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ABSTRACT

The enhanced heat transfer in the oscillatory flow of liquid metals between two thermally insulated infinite parallel
plates, when a constant axial temperature gradient superimposed, is investigated.  The fluid is set to oscillation by
oscillating both the plates axially along with an axial oscillatory body force, having the same frequency as that of the
plates.  The effective average thermal diffusivity is calculated and the effect of oscillation of the plates and the
oscillatory body force on the enhancement of heat transfer are discussed and compared.
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1. INTRODUCTION

Modern engineering and technology is moving
constantly upward on the temperature scale and
subsequently the concept of enhancement of heat
transfer has derived the attention of many scientists and
engineers in the past few decades.  Where formerly cold
or softened metals was involved, liquid metal is now
encountered; the steam engine and turbine have already
given way to machines using liquid metal as the heat
carrier and working medium; water-cooled atomic
reactors are being replaced by reactors having a very
high temperature zone cooled by actual streams of
alkali metals, viz., sodium and potassium or their
eutectic mixture.

A variety of methods have been considered so far to
improve the heat transport capabilities of thermally
conducting fluids.  The interest in analytical studies and
experimental designs of heat pipes started growing
rapidly following the publication of the seminal paper
by Grover et al. (1964). A very extensive amount of
literature on the subject is currently available (Dunn
and Reay 1978) and the heat pipe has been recognized
as an important development in heat transfer
technology.  In spite of the various astounding
applications of heat pipes, the rapid changes in modern
technology quite often demand that scientists deal with
very high temperatures and hence there is an ever-
increasing need to develop innovative methods for the
enhancement of heat transfer.

Kurzweg and Zhao (1984) developed a novel heat
transfer method in which heat is transported at very
high rates from a hot to a cold fluid reservoir.  In the
novel heat transfer device, referred to as the “Dream
Pipe” in the recent literature like Zhag et al. (2004),
developed by Kurzweg (1986a), the basic idea is to
transfer heat at high rates without concomitant net mass
transfer by sinusoidal oscillation of liquid metals when
a constant axial temperature gradient is superimposed
on the fluid.  Mathematically, the enhancement of heat
transfer in this device due to sinusoidal oscillation of
the fluid is based upon the combined effect of periodic
longitudinal convective and lateral diffusive thermal
energy transport in the presence of a longitudinal
temperature gradient.  Heat transfer rates in excess of
those achievable with standard heat pipes are readily
obtained by this thermal pumping process.

In their classical work Kurzweg and Zhao (1984)
generated the oscillation of the fluid inside a bundle of
capillary tubes by using external variable frequency
shaker.  It was established both experimentally and
analytically that large quantities of heat is transported
axially provided the fluid is oscillated at high frequency
with large tidal displacement.  It is also confirmed that
under laminar conditions the radial variation in velocity
and temperature produce an effective axial transport of
heat, which is several orders of magnitude larger than
that in the absence of oscillations.  It was found that the
effective averaged thermal diffusivity and the net heat
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flux per unit area in this novel method are very large
and exceed those possible with the state of the art heat-
pipe technology by several orders of magnitude,
provided the fluid is subjected to a constant axial
thermal gradient.  Indeed, Kurzweg (1985a), by using
multiple time scale expansion technique showed that

the heat flows as high as 2/1010 mW can be achieved
in the oscillatory flow of fluids inside circular tubes.

The “Dream Pipe” designed by Kurzweg (1986a) can
exhibit advantages, with respect to heat pipes, that the
operating temperature can be selected optionally, only a
low pressure needs to operate such pipes, the operation
start and stop can be freely conducted, both wick device
and the vacuum operation are not necessary, the
structure is simple, and thereby such pipes can be easily
manufactured.  However, the "Dream Pipe" cannot be
operated only by a temperature difference, the
temperature difference though being sufficient to
operate the conventional heat pipes. Therefore, an
outside power for applying vibration to the liquid such
as an electric motor or a compressor needs to be
provided.

Kurzweg (1985b) analyzed the heat transfer
enhancement in the oscillatory flow between thermally
conducting parallel plates, when the fluid is set to
oscillation by oscillatory pressure-gradient and
subsequently investigated (Kurzweg 1986b) the
temporal and spatial distribution of heat flux in the flow
between two counter-oscillating thermally insulated
plates. Kaviany (1986) analyzed the effects of viscous
dissipation, channel spacing and presence of harmonics
other than the fundamental harmonics on the
enhancement of heat transfer.  He concluded that the
presence of frequencies lower than the fundamental
could severely alter the performance.  Ozawa and
Kawamoto (1991) conducted numerical simulation and
visualization experiments to investigate the
fundamental heat transfer mechanism of this device.

Shailendhra and Anjali Devi (1997) analyzed the
formation of a thermo-magnetic boundary layer and its
role in the enhancement of heat transfer in MHD flow
past an oscillating flat plate when the fluid is subjected
to a constant longitudinal temperature gradient.
Shailendhra (2002) carried out a detailed investigation
on the hydrodynamic and hydromagnetic problems
associated with this “dream pipe”.   Since liquid metals
are employed in this novel device, Shailendhra and
Anjali Devi (2005) also carried out an extensive study
on the temporal and spatial distribution of heat flux in
the enhancement of heat transfer in the MHD flow of
liquid metals between counter oscillating thermally
insulated parallel plates, when the fluid is subjected a
constant axial temperature gradient.

Bergles (1985) provided a comprehensive description
of the application and enhancement potential of heat
exchangers.  Effective heat exchange is critical to the
process efficiency, and it significantly influences the
economics of the design and the operation of the plant.
Adverse effects increasing the cost and size of the heat
exchangers can be eliminated (Manglik et al. 1992)

with increased thermal performance of such
equipments.  Further, there is a great need from the
industrial sector for different methods or techniques for
augmenting the heat transfer in many areas so as to
design reliable, economic and user-friendly devices that
are specific to the required application. Only when such
needs are met will the industrial and technological
sectors give up the resistance to adopt new techniques
of augmentation of heat transfer (Vishwas 1998).

It is quite natural to test whether there is a possibility to
modify the design by changing the method of
oscillation in the novel heat transfer mode proposed by
Kurzweg (1984, 1985a) without spoiling the
characteristic property of “enhanced heat transfer
without concomitant net mass transfer under laminar
conditions” so that this novel method may possibly find
applications in many more areas where conventional
heat pipes are now being used.  It should be noted that
in chemical, petrochemical, food, plastics,  rubber and
pharmaceutical plants, to name a few, heating and
cooling of viscous process fluids are among the most
important engineering problems and any study on  this
novel technique may find useful applications in all
these fields.

So far, no attempt has been made to study explicitly and
extensively the effect of changing the mode of
oscillating the fluid over the enhancement of transfer, in
this novel method, without changing the frequency
from being fundamental.  Thus, the purpose of the
present analysis is to introduce two different modes of
oscillating the fluid and to study their effects on the
enhancement of heat transfer and also to compare the
results with the earlier methods of oscillating the fluid.
This present study may throw some light on the
possibility of replacing heat pipes by suitable heat
transfer devices based on this novel technique in many
practical situations like thermal control of advanced
communication spacecraft, cooling of semi-conductor
power devices and solar energy collectors (Dunn and
Reay 1978).

The hydrodynamics of enhanced longitudinal heat
transfer in the oscillatory flow of liquid metals between
two infinite, thermally insulated, horizontal, parallel
plates, when a constant axial temperature gradient is
superimposed on the fluid, is investigated.  Here, the
fluid is set to oscillation by oscillating both the plates
axially along with an axial oscillatory body force,
having the same frequency as that of the plates.  The
effective averaged thermal diffusivity is calculated and
the effects of the various parameters on the
enhancement of heat transfer are discussed.

2. MATHEMATICAL FORMULATION

Consider a Cartesian coordinate system centered
between two parallel plates, where the direction of flow
is taken as the x axis and the y axis is
perpendicular to the two plates.  The region hyh
between the two plates is filled with viscous
incompressible thermally conducting fluid such as
liquid metals like liquid sodium, liquid potassium or
their eutectic mixture.  The two plates are oscillating in
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time with frequency  in a direction parallel to
themselves and an oscillatory body force ( ,0 ,0)f fx
, having the same frequency as that of the plates, is
applied in the direction of motion of the plates.  The
fluid flow is characterized by the velocity field

( ( , ) ,0,0)q u y t . A constant temperature gradient
x is superimposed on the fluid along the

direction of the plates.  The equation of continuity is
automatically satisfied.  The equation of motion is

2

2
u ufxt y

     (1)

The physical quantities are cast in the suitable non-
dimensional form as described below:

2, , ( )Y y h T t F f xx
and )( xuU so that Eq. (1) reduces to

21
2Re

U UF
T Y

     (2)

where UTY ,, and F are non-dimensional space
variable, time, velocity and body force per unit mass
respectively.  Here x  is the amplitude of oscillation

of the plates and 2Re h  is the Reynolds number.

Equation (2) is to be solved under the boundary
conditions

sin ( )U U To   at 1Y      (3)

Here, oU  is the maximum non-dimensional velocity of
the plates.

The energy equation reduces to

21
2 2xU

T Y
     (4)

Here,  is the temperature in Kelvin,
2 1 2( )h  is the frequency parameter, where

is the thermal diffusivity.  Indeed, is a measure of
magnitude of the thermal diffusion time to the
oscillation period.  In Eq. (4), the viscous dissipation
term is neglected since the Prandtl numbers of liquid
metals are very small.   Further, it is to be noted that the
axial temperature gradient x is smaller in
comparison to the much larger time-dependent
transverse temperature gradient, which exists during
most of the oscillation cycles.  This means 2 2y

is much larger than 2 2x , while the value of

x  is taken to be equal to the time-averaged value
 (Kurzweg 1986b).

The corresponding boundary conditions in the Y
direction appropriate to the geometry, the plates being
insulated, are

0
Y

     at 1Y      (5)

3. SOLUTION OF THE PROBLEM

Equation (2) subjected to boundary condition (3) can be
solved by the method of separation of variables.
Assuming

Im expF F iTo   and Im expU Y iT

where Im  denotes the imaginary part of the complex
quantities and oF  denotes the maximum non-
dimensional body force per unit mass, it is easy to see
that

( ( ) ( ))( )( ) E Y iG Y U iFo oY iFoE iG
     (6)

where

cosh( ) cos( )E
sinh( ) sin ( )G

( ) cosh ( ) cos( )E Y Y Y
( ) sinh( ) sin ( )G Y Y Y

with (Re / 2) .

To solve for , a temperature distribution of the
following form is assumed:

)]exp()([Im),,( tiYghxtYx  (7)

Here, Im denotes the imaginary part of the complex
quantity within the brackets.   This form was first
proposed by Chatwin (1975), in his problem on the
longitudinal dispersion of passive contaminant in
oscillatory flows in tubes.  Owing to the mathematical
similarity of the equation of dispersion of contaminants
and the heat equation, it was adopted by Kurzweg
(1985 b, 1986 b).

From Eqs. (4), (5) and (7), it is evident that

2 2 ( )2
d g i g Pe Y
dY

     (8)

( ) 0 1g Y at Y      (9)

Here, hxPe )(  is the Peclect number.  Solving
Eq. (8) and using Eq. (9), it follows that

( ) cosh ( )1g Y A i Y g Y    (10)

Here, )32(1 AiAAA  where

Re
1 2 2 2 2 22 ( Re)( )( )1 1

PeA
E G H K

( ) ( )2 1 1 1 1A H K B C + ( )( )1 1 2 2H K B C
( )( ) ( )( )3 1 1 3 2 1 1 4 1A H K B C H K B C

[( ) ( ) ]1B U H K G H K Eo
[( ) ( ) ]2B U H K E H K Go
[( ) ( ) ]3B U H K E H K Go
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4B U H K G H K E

1C F H K G H K E

2C F H K G H K E

H
K

1H

1K

1 1 2 1 3 2 4g Y D D Y D Y D

1D Pe E G

3D U G F E

1 1 2
2 2 1

1f Y D G Y i E Y

2f Y D E Y i G Y

5D

The enhanced heat transfer that can be expected due to
the oscillation of the fluid may be evaluated.  The
effective averaged thermal diffusivity
defined by the equality

e

The left
axial thermal flux per unit cross sectional area and the
right
convective thermal flux produced by the interaction of
the c
to be noticed that the quantities in this integrand do not
average out to zero over time so that there will be a net
flow, whereas obviously, the time average of the
velocity will be zero so that there c
accompanying mass transfer.

Finally, we define the non
averaged thermal diffusivity as
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