field on natural convection in 

square cavity was studied by Krakov and Nikiforov 

(2002). They discovered that the angle between the 

direction of the temperature gradient and magnetic 

field influences the convective structure and the 

heat flux. Sophy et al. (2005) studied the 

thermomagnetic convection in a differentially 

heated square cavity. These authors showed that 

the flow pattern underwent a great modification 

when the maximum value of the magnetic field 

was beyond a critical threshold and heat exchange 

at the walls increases. Zeng et al. (2007) studied 

numerically natural convection in an enclosure 

filled with a fluid-saturated porous medium and 

submitted to a strong magnetic field. Two physical 

configurations were considered by these authors. 

The first one was heated from the bottom and 

cooled from the top, and the second was heated 

from the left side vertical wall and cooled from the 

opposite wall. An electric coil was set below this 

enclosure to generate a magnetic field. A 

numerical investigation for penetrative 

ferroconvection via internal heat generation in a 

ferrofluid saturated porous layer was performed by 

Nanjundappa et al. (2012). Heidary et al. (2016) 

analyzed natural convection in porous inclined 

enclosures, equipped with one or two obstacles, 

with the presence of sinusoidal heated wall and 

magnetic field. Hoshyar et al. (2016) showed that 

the Least Square Method (LSM) is a powerful and 

easy-to-use analytic tool for predicting the 

temperature distribution in a porous fin which was 

exposed to uniform magnetic field. An 

experimental study of heat transfer enhancement 

due to laminar ferrofluid flow in a horizontal tube 

partially filled with porous media under fixed 

parallel magnet bars was carried out by 

Sheikhnejad et al. (2017). In this study, it was 

found that the presence of both porous media and 

magnetic field simultaneously could highly 

improve heat transfer. The impact of an external 

magnetic field on the hydrothermal aspects of 

natural convection of a power-law non-Newtonian 

nanofluid inside a baffled U-shaped enclosure was 

examined by Ali et al. (2020). They reported that 

the cooling performance of a cavity augments with 

the rise of aspect ratio, nanoparticle volume 

fraction, Rayleigh number, while it is reduced by 

boosting the Hartmann number. 

On another side, many efforts have been devoted by 

the researchers to understand the effect of magnetic 

field on double diffusion. In this frame, Chamkha 

and Al-Naser (2002) studied numerically the 

characteristics of hydromagnetic double-diffusive 

convective flow of a binary gas mixture in a 

rectangular enclosure with the upper and lower walls 

being insulated, while constant temperatures and 

concentrations are imposed along the left and right 

walls. A uniform magnetic field was applied in the x-

direction. The same authors conducted a similar 

study by imposing heat and mass fluxes on the 

vertical walls (2002). Robillard et al. (2006) studied 

analytically and numerically the electromagnetic 

field effect on the natural convection in a vertical 

porous cavity saturated with an electrically 

conducting binary mixture. An analytical and 

numerical investigation was conducted by 

Ramambason and Vasseur (2007) to study the effect 

of an electromagnetic filed on natural convection in 

a horizontal shallow porous cavity filled with an 

electrically conducting binary mixture. A uniform 

heat flux was applied on the horizontal walls of the 

layer while the vertical walls were adiabatic. 

Numerical simulation of double-diffusive natural 

convective flow in an inclined rectangular enclosure 

in the presence of magnetic field and heat source was 

conducted by Teamah et al. (2012). The effect of 

magnetic field on 3D double diffusive convection in 

a cubic cavity filled with a binary mixture was 

considered by Maatki et al. (2013). The influence of 

the magnetic field on the structure of the three-

dimensional flow, the distribution of temperature and 

concentration and the different characteristics of heat 

and mass transfer of the thermal and solutal 

dominated region were presented. Teamah et al. 

(2016) investigated the magnetic field effect on 

double diffusive convection in a trapezoidal 

enclosure. 
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In this investigation, the attention is focused on the 

magnetic field effect on the multiple steady state 

solutions induced in a square porous cavity saturated 

with an electrically conducting binary mixture. The 

cavity is heated from below and cooled from the top, 

while its vertical walls are adiabatic and maintained 

at constant but different concentrations. This 

configuration was considered in the past by 

Altawalbeh et al. (2013) without taking into account 

the multiplicity of solutions generated for adequate 

ranges of the governing parameters. Our objective in 

this work is to examine the influence of the magnetic 

field on the existence range of different types of 

steady-state solutions. Results for heat and mass 

transfer induced by these solutions are also presented 

and discussed. Note that in previous studies 

conducted by Robillad et al. (1998), Bourich et al. 

(2004) and Mansour et al. (2006), it was shown that 

these quantities may be considerably affected by the 

type of solution. 

2. MATHEMATICAL 

FORMULATION 

The system under consideration (Fig. 1) is a square 

cavity filled with an isotropic and homogenous 

porous medium, saturated with an electrically 

conducting binary mixture. The bottom wall of the 

cavity is maintained at a hot temperature 𝑇ℎ
′ , while 

the top one is maintained at a cold temperature 𝑇𝑐
′ . 

The right vertical wall is maintained at a 

concentration (𝑆1
′ ) higher than that of the left one 

(𝑆0
′ ). The top and bottom walls are assumed 

impermeable to mass transfer, while the right and left 

ones are assumed adiabatic. A magnetic field of 

strength 𝐵0 is applied in a direction normal to the 

horizontal walls of the porous cavity. The 

thermophysical properties of the binary fluid are 

considered constant except the density in the 

buoyancy term which varies linearly with the local 

temperature and concentration (Boussinesq 

approximation): 

 ( ) ( )' ' ' '
0 0 01    T ST T S S    = − − − −


 

where βT and βS are, respectively, the thermal and 

solutal expansion coefficients of the binary fluid, T’ 

is the dimensional temperature and S’ is the 

concentration (𝑇0
′  and 𝑆0

′  correspond to the reference 

state). Viscous dissipation is neglected and the solid 

matrix and the fluid are assumed to be at local 

thermal equilibrium. Using the Darcy model and 

taking into account the magnetic field effect, the 

dimensionless equations governing the flow and heat 

and mass transfer in the saturated porous medium are 

written as follows: 

( )
2 2

2

2 2
1

    
+ + = − + 
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                           (3) 
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Y X
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= = −
 

                                      (4) 

where 𝛹, T, and S are the dimensionless stream 

function, temperature and concentration, 

respectively. U and V (X and Y) are the dimensionless 

horizontal and vertical velocities (coordinates). 
 

 

Fig. 1. Schematic diagram of the physical 

problem. 
 

The hydrodynamic, thermal and solutal boundary 

conditions associated with the present problem are: 

  0   0 1 :   0,  0,  0

  1   0 1 :   0,  0,  1

  0   0 1 :   0,  0,  1

  1   0 1 :   0,  0,  0

T
For X and Y S

X
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X

S
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Y

S
ForY and X T

Y

 
=    = = = 


 =    = = =




 =    = = =




=    = = =
 

   (5) 

The above dimensionless equations show that the 

solutions for the present configuration are governed 

by five dimensionless parameters, namely, the 

thermal Rayleigh number RT, the buoyancy ratio N, 

the Lewis number Le, the Hartmann number 𝐻𝑎 and 

the normalized porosity 𝜀. They are respectively 

defined as follow: 

' '

' '

0

'

/

/       

/                      

/          

   /                       

T T

S T

R g T KL

N S T

Le D

Ha B K

 

 





  

= 

=  


= 


= 


= 

ò

                                      (6) 

The normalized porosity and the Lewis number are 

fixed at 𝜀 = 1 and Le = 10 in the present study. 

The heat and solute transfers across the cavity are 

given in terms of the Nusselt and Sherwood numbers 

defined as: 

1

1
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3. NUMERICAL MEHTOD 

The governing equations are discretized using a 

central finite-difference scheme combined with the 

alternate direction implicit method (ADI). Details 

concerning the validation of the present code in the 

absence of the magnetic field were reported by 

Bourich et al. (2004). Its validity in the presence of a 

magnetic field was proved in the present study by 

comparing our results with those of Altawalbeh et al. 

(2013) as illustrated in Table 1.  

 

Table 1 Validation of the numerical code for  

RT = 200, N = 1, Le = 10 and various 

 values of Ha. 

 
max  Nu Sh 

Ha=0 

Altawalbeh 

et al. (2013) 
8.564 4.18 26.3 

Present 

study 
8.438 4.062 24.53 

Deviation 

(%) 
1.47 2.82 6.73 

Ha=1 

Altawalbeh 

et al. (2013) 
5.328 3.293 25.458 

Present 

study 
5.095 3.174 23.829 

Deviation 

(%) 
4.37 3.61 6.4 

Ha=5 

Altawalbeh 

et al. (2013) 
1.2 1.273 9.219 

Present 

study 
1.177 1.267 8.990 

Deviation 

(%) 
1.9 0.47 2.5 

 

The comparison was performed in terms of max  , 

Nu and Sh for RT = 200, N = 1, Le = 10 and three 

values of Ha (0, 1 and 5). The maximum deviation 

observed between our results and those of these 

authors is about 6.73%. The validation of the 

numerical code is reinforced by presenting also 

qualitative comparisons in terms of contour lines for 

RT = 200, Ha = 5, Le = 1 and N = 5 (a) and Le = 10 

and N = 1 (b). The comparative results presented in 

Figs. 2a-b show a good agreement between our 

results (on the right) and those of Altawalbeh et al. 

(2013) (on the left). 

The effect of the grid size on the results 

corresponding to the monocellular, bicellular and 

tricellular flows obtained in this study was analyzed 

by using the uniform grids 61×61, 101×101 and 

151×151. Tables 2 and 3 show that the characteristics 

of the flow and heat and mass transfer undergo 

negligible variations (lower than 0.4%) when the 

grid 101×101 is replaced by a finer grid 151×151. 

However, when the grid 61×61 is replaced by the 

grid 101×101 the results of Tables 2 and 3 show a 

maximum deviation of about 11% for Sherwood 

number. Based on these results, a grid of 101×101 

nodes was adopted in the present study. 

 

         
Streamlines 

         
Isotherms 

          
Iso-solutes 

(a) 

          
Streamlines 

          
Isothermes 

         
Iso-solutes 

 
 

(b) 

Fig. 2. Comparison between our results and 

those of Altawalbeh et al. (2013) in terms of 

streamlines, isotherms and iso-solutes for RT = 

200, Ha = 5: Le = 1 and N = 5 (a) and Le = 10 

and N = 1 (b).   
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Table 2 Effect of the Grid Size for RT = 1000, Le = 10, N = 0 and Various Values of Ha. 

 

 

 

 

 

 

 

 

 

 

Table 3 Effect of the Grid Size for RT = 200, Le = 10, N = 0.2 and Various Values of Ha. 

Ha Flow Grids ext  Nu Sh 

0 MTF 

61×61 9.148 4.027 15.930 

101×101 9.156 4.022 16.119 

151×151 9.159 4.020 16.056 

2 BNF 

61×61 2.665 1.924 11.839 

101×101 2.672 1.929 11.905 

151×151 2.674 1.931 11.876 

 

4. RESULTS AND DISCUTION 

The steady solutions submitted to the effect of a 

magnetic field in the present work are characterized 

by monocellular clockwise/trigonometric flow, 

bicellular natural/antinatural flow, and tricellular 

flow with a clockwise/trigonometric central cell and 

trigonometric/clockwise lateral cells, denoted 

MCF/MTF, BNF/BAF, and TCF/TTF, respectively. 

The streamlines (left), isotherms (middle) and iso-

concentrations (right) corresponding to these 

solutions are illustrated in Figs. 3a-c for RT = 200,   

Le = 10, N = 0 and Ha = 0. Other details about these 

solutions are available in the work by Mansour et al. 

(2006). Note that, for N = 0 (i.e. in the absence of 

solutal buoyancy forces), the intensities of the flow 

cells and the mean heat and mass transfer 

corresponding to MCF, TTF, and BNF are identical 

to those corresponding to MTF, TCF, and BAF, 

respectively. 

The effect of the magnetic field and the multiplicity 

of solutions on the variations of Nu and Sh vs. RT in 

the absence of solutal buoyancy forces is illustrated 

in Figs. 4a-c and Figs. 5a-c for Le = 10, N = 0 and 

Ha = 0, 1 and 3. Note that for Ha = 0, the 

monocellular (MF), bicelllular (BF) and tricellular 

(TF) flows were obtained for RT  40, RT  80 and  

RT  160, respectively. As expected, the increase of 

the Hartmann number retards the appearance of the 

different solutions. Hence, for Ha = 1/(Ha = 3) the 

monocellular, bicelllular and tricellular flows were 

obtained for RT  59/( RT  295), RT  88/( RT  173) 

and RT  197/(RT  270), respectively. Furthermore,  

 

Fig. 3. Streamlines, isotherms and iso-solutes of 

monocellular flow (a), bicellular flow (b) and 

tricellular flow (c) obtained at RT = 200, Le = 10, 

N = 0 and Ha = 0. 

 

in the absence of the magnetic field, the transitions 

of the MF and BF toward oscillatory regimes occur 

at RT = 382 and 710, respectively. For Ha = 1, these 

transitions are registered at RT = 445 and 825. By 

increasing the Hartmann value to 3, the transition of 

the MF toward the oscillatory regime is delayed until  

Ha Flow Grids ext  Nu Sh 

0 TF 

61×61 14.205 9.258 8.863 

101×101 13.93 9.151 9.966 

151×151 13.927 9.146 9.974 

3 

BNF 

61×61 8.099 4.666 10.223 

101×101 8.110 4.648 10.679 

151×151 8.112 4.642 10.659 

TF 

61×61 7.927 5.165 7.176 

101×101 7.903 5.156 7.550 

151×151 7.896 5.152 7.554 
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(c) 
Fig. 4. Variations of Nu vs. RT for Le = 10, N = 0 

and various values of Ha: (a) monocellular flow, 

(b) bicellular flow and (c) tricellular flow. 

 

RT = 862, while the BF remains steady even for RT 

exceeding 1000. Figures 4-5 show clearly that the 

increase of the magnetic field intensity reduces both 

heat and mass transfer rates. For example, at  

RT = 300, by increasing Ha from 0 to 3, Nu/Sh 

decreases by about 64.5%/63.6%, 57.5%/46.8% and 

63.4%/43.4% for the MF, the BF and the TF, 

respectively. 

The effect of the multiplicity of solutions on the 

generated heat and mass transfers is illustrated in 

Figs. 6a-c and Figs. 7a-c where the evolutions of 

Nu and Sh vs. RT are exemplified for the 

monocellular, bicelllular and tricellular flows in 

the cases of Ha = 0, 1 and 3. The arrows in these 

figures indicate the transitions undergone by each 

solution when RT was progressively decreased 

starting from relatively large values of this 

parameter. It was observed that, for Ha = 0 and 1, 

the TF transits towards the BF at RT = 159 and RT 

= 196, respectively. The latter solution (BF) 

transits toward the MF at RT = 81 and 87 for Ha = 

0 and 1, respectively. As it can be seen from these 

figures, the above transitions are accompanied with 

an increase in heat and mass transfer. For Ha = 3, 

both the MF and TF transit toward the BF at RT = 

294 and RT = 268, respectively. The transition of 

the TF toward the BF induces an enhancement of 

Nu and Sh while the transition from the MF toward 

the BF enhances Nu but reduces Sh. In addition, the 

MF induces the weakest heat transfer in all its 

range of existence in the case of Ha = 3 (this is not 

the case for Ha = 0 and Ha = 1). Note also that, for 

Ha = 0 and 1, the rest state is reached through the 

MF (when RT is progressively decreased), while for 

Ha = 3 the latter state is reached via the BF. 
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Fig. 5. Variations of Sh vs. RT for Le = 10, N = 0 

and various values of Ha: (a) monocellular flow, 

(b) bicellular flow and (c) tricellular flow. 

 
The effect of Hartmann number on the multiplicity 

of solutions and heat and mass transfer for RT = 200, 
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Fig. 6. Effect of 𝑹𝑻 on 𝑵𝒖 corresponding to 

monocellular, bicellular and tricellular flows for 

Le = 10, N = 0 and Ha = 0 (a), 𝟏 (b) and 3 (c). 

 
Le = 10 and N = 0 is illustrated in Figs. 8a-b. These 

figures show that both the heat and mass transfer 

decrease by increasing the Hartmann number for all 

the flow modes considered. The arrows in these 

figures indicate the transitions obtained when Ha is 

progressively incremented from 0. The critical 

values of Ha corresponding to these transitions are 

given in Table 4. 

The progressive increase of Ha from 0 leads to the 

transitions of the TF and MF toward the BF at 

1.067crHa =  and 2.445crHa = , respectively. The 

first transition is accompanied by an enhancement 

of about 31.6 %/55.1% for Nu/Sh while the second 

transition leads to an increase of Nu by about 23.7% 

but to a decrease of Sh by about 18.9%. However, 

the BF is maintained until the critical value Hacr = 

3.35, beyond which the flow vanishes and the heat 

and mass transfers are controlled by pure diffusion  

(Nu = Sh = 1). It should be mentioned that within 

the existence range of these three steady solutions, 

the BF/MF induces the highest values of Nu/Sh, 

while the TF induces the weakest values for both 

Nu and Sh. 
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Fig. 7. Effect of 𝑹𝑻 on 𝑺𝒉 corresponding to 
monocellular, bicellular and tricellular 

flows for Le = 10, N = 0 and Ha = 0 (a), 𝟏 (b) 
and 3 (c). 

 

Table 4 Critical values of Ha corresponding to 

different transitions for RT = 200, Le = 10 and  

N =0. 

Flow mode MCF MTF TCF TTF 

Transition 

toward 
BNF BAF BAF BNF 

Hacr 2.445 2.445 1.067 1.067 



A. Mansour et al. / JAFM, Vol. 14, No. 5, pp. 1307-1316, 2021.  

 

1314 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Nu

Ha

(a) 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

2

4

6

8

10

12

14

Sh

Ha

(b) 

Fig. 8. Variations of Nu (a) and Sh (b) vs Ha for 

RT = 200, Le = 10, N = 0 and different flow 

modes. 

 

The aim of this section is to emphasize the magnetic 

field effect on the multiple steady state solutions 

obtained in the presence of solutal buoyancy forces 

(N ≠ 0). Hence, Figs. 9-10 illustrate the evolutions 

vs. N (varying in the range -0.2 < N < 0.2) of Nu and 

Sh corresponding to moncellular (MTF and MCF), 

bicellular (BNF and BAF) and tricellular (TTF and 

TCF) flows for RT = 200, Le = 10 and Ha = 0, 1 and 

2. It should be mentioned that the tricellular flows 

were not obtained for Ha = 2 and RT = 200. Note also 

that Nu and Sh corresponding to the MTF and TTF 

for N > 0 are identical respectively to those induced 

by the MCF and TCF for N < 0, whatever the 

Hartmann number value. In fact, the MTF/TTF and 

the MCF/TCF just exchange their roles while 

changing the sign of N. In addition, the BNF and the 

BAF induce identical average heat and mass 

transfers. Also, for the BF, the curves exemplifying 

the variations of Nu and Sh vs. N are symmetrical 

with respect to the vertical line passing through          

N = 0. Tables 5a-b summarize all the transitions 

observed and the corresponding critical values of N 

leading to these transitions. It can be seen from Figs. 

9-10 that the increase of Ha reduces strongly the 

range of N corresponding to the tricellular mode. 

Moreover, Tables 5 indicate that the increase of Ha 

tends to reduce Ncr (in absolute value) corresponding 

to the transitions towards the MCF for N < 0 and the 

MTF for N > 0. 
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Fig. 9. Variations of Nu vs. N for RT = 200, 

Le = 10 and different values of Ha: (a) MTF and 

MCF, (b) BF and (c) TTF and TCF 

5 CONCLUSION 

The influence of the magnetic field on the 

multiplicity of solutions induced by thermosolutal 

convection in a square porous cavity submitted to a 

destabilizing vertical gradient of temperature and to 

a horizontal concentration gradient was considered 

in this work. The effect of the Hartmann number on 

the maintaining and disappearance of the multiple 

steady-state solutions obtained in the case of pure 

thermal convection is examined. Based on the 

obtained results, the following findings are deduced: 

The presence of the magnetic field delays the 

transition towards the oscillatory regime when 

RT is increased.  
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Fig. 10. Variations of Sh vs. N for RT = 200,  

Le = 10 and different values of Ha: (a) MTF and 

MCF, (b) BF and (c) TTF and TCF. 

 

 

The increase of Ha rises the critical Rayleigh number 

above which the different flow modes exist. 

Hence, RT_ rises from 40, 80 and 160 to 295, 173 

and 270 when Ha is increased from 0 to 3 for 

the MF, BF and TF, respectively.  

For Ha = 0 and 1, the TF transits towards the BF and 

the latter transits toward the MF, while for    Ha 

= 3, both the MF and TF transit toward the BF, 

when RT is decreased starting from a value that 

allows the existence of the three solutions.  

For RT = 200, Le = 10 and N = 0, the increase of Ha 

from 0 leads to the transitions of the TF and MF 

toward the BF at 1.067 crHa = and 

2.445 crHa = , respectively. The first transition 

is accompanied by an enhancement of 12.9 % 

for Nu and 36.4% for Sh, while the second 

transition leads to an increase of Nu by 25.1% 

but to a decrease of Sh by 54%. 

 

Tables 5 Transitions obtained for the different 

solutions and the corresponding critical values of 

N for RT = 200, Le = 10  and Ha = 1, 1 and 2: (a) 

  0crN  and (b) 0 crN . 

(a) 

 Flow 

mode 

Transition 

towards 
Ncr 

Ha = 0 

MCF BF 0.086 

BF MTF 0.156 

TCF MTF 0.065 

TTF BF 0.095 

Ha = 1 

MCF BF 0.097 

BF MTF 0.123 

TCF MTF 0.03 

TTF BF 0.007 

Ha = 2 
MCF BF 0.036 

BF MTF 0.102 

(b) 

 Flow 

mode 

Transition 

towards  
Ncr 

Ha = 0 

MTF BF -0.086 

BF MCF -0.156 

TCF BF -0.095 

TTF MCF -0.065 

Ha = 1 

MTF BF -0.097 

BF MCF -0.123 

TCF BF -0.007 

TTF MCF -0.03 

Ha = 2 
MTF BF -0.036 

BF MCF -0.102 

 
Finally, by examining the combined effects of the 

buoyancy ratio, N, and the Hartmann parameter, Ha, 

on the existence of different flow modes we 

concluded that: 

The critical values of N corresponding to the 

transitions between the different solutions 

depend on the Hartmann number but the nature 

of the transitions remains unchanged. 

The Nu and Sh corresponding to the MTF and TTF 

for N > 0 are respectively identical to those 

induced by the MCF and TCF for N < 0 

regardless of the Hartmann number value. 

While the BNF and BAF induce identical 

average heat and mass transfers. 

Generally, the increase of the magnetic field 

intensity reduces both heat and mass transfer 

rates for each flow mode.  
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