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ABSTRACT

This article is concerned with the study of a coupling between the stationary Maxwell equations, the transient state
Navier Stokes and thermal equations. The model developed computes the magnetic field using the finite element
method and calculates the velocity and the temperature using the finite volume method. The paper focuses on the
analysis of the flux density, the electromagnetic thrust, the electric power density, the velocity, the pressure and the
temperature in the channel of the MHD pump. Effect of the frequency is also presented.

Keywords: Magnetohydrodynamics (MHD), finite element method (FEM), finite volume method (FVM), stream-
vorticity formulation, temperature, linear induction MHD pump.

NOMENCLATURE

A  magnetic vector potential
B        magnetic induction
F       electromagnetic thrust

pC      specific heat

 f          frequency
exJ     excitation current density

iJ       induced eddy currents
 j    imaginary
K     thermal conductivity
p       pressure of the  fluid

sp     thermal source (electric power density)
T       temperature

t         time
u, u’    components of the velocity
V   velocity of the fluid
w       pulsation

Greek Symbols
       vorticity vector
       magnetic permeability

      kinemactic viscosity of the fluid
      fluid density
     stream function

       electrical conductivity

1. INTRODUCTION

Magnetohydrodynamics (MHD) is the study of the
motion of electrically conducting fluids in the presence
of magnetic fields. Effects from such interactions can
be observed in liquids and gases. A number of
researches have investigated the flow of an electrically
conducting fluid through channels because of its
important applications in MHD generators, pumps,
accelerators, flowmeters and blood flow measurements
(Berton 1991 and Vinsard et al.  1998). The pumping of

liquid metal may use an electromagnetic device, which
induces eddy currents in the metal. These induced
currents and their associated magnetic field generate the
Lorentz force whose effect can be actually the pumping
of the liquid metal. The advantage of these pumps
which ensure the energy transformation is the absence
of moving parts. Linear induction MHD pumps are
electromagnetic devices using the principle of induction
motors to move liquid metal by the action of a sliding
field Takorabet et al. (2006).
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The magnetohydrodynamic problem is studied using
the finite element method for the electromagnetic
problem and the finite volume method for the
hydrodynamic and thermal problems.

The difficulty in the electromagnetic problem is the
presence of the convective term BV  due to the
movement of the fluid, where B is the magnetic
induction and V  is  the  velocity  (Kadid et al. 2003,
2004a, b). However, in the hydrodynamic study, the
difficulty is that the incompressibility constraint given
by 0Vdiv which couples the velocity V  and the
pressure p and also the choice of the numerical method.

Many formulations related to solve the
incompressibility constraint in the Navier Stokes
equations are given in the literature. These formulations
are often referred as the pseudo-compressibility method
Guemond et al. (2006) and the stream-vorticity
formulation (Anderson 1984 and Krzeminski 2000).
After simplifications of the Navier-Stokes equations, it
is possible to obtain the velocity and the pressure, for
that several methods are widely used in computational
fluid dynamics such as finite difference method, the
finite element method Nesliturk, Tezer-Sezgin (2006),
the boundary element method Tezer-Sezgin, Han Aydin
(2006) and the finite volume method Patankar (1980).

So, in this work we choose the stream-vorticity
formulation which is the most used in hydrodynamics
problems in the transient case and the finite volume
method is employed to enforce such a local
conservation property and it is easier comparing to the
finite element method. The resolution of coupled
equations is obtained by introducing the magnetic
vector potential A , the vorticity , the stream function

 and the temperature T. For that, it is initially
necessary to determine the flux density then the induced
currents, the electromagnetic thrust and the thermal
source which allow calculating the velocity, the
pressure and the temperature at any point of the
channel. Finally, the analysis of the influence of the
frequency on the fluid flow and on the temperature is
presented.

2. ELECTROMAGNETIC MODEL

2 .1   Mathematical Formulation
The cross section of the MHD pump in the (x-y) plan is
shown in Fig. 1. It has two inductors which contain the
coils, the air gap and the external area while the channel
contains the liquid metal. The conducting fluid is
assumed to be viscous and incompressible.

The Maxwell’s equations applied to the MHD pump
will give rise to the following equation:

exJrotAV
A

rotArot
t

1
            (1)

where A is the magnetic vector potential, is the
electrical conductivity,  the magnetic permeability, V

is  the  velocity  of  the  fluid   and exJ  the excitation
current density.
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Fig. 1. Schematic view of the MHD pump

For the calculation reported in the following, mercury is
considered as the fluid.

After developing the above equations in Cartesian
coordinates and in sinusoidal mode, the final integro-
differential system with the Dirichlet boundary
condition is:

exJ
x
AVAwj

y
A

x
A

2

2

2

21

                       (2)

DonA 0      (3)

The currents of the windings generate the traveling
magnetic field which produces a current in the liquid
metal. As a consequence a Lorentz force acting on the
fluid is obtained.

The eddy currents inside the channel are computed by:

rotAVAJ
ti                                      (4)

The thrusts are given by:

rotAJF i      (5)

2 .2   Finite Element Method
The electromagnetic Eq. (2) is solved by using the finite
element method. We apply the weak Galerkine method
to this equation which consists to seek n projection
functions n21 ,...,,  such as:
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After evaluating the resulting integrals by parts over the
whole problem domain  and then substituting the
appropriate boundary conditions, we obtain a set of
simultaneous partial differential equations of the form
(Sadiku, 1992 and Jianming, 1993):

FAMMCj 21                             (7)

The matrices [C], 1M  and 2M  are calculated
considering the element matrices, appropriate shape
functions (Kadid et al. 2003, 2004a, b and Jianming
1993). The vector [F] accounts for the current exJ . The
resulting equations are solved using the iterative
method until convergence is reached.  Once A is
obtained, we can compute the magnetic induction field

by using ArotB .

3. THE HYDRODYNAMIC AND THERMAL
MODELS

3.1 Navier Stokes Equations
The evolution of the velocity in the transient state
condition in the channel of the MHD pump is governed
by the Navier Stokes equations such as
Anderson (1984):

FVVVV p
t

1.                  (8)

0div V      (9)

where p the pressure of the  fluid,  the kinematic
viscosity of the fluid, F the electromagnetic thrust and

 the fluid density.

The development of the equation of the flow in
Cartesian coordinates gives:
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The boundary conditions are such as:

2

1

Don0
n
u0

n
u

Don0uu
',

'
                              (11)

The real difficulty is the calculation of the velocity lies
in the unknown pressure. To overcome this difficulty is
to relax the incompressibility constraint in an
appropriate way. . So, the elimination of pressure from
the equations leads to a vorticity-stream function

(Anderson, 1984 and Krzeminski, 2000).  The vorticity
vector is defined by:

rotV    (12)

The stream function is given in 2D Cartesian
coordinates as:

'u
x

u
y

(13)

where u and u’ the components of the velocity V.

We eliminate the pressure from the Eq. (10) and we use
the two new dependent variables  and  to obtain
the following equation:

y
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After substituting Eq. (13) into Eq. (12) we  obtain  an
equation involving the new dependant variables  and

 such as:

2

2

2

2

yx
(15)

To determine the pressure, the resolution of an
additional equation is necessary; the latter is obtained
by differentiating Eq. (8) and using the continuity
Eq. (9). This equation is referred to as the Poisson
equation for pressure:

2

2

2

2

yx
2p                                           (16)

3.2 Thermal problem
The thermal phenomena are studied only in the channel
of the MHD pump. So, the governing thermal equation
is given by:

s

p

pTgradKdiv

Dt
Dp

p
T

T
t
TC

(17)

where is the density of the fluid, pC the specific

heat, K  the thermal conductivity, T the temperature
and sp  the thermal source (electric power density)
induced by eddy current  such as:

2

2
i

s
Jp    (18)

After developments in Cartesian coordinates, replacing
the source term sp  and by neglecting the term of
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pressure; this is due to the low velocities obtained in the
hydrodynamic study,   we obtain:

2
JJ

y
T

x
TK

t
TC ii

2

2

2

2

p (19)

*
iJ  is the conjugate  of iJ .

The boundary conditions (Dirichlet and Neumann)
applied to the channel (Fig. 1) are given by:

K298T  on 1D .

And 0
n
T

on 2D .

3.3 Numerical Procedure
For the model of the fluid flow, there is one control
volume surrounding each node (Fig.  2) and the
differential Eq. (14) is integrated over each control
volume using the finite volume approach
Patankar (1980):
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Fig. 2. Discretisation in finite volume method
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The discretisation equation results in a series of discrete
algebraic equations that take the form:

baa nbnbPP                                     (21)

where pa terms are the active coefficients on , and

“nb” implies summation over the neighboring nodes
(those to the West, W; East, E; South, S; and North, N;
of P for two-dimensional computations and b the source
terms.

The code generated is based on an unstructured mesh-
generation. The nodes of the mesh for the coupling
model electromagnetic-hydrodynamic are the same in
the channel.
At each time step electromagnetic and hydrodynamic
problem can be solved alternatively and iteratively until
convergence is reached.

We  use  the  same  steps  for  the  thermal Eq. (19) as  for
the hydrodynamic Eq. (14):
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with the source expression, the discretisation equation
would still look like Eq. (21), but the coefficients would
change. The new set is:

''' bTaTa nbnbPp                                      (23)

where the subscript “nb” denotes a neighbor, and the
summation is to be taken over all the neighbors.

4. SIMULATIONS AND RESULTS

The potential vector A  is calculated for each finite
element node, by means of finite element method.
Hydrodynamic and thermal calculations supply
respectively the velocity, the pressure components and
the temperature which must be known at each
integration point of the finite volume method.

For the coupling of the two methods F.E.M – F.V.M, it
is necessary to ensure an adaptation of the grid mesh,
i.e. we must find the same nodes for the two different
methods. The electromagnetic force density calculated
by the finite element method is introduced in the
hydrodynamic equations which are solved using the
finite volume method to determine the velocity and the
pressure of the fluid in the channel. Also, the thermal
source is calculated for the thermal problem.

Figure  3 represents the coupling of the three problems
such as: hydrodynamic-electromagnetic-thermal and it
is divided into the following three parts.

Electromagnetic
Problem

Hydrodynamic
Problem

Thermal
Problem

Fig. 3. The coupling scheme

finite element method computation in the
sinusoidal mode of the magnetic vector potential A
by Eq. (2) and the computation of the force density
by Eq. (5);
finite volume method computation of the velocity
in the transient state only in the channel of the
MHD pump by using the vorticity vector–stream
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function Eq. (14). Once the stream function is
determined, we can calculate the pressure at any
point of the channel by the Eq. (16);
finite volume method computation of the
temperature in the transient state only in the
channel of the MHD pump where the temperature
is determined by the Eq. (19).

For the electromagnetic problem the whole MHD pump
is meshed but in the hydrodynamic problem only the
channel which contains the mercury liquid metal is
meshed. The iterations are repeated until the error is
low. As results Fig. 4 and Fig. 5 represent respectively
the magnetic induction and the distribution of the
electromagnetic thrust in the MHD pump, this force is
the same as that obtained by Takorabet et al. (2006).

Fig . 4. The magnetic induction in the MHD pump
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Fig. 5. The electromagnetic thrust
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Fig. 6. Velocity in the middle of the channel for
several frequencies
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Fig. 7. Pressure in the middle of the channel for
several frequencies

Fig. 8. The electric power density in the channel

Figure  6 represents the variation of the velocity of the
pump for several frequencies. It is shown that the
velocity increases as the frequency increases and the
steady state is obtained approximately after two
seconds.

Figure  7 shows the pressure variations for several
frequencies. It is found that the pressure increases as the
frequency increases. It is important to notice that the
amplitudes of the pressure oscillations increase with the
increasing of the frequency.  Moreover, the “shock”
values become more significant with a shorter transient
state.

Figure  8 shows the electric power density in the
channel. The maximum induced power reaches

36 /106 mW . The pace obtained is directly related to
that of the eddy current density. This characteristic of
the heat source is used in the numerical calculation of
the temperature.

Figure  9 shows the distribution of the temperature for
different frequencies. We note that the temperature
increase with the frequency. The maximum temperature
for f = 50 Hz reaches 372 °K.
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Fig. 9. Temperature in the channel for different
frequencies
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Fig. 10. Velocity of the fluid various inductions
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Fig. 11. Temperature of the fluid various
inductions

The effect of the magnetic field on velocity and
temperature are represented in Figs. 10 and 11.  It  is
shown that the velocity and the temperature increase
linearly with the magnetic field.

5. CONCLUSION

In this paper we have studied the coupled
magnetohydrodynamic and thermal problems using 2D
finite element-finite volume method taking into account
the movement of the fluid. The results show the
presence of fast transients and the oscillatory behavior
in both the velocity and the pressure.

The obtained results confirm an influence of the
frequency on the velocity and pressure distribution in
the investigated flow (Yamagushi 2001; Affanni and
Chiorboli 2006).

A visualization of the temperature curve leads to
appreciate the effect of the frequency on the
temperature in the channel and the obtained results of
the temperature are identical to the results of Ghassemi
and Passandeh (2003).
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