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ABSTRACT

Natural convection heat transfer between two differentially heated concentric isothermal spheres utilizing micropolar
fluid is investigated numerically. The two-dimensional governing equations are discretized using control volume
method and solved by employing the alternating direction implicit scheme. Results are presented in the form of
streamline and temperature patterns, local and average Nusselt numbers, over the heated and cooled boundaries for a
wide range of Rayleigh numbers, Prandtl numbers and dimensionless vortex viscosity ,vK dimensionless micro-

inertia density ,vB  and microrotation boundary condition (n)  for  radius  ratio  of  2.  The  goal  of  this  work  is  to
investigate heat transfer characteristics of natural convection in the annulus between concentric spheres using
micropolar theory. It is shown that micropolar fluids give lower heat transfer values than those of the Newtonian
fluids. It is also found that the average Nusselt number increases with increasing Rayleigh and Prandtl numbers. On
the other hand, it is disclosed that increasing the vortex viscosity reduces the heat transfer rate. The results are
compared with the data available in the open literatures, and an excellent agreement was obtained. Finally, a
correlation between the average Nusselt number, Rayleigh number and material parameter Kv is presented.
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NOMENCLATURE

Bv Dimensionless material parameter L2/j
Cp Specific heat
g gravity
j Microinertia per unit mass
k Thermal conductivity
kv Vortex viscosity
Kv Dimensionless Vortex viscosity kv
L reference length (Gap width= ro-ri)
n ratio of the microrotation vector
              component and the fluid skin friction at
              the wall.
Nu Local Nusselt Number.
Nu Average Nusselt Number
p pressure
Pr Prandtl Number
r dimensionless radial coordinate Lr
R* Radius ratio ro/ri
Ra Rayleigh Number
T Temperature
T Dimensionless Temperature
t time

U Velocity
u u velocity component

v Microrotation
Thermal diffusivity
thermal expansion coefficient

v dummy variable
dimensionless angular coordinate

v Dynamic viscosity
Cinematic viscosity
Density
Dimensionless Time

Subscription

i inner
o outer
r radial

tangential
ref Reference
w wall condition
max maximum
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1. INTRODUCTION

During recent years, the theory of micropolar fluids has
been much investigated and used to describe the
characteristics of the fluid flow carrying suspended
particles. The theory of micropolar fluid was introduced
by Eringen (1964) and has now been applied in the
many studies of engineer applications. The concept of
such fluids is to provide a mathematical model for the
behavior of fluids which are affected by local motions
of the material particles contained in each of its volume
elements and also taking into account the initial
characteristics of the microstructure particles which are
permitted to undergo rotation. This local rotation of the
particles is independent of the mean fluid flow and its
local vorticity field. Later, Eringen (1972) extended this
theory to the investigation of thermo-micropolar fluids
whose thermal behavior is taken into account. This
theory can describe non-Newtonian behavior of certain
fluids, such as colloidal fluids, animal blood carrying
deformable globules, suspensions and liquids with
polymer additives. In recent years, this theory is gaining
attention of many researchers who are interested on the
developing issues, such as microscale technologies.
Papautsky et al. (1999) demonstrated that microchannel
fluid flow behavior describing by micropolar theory
presents better agreement with experimental data, than
with the results obtained by employing classical Navier-
Stokes theory.

Natural convection of a micropolar fluid in a
rectangular enclosure was investigated in the work of
Hsu and Chen (1996), where they presented a
parametric study of the effect of microstructure on the
flow and heat transfer. They showed that heat transfer
rate and therefore Nusselt number of a micropolar fluid
is decreased compared with the Newtonian fluid. Later,
Hsu et al. (1997) investigated natural convection of
micropolar fluids in an enclosure with a single and or
multiple uniform heat sources, where different
boundary conditions for microrotation were considered.
In their work, heat transfer characteristics and flow
phenomenon were presented for different values of the
Rayleigh number, enclosure tilting angle and various
material properties of the micropolar fluids. The spline
alternating direction implicit procedure (SADI) as used
to perform the numerical computation. The results
indicated that dependence of a microrotation term and
heat transfer on a microstructure parameter is
significant. They showed that the value of maximum
microrotation term ( maxv ) increases when either vortex

viscosity vK  or microinertia increases .vB

Conversely, the value of maxv  decreased as the spin

gradient viscosity ( v ) was increased. It was observed
that the heat transfer rate is quite sensitive to the
microrotation boundary conditions (n). Similar works
were also published by Aydin and Pop (2005, 2007),
where they presented flow patterns for different
Rayleigh and Prandtl numbers. They also used some
correlations between the coefficients of viscosity and
micro-inertia that proposed by Ahmadi (1976).
Recently, Zadravec et al. (2009) investigated natural
convection of micropolar fluid in a rectangular

enclosure with boundary element method and extended
the results for Rayleigh number up to the 1×107.

On the other hand, natural convection heat transfer in
the annulus between two concentric spheres has
received much attention due to both theoretical interests
and experimental applications. This geometry has been
employed in many engineering design problems such as
nuclear reactor design, thermal energy storage (TES)
systems, solar energy collectors and storage tanks, to
name a few. Predicting the transient and steady state
behavior of fluid flow and heat transfer rates is a
necessary task to these engineering design problems.
However, in practice, many of the fluids involved in
engineering applications exhibit non-Newtonian
behaviors. Consequently, the investigation of natural
convection must be extended to the case of non-
Newtonian fluids.

To the best of our knowledge, there are only two studies
on natural convection heat transfer of micropolar fluid
flwo in the annulus between two concentric spheres that
conducted by Chiu et al. (1999) and Chen (2005). In the
present study, the work of Chiu et al. (1999) are
extended to Rayleigh number up to the 1×108, including
wider range of Prandtl number ranging from 0.1 to 100,
and also for various values of vortex viscosity ratio,

vK , ranging from 0.0 to 10. In addition, in the present

study effects of microinertia (material parameter, vB )
and microrotation boundary condition (n) are also
investigated by using finite volume approach. The
results are also compared with the published results of
earlier studies (Chen 2005) and very good agreements
are observed.

2. GOVERNING EQUATIONS

The configuration under study is shown in Fig.  1. Two
concentric spheres with radius of ri and  ro are
considered. The inner sphere having a radius of ri is
assumed to be the hot surface with a uniform
temperature of Ti while the outer one with a radius of ro
is  the  cold  surface  with  a  uniform  temperature  of  To.
Spherical coordinates ( r )  are  used  for  the  present
computation with the origin at the center of spheres.
The angular coordinate is measured in the clockwise
direction with 0  at the top and  at the
bottom of spheres.

Fig. 1. Physical model and coordinate system.
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The  gap  between  the  spheres  is  assumed  to  be  filled
with a micropolar and incompressible fluid. The thermo
physical properties of fluid are assumed constant except
density variation with temperature in the buoyancy
term, i.e. the Boussinesq approximation is utilized. The
viscous dissipation term in the energy equation is
neglected due to its small influence in natural
convection problems with low fluid velocity. For the
assumption that micropolar fluid flow will be viscous,
incompressible and laminar, the governing equations
include conservation laws for mass (1), momentum (2),
microrotation (4) and in the case of natural convection
also conservation of energy (3) are written as follows.

0U.      (1)

o

vvv

TTg

vkU.kp
Dt
UD

      (2)
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P      (3)

vk2Ukv.
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Parameters , v , k , PC  and  are the density,
viscosity, thermal conductivity, specific heat at constant
pressure and thermal expansion coefficient of the fluid,
respectively, and vk , j and v  are the vortex viscosity,
micro-inertia density, and spin-gradient viscosity of the
working fluid, respectively.

Equations (1) – (4) are rewritten in the non-dimensional
form for the 2D spherical coordinate as follows.
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Energy equation:
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Microrotation equation:
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In the foregoing equations, u  and ru  are the velocity
components along the angular, , and radial, r,
directions, respectively. Parameter T is the fluid
dimensionless temperature, and v  is the component of
micro-rotation whose direction of rotation lies in the
( r ) plane. In the above equations, Ra is Rayleigh
number and Pr is the Prandtl number of base fluid (pure
fluid). Furthermore, the dimensionless parameters vK
and vB characterize the vortex viscosity and the micro-
inertia density, respectively, and are defined as:

vv kK , jLB 2
v    (11)

Where the io rrL  is gap width between two
spheres. It is assumed that v has the following form as
proposed by Ahmadi (1976) and used by Rees and Pop
(1998) for the problem of free convection boundary
layer flow over a vertical flat plate embedded in a
micropolar fluid and by Aydin and Pop (2007) for
natural convection in a differentially heated enclosure
filled with a micropolar fluid.

j2kvv    (12)

From the non-dimensional form of the governing
equations, it is seen that the governing parameters for
the present study are the Rayleigh number (Ra), the
Prandtl number (Pr), radius ratio (R*), the
dimensionless parameters vK , vB  and microrotation

boundary condition, n. If vK  is assumed to be zero,
Eqs.  (6)  -  (8) reduces to the classical Navier-Stokes
equations of Newtonian fluid flow.

The  local  and  average  Nusselt  numbers  are  defined  as
Eqs. (13) and (14), respectively
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3. THE BOUNDARY CONDITIONS

On the wall surface, the boundary values for ru and u
were set to zero, while the temperatures were set to 1
and zero at the hot and cold boundaries respectively.
The wall condition for v  was specified according to the
following relation.

1 r
w

ru u
v n

r r
   (15)

In which n  is a constant 1n0 . It should be
mentioned that the case n=0, called strong
concentration of suspended particles (Guram and Smith
1980), indicates that concentrated particles close to the
rigid boundaries are unable to rotate. The case n=1, as
proposed by Peddieson (1972) is applied for the
modeling of turbulent boundary layer flows. On the
other hand, the case n=1/2, indicates that microrotaion
is taken to be equal to the angular velocity at the rigid
boundaries. Therefore, the effect of the suspended
particles is negligible in the vicinity of the surface
because the suspended particles cannot get closer to the
surface than their radius. In the vicinity of the surface,
rotation of the suspended particles depends only on the
fluid shear, so the microrotation vector must be equal to
the angular velocity (Ahmadi 1976).  In  the  present
study, calculation are performed for n=1/2, unless it is
mentioned elsewhere. The associated boundary
conditions on the symmetry axis (i.e. at 1,0 ) are as
follows.

0ru T v u    (16)

4. SOLUTION PROCEDURE

The properties of the base fluid are evaluated at the
reference temperature, i.e. To assumed to be reference
temperature (To=Tref), the density and the dynamic
viscosity are assumed to be constant.

The governing differential equations are solved by
employing finite volume method and SIMPLER
algorithm described by Patankar (1980). The convective
terms, in the momentum, microrotation and energy
equations, are discretized using a power-law
differencing scheme. Derivatives at the boundaries are
approximated by three-point forward or backward
differencing formulas. The Alternating Direction
Implicit (ADI) method is used for the solution of the
discrete equations. The pseudo-transient approach with
appropriate under-relaxation parameters for the field
parameters is employed for obtaining the steady state
results. Non-uniform grids in radial direction and
uniform grids in the angular direction are used. Non-
uniform grid is generated by using Eq. (17). In order to
obtain grid-independent solution for every Rayleigh
number, the numerical experimentation is done for four
different mesh size configurations. The effect of grid
size on the local Nusselt number distribution over the
inner and outer walls is investigated (Fig. 2). Therefore
mesh sizes of 90×90 is selected in the present
investigation. In most studies, comparison between the
maximum values of Nusselt number is chosen in order

to verify the grid-independency of the solution while it
is believed that comparison between local values is
more appropriate and would produce more accurate
results. The solution is considered convergent when the
global relative errors of the field variables over the all
control volume cells are less than prescribed criteria. A
convergence criterion of 10-7 is  selected  for  all  field
variables except the temperature field for which the
value of 10-8 is considered.The following section
outlines general (non-formatting) guidelines to follow.
These guidelines are applicable to all authors and
include information on the policies and practices
relevant to the publication of your manuscript.

1
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1tanh .
21 1

2 tanh 2

n
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Where 13.5 9 .

5. RESULTS AND DISCUSSION

Results in the form of flow and thermal field variables
and Nusselt numbers are presented for various values of
the governing parameters and for a radius ratio of 2. In
order to investigate the accuracy of the numerical
procedure developed in this study, typical results were
compared with the results available in the open
literature.

Recently, the same authors published numerical
simulation of buoyancy induced turbulent flow between
two concentric isothermal spheres (Dehghan and
Khoshab 2010) for Newtonian fluids and various values
of Rayleigh numbers ranging from 102 to 1010.
Therefore, the comparison of the present results with
the results obtained by Chen (2005) is performed only
for micropolar fluid flow. Figure 3 presents the average
Nusselt  number  as  a  function  of  Rayleigh  number  for
various values of vortex viscosity. The numerical
results of Chen (2005) are also presented in the same
figure. The results of the present study are extended
beyond the previously published data. It is seen that in
the convection dominated region, the variation of Nu
against Ra is linear on a double logarithmic scale.

Fig. 2. Variation of local Nusselt number over the cold
boundary for various mesh sizes and for Ra=5×107,

Pr=0.71, vK =0.1, vB =1.0 and R*=2.0.
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Fig. 3. Variation of average Nusselt number with
Rayleigh number for Pr=0.7 and vB = v =1.0.

The heat transfer within the fluid can be characterized
by the Rayleigh number value. When the Rayleigh
number value is below a certain value, heat transfer is
primarily in the form of conduction, when it exceeds
beyond that critical value, heat transfer is primarily in
the form of convection. The critical value of Rayleigh
number is depends on the length characteristic L,
Prandtl number Pr and vortex viscosity.

Figure 4 shows the predicted thermal and flow fields in
the form of isotherms and streamlines contours for
different values of Rayleigh number and dimensionless
vortex viscosity. As the flow is symmetric with respect
to the vertical axis, the isotherms are plotted on the left
and the streamlines are drawn on the right hand of each
figure. Increasing the Rayleigh number values
intensifies circulation inside the annular cavity.

Fig. 4. Isotherms and streamlines for different material parameters vK  and different Rayleigh number values
(Pr=0.71, vB =1.0 and n=0.5)

From the Fig.  4 it is also evident that increasing the
Rayleigh number value leads to thinner thermal
boundary layers near the heated and cooled walls,
enhancing momentum and heat transfers in the annular
cavity. As the fluid adjacent to the inner wall is heated,
the lower density fluid moves upward due to the

buoyancy effect, while the relatively colder and denser
fluid will eventually flow downward along the cold
surface of the outer sphere. Thermal boundary layers
start to develop at the lower edge of inner hot wall and
the upper edge of upper cold one. The thickness of both
boundary layers decreases when the Rayleigh number is
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increased. The thermal boundary layer thickens when
the flow moves upward along the inner wall, which
results in a decrease of the local heat transfer rate along
this wall. The opposite effect is seen adjacent to the
outer cold wall when the warm fluid starts to descend
along it. For higher values of the Rayleigh number, the
boundary layers are confined in the vicinity of the hot
and cold surfaces while the core region of the annuli is
occupied with a low velocity fluid. It is also observed
that for higher values of the Rayleigh number, the
bottom portion of the annular cavity is occupied with
almost stagnant cold fluid.

As  seen  for  a  fixed  value  of  Ra,  an  increase  in vK
abates circulation inside the annular cavity and thickens
the thermal boundary layers near the heated and cooled
walls which lead to momentum and heat transfers
reduction, respectively. It is clearly seen that, in the
case of Ra=1×105, as vK  increases the thickness of
thermal boundary layer increases and the heat transfer
rate  decreases.  In  this  case,  for  low  values  of  vortex
viscosity ratio, vK , intensive inversion can be seen in

the isotherms while for higher values of vK the
inversion disappears. In the case of Ra=1×103, for low
values of vK , both conduction and convection heat
transfer mechanisms affect the thermal field while for
high values of vK , pure conduction heat transfer
dominates. As previously mentioned, the critical value
of Rayleigh number depends on the vortex viscosity. In
the later case, it is seen that, increasing in vK  retards
the transient regime between the conduction and the
convection regime.

This is also true for transient regime between the
laminar and turbulent regimes. For each value of
Rayleigh number, as vK  increases the position of
vortex center of the main eddy shift downward and
circulation inside the annular cavity alleviates. This is
because an increase in the vortex viscosity ratio would
result in an increase in the effective viscosity ratio of
the fluid flow (see the coefficient of first term in the
right hand side of Eq. (6) and (7)).

Figure 5 represents the distribution of local heat transfer
coefficients along the hot and cold surfaces for different
vortex viscosity ratio, vK , and different Rayleigh
number values. As can be seen, an increase in vK
reduces the heat transfer over the both heated and
cooled walls. In the case of Ra=103, it is also seen that,
as vK increases the pure conduction dominates over the
walls.

Figure  6 presents the average Nusselt number as a
function of Rayleigh number for different material
parameters vK . It is seen that transition to the
convection dominated region depends on vK and
increasing in vK retards the transient region. It is also

seen that the variation of Nu  against  Ra  is  linear  on  a
double  logarithmic  scale.  As  seen  for  a  fixed  value  of
Ra,  an  increase  in vK decreases average Nusselt

number. In fact, this is because an increase in the vortex
viscosity would result in an increase in the total
viscosity of the fluid flow, thus decreasing the heat
transfer. The decrease of the heat transfer with the
increase of vK is more significant for higher values of
Rayleigh number.

Fig. 5. Distribution of the local Nusselt number for
various values of vortex viscosity ratio, vK , at inner

and outer spheres and for Rayleigh number (a) 103, (b)
105 and (c) 107.

Figure 7 illustrates the effect  of the Prandtl  number on
the heat transfer, for two values of Rayleigh number
and vK =1.0.  It  is  seen that  for fluids with low Prandtl

number values (Pr<1), Nu is proportional to both
Prandtl number and Rayleigh number i.e. ~ ( Pr)Nu Ra ,
while  for  high  Prandtl  number  value  (Pr >  1)  the
proportion is in the form of ~ ( )Nu Ra . Bejan (1984)
demonstrated by scale analysis that for fluids with low
Prandtl number value (Pr<1), the approximate
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expression for the averaged Nusselt number on the
vertical flat plate is given in the form of

1 4~ ( Pr)Nu Ra , while in the form of 1 4~Nu Ra  for
fluids with high Prandtl number value (Pr>1). The
results obtained here are, therefore, consistent with
these above scale analysis.

Fig. 6. Variation of average Nusselt number Nu  with
Rayleigh number for different material parameters vK ,

Pr=0.71, 1.0vB and 1 2n .

Fig. 7. The effect of Prandtl number, Pr on the average
Nusselt number, Nu , for 1.0v vK B and n=0.5.

Fig. 8. The effect of microrotation boundary condition
on the average Nusselt number, Nu , for 1.0vK ,

1.0vB  and Pr=0.71.

The effect of microrotation boundary condition, n, on
the heat transfer coefficient is presented in Fig.  8.   As
microrotation boundary condition increases, a small
increase in Nu  is observed. It is because the suspended

particles are not free to rotate near the wall for 0n ,
while, the microrotation term is augmented and induces
flow enhancement as n increases to 1.0.  On the other
hand, Figure  9 represents the effect of dimensionless
microinertia, vB ,  on  the  average  Nusselt  number.  It  is
seen that the parameter vB has not considerable effect

on the heat transfer coefficient, Nu which  is  in
agreement with the result of Hsu et al. (1997) for
rectangular cavity.

Fig. 9. The effect of dimensionless microinertia vB on

the average Nusselt number, Nu , for 1.0vK  and
Pr=0.71.

It is seen in Fig.  6 that in the log-log presentation, the
~Nu Ra  relation is almost linear in the laminar flow

region. The related equation is

mNu CRa    (18)

That the average value of heat transfer increases as Ra
number is increased regardless of vortex viscosity, vK ,
values. The constant values of C and exponent m for
Eq. (18) are listed in Table  1 for different values of
vortex viscosity, ,vK in the range of

3 71 10 5 10 .Ra

Table 1 Coefficients of the Eq. (18).

vK C m
0.0 0.2175 0.2372
0.1 0.2133 0.2376
0.5 0.2000 0.2383
1.0 0.1902 0.2380
2.0 0.1790 0.2365
10.0 0.1687 0.2206

For 3 71 10 5 10Ra

Two following simple correlations between the average
Nusselt number, Nu , Rayleigh number, Ra, and vortex
viscosity, vK , are derived, based on the parametric
study conducted in the present investigation.

0.5ln ln vNu a b Ra cK    (19)
1.5ln ln v vNu a b Ra cK dK    (20)
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Coefficients a, b, c and d in Eqs. (19) and (20) are listed
in Table 2. In addition, the goodness of fit value, R2, is
presented in Table 2.

Table 2 Coefficients of the Eq. (19) and Eq. (20).

Eq. (19) Eq. (20)
a -1.527377 -1.55499
b 0.238993 0.238976
c -0.156962 -0.143696
d * 0.030109
R2 0.99899 0.99971

6. CONCLUSION

Natural convection of micropolar fluids in the annulus
between two concentric spheres with isothermal cold
and hot boundaries has been investigated numerically,
using the finite volume method. The results of the
present study are extended beyond the previously
published data. Simulations are performed to
investigate the effects of the Rayleigh number, Ra,
Prandtl number, Pr and the material parameters, vK
and vB , on the momentum and heat transfer. The results
are presented in the form of streamlines and isotherms
and local variation of Nusselt number over the cold and
hot surfaces for various values of the Rayleigh numbers
and material parameter vK . The results are also
compared with the published results of earlier studies
and very good agreements were observed. It was seen
that for low Rayleigh number, the flow between the
concentric spheres has low velocities and exhibits
conduction dominated flow and thermal characteristics
in both Newtonian and micropolar fluids. Increasing the
Rayleigh number changes the flow characteristics to the
boundary layer type flow with a relatively high velocity
flow adjacent to both surfaces. Furthermore, it is shown
that the average Nusselt number increases with
increasing Rayleigh and Prandtl numbers. On the other
hand, it is disclosed that an increase in the vortex
viscosity represented by vK , reduces the heat transfer
rate. As vK  increases the position of vortex center of
the eddy shifts downward and circulation inside the
annular cavity weakens. This is because an increase in
the vortex viscosity ratio would result in an increase in
the effective viscosity ratio of the fluid flow. It is also
found that, increasing vK retards the transient regime
either between the conduction and the convection
regimes or the laminar and turbulent regimes.

The numerical results indicate that the average Nusselt
number is lower for a micropolar fluid, as compared to
a Newtonian fluid. The numerical study performed
shows a very significant effect of microstructure on the
convective heat transfer rates. Considerable effects on
both thermal and velocity fields are found for variation
of vortex viscosity. It is observed that the heat transfer
rate is less sensitive to the microrotation boundary
condition values especially for low values of Rayleigh
number. The slight increase in the heat transfer rate for
weak concentration flow (n =  0.5  or  1)  is  due  to  the
microrotation enhancement. It is concluded that
although parameter vB has significant effect on
microrotaion field, it has marginal effect on the heat

transfer coefficient, Nu . Finally, two correlations
between the average Nusselt number, Rayleigh number
and vortex viscosity are presented.
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