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ABSTRACT 

Three dimensional Navier-Stokes finite element formulations require huge computational power in terms of memory 
and CPU time. Recent developments in sparse direct solvers have significantly reduced the memory and 
computational time of direct solution methods. The objective of this study is twofold. First is to evaluate the 
performance of various state-of-the-art sequential sparse direct solvers in the context of finite element formulation of 
fluid flow problems. Second is to examine the merit in upgrading from 32 bit machine to a 64 bit machine with larger 
RAM capacity in terms of its capacity to solve larger problems. The choice of a direct solver is dependent on its 
computational time and its in-core memory requirements. Here four different solvers, UMFPACK, MUMPS, 
HSL_MA78 and PARDISO are compared.  The performances of these solvers with respect to the computational time 
and memory requirements on a 64-bit windows server machine with 16GB RAM is evaluated. 
 
Keywords: Multifrontal, UMFPACK, MUMPS, HSL MA78, PARDISO, 64-bit. 
 

1. INTRODUCTION 
Finite element discretization of Navier-Stokes equations 
involves a large set of non-linear equations, which can 
be converted into a set of linear algebraic equations 
using Picard's or Newton's iterative method.   The 
resulting set of weak form (algebraic) equations in such 
problems may be solved either using a direct solver or 
an iterative solver.  The direct solvers are known for 
their generality and robustness. However, the use of 
direct solution methods like the traditional frontal 
algorithms (Irons 1970) is limited by its huge memory 
requirements. The advent of multifrontal (Davis and 
Duff 1999) solvers and the efficient ordering techniques 
have increased the efficiency of direct solvers, in terms 
of memory and computational speed, for sparse linear 
systems.  They make full use of the high computer 
architecture by invoking level 3 Basic Linear Algebra 
Subprograms (BLAS) library. Thus the memory 
requirement is greatly reduced and the computing 
speed is greatly enhanced. Multifrontal solvers have 
been successfully used for two-dimensional simulations 
both in the context of finite volume problems (Raju and 
T’ien, 2008a,b,c), in finite element problems (Gupta 
and Paglthivarthi 2007) and in power simulation 
systems (Khaitan et al. 2008, 2010). Raju and T’ien 
(2008a) implemented a finite volume formulation for 
solving gas combustion in an axi-symmetric candle 
flame. UMFPACK solver was used as a sparse direct 
solver. It has been demonstrated that the use of 
multifrontal solvers can significantly reduce the 
computational time when compared to the traditional 

iterative methods like SIMPLE algorithm used in finite 
volume formulations. Gupta and Pagalthivarthi (2007) 
implemented a finite element formulation for solving 
multi-size particulate flow inside a rotating channel 
and UMFPACK solver was used as a sparse direct 
solver. The advantage of using multifrontal solver over 
the traditional frontal solver in terms of both 
computational time and memory is demonstrated. 
However, the disadvantage of using sparse direct 
solvers (even multifrontal and other similar direct 
solvers) is that the memory size increases much more 
rapidly than the problem size itself (Gupta and 
Pagalthivarthi 2007) and the use of 64 bit machine with 
larger RAM has been recommended. On a 32 bit 
machine, the in-core memory is limited to 4 GB (3 GB 
on a windows machine). Hence as the problem size 
increase, memory becomes a limitation for direct 
solvers. To circumvent this problem, out-of-core solvers 
(Reid and Scott 2009; Raju and Khaitan 2009a) have 
been developed which has the capability of storing the 
factors on the disk during factorization but has 
increased computational burden. Another alternative is 
to use a larger RAM on a 64 bit machine to solve using 
in-core memory. Out-of-core solvers increase the 
computational burden due to the I/O operations to and 
from the hard disk. By using a 64 bit machine with a 
larger RAM, the factorization can be done in-core to 
reduce the computational time.  
 
Computational times of sparse direct solvers can be 
significantly reduced by parallel implementation on 
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multiple processors. Parallel implementation can be 
either shared memory implementation on a multiple 
core machines (Raju and Khaitan 2010) or distributed 
computing on multiple machines using MPI 
programming (Raju 2009, Raju and Khaitan 2009b).  
 
Iterative methods are known to be memory efficient. As 
the size of the system increases, the iterative methods 
outperform the performance of direct solvers and hence 
are preferred for large three dimensional problems. 
However, the matrices generated from the fully coupled 
solution of Navier-Stokes formulations are saddle point 
type matrices. These matrices are different from those 
normally encountered in applied mathematics are not 
easily amenable to the traditional iterative methods 
(Habashi and Hafez 1995). The application of 
traditional methods like SIMPLE iterations, pseudo 
time stepping or multigrid methods based on block 
gauss-seidal smoothers either fail or exhibit very slow 
convergence for the solution of finite element Navier-
Stokes problems (Habashi and Hafez 1995). The choice 
of a good preconditioner is extremely challenging. 
Elman et al. (2005) discusses the development of 
preconditioners for such matrices. The implementation 
of these preconditioners is not straightforward and is 
very application specific. Recent efforts (Rehman et al. 
2008) have demonstrated the successful implementation 
of classical ILU preconditioners with suitable 
reordering techniques referred as SILU. However the 
convergence of such preconditioners varies with the 
grid size and Reynolds number.  On the other hand, 
direct solvers are preferred for their robustness. 
However, direct solvers are limited by its memory 
requirements. So it is up to the user to choose a direct 
solver or an iterative solver based on their needs.  A 
comparison of the relative performance of direct 
solvers and iterative solvers for such saddle point 
matrices generated from three dimensional grids is not 
yet available in the literature. Commercial finite 
element based CFD package like FIDAP uses 
segregated approach for solving large 3D problems. 
However, the rate of convergence of segregated 
approach is much slower compared to the fully coupled 
Newton's approach. In addition, the application of 
modified Newton (or modified Picard (Raju and T'ien 
2008a) can significantly reduce the CPU time of direct 
solvers. This is demonstrated in the later section of the 
paper. 
 
This paper specifically addresses the memory 
requirement issues of direct solvers by upgrading from 
a 32 bit machine to a 64 bit machine with 16 GB RAM. 
Correlations are developed for the in-core memory 
requirement as a function of the problem size. This will 
give a fair idea of the size of the RAM required for 
solving a given problem on a 64 bit machine. Based on 
this, one could make an appropriate choice of whether 
to go for a 64 bit machine or to use an out-of-core 
solver. To the best of author's knowledge, this kind of 
work has not been reported in the literature.  

In this paper the in-core implementation of the solvers 
is examined for the 3D finite element Navier-Stokes 
equations on a 64 bit machine. The performances of 
four state-of-art sparse direct solvers - UMFPACK, 
MUMPS, HSL, and PARDISO are evaluated in this 

paper. Highly optimized Intel® Math Kernel Library 
BLAS is used to improve the computational efficiency of 
the solvers. Flow through a three dimensional 
rectangular channel is taken as a benchmark problem. 
First the mathematical formulation for the primitive 
variables u,v,w is presented. This is followed by the 
description of the Newton's and modified Newton's 
algorithm. A brief overview of the sparse direct solvers 
used in this study is presented. This is followed by the 
presentation of results and discussion. 

2. MATHEMATICAL FORMULATION 
The governing equations for laminar flow through a 
three-dimensional rectangular duct are presented 
below in the non-dimensional form. In three-
dimensional calculations, instead of the primitive u,v,w 
formulation, penalty approach is used to reduce the 
memory requirements. 
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where , ,u v w  are the x, y and z components of velocity. 
The bulk flow Reynolds number, Re /oU Lρ μ= , 

oU  being 
the inlet velocity, ρ  the density, L the channel length,  
μ  is the dynamic viscosity and λ is the penalty 
parameter.  Velocities are non-dimensionalized with 
respect to 

oU . 
 
The boundary conditions are prescribed as follows: 

(1)  Along the channel inlet: 

1; 0; 0.u v w= = =                          (5) 
(2)  Along the channel exit : 

0; 0; 0.u v w
x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

                        (6) 

(3) Along the walls: 
0;  0;  0.u v w= = =                         (7) 

3. NUMERICAL FORMULATION 
Galerkin finite element method (GFEM) is used for the 
discretization of the above penalty based Navier Stokes 
equations. Three dimensional brick elements are used. 
The nonlinear system of equations obtained from 
GFEM is solved by Newton’s method.  Let ( )nX

%
 be the 

available vector of field unknowns for the nth iteration.  
Then the update for the ( )1 stn+  iteration is obtained as 
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( ) ( ) ( )1n n nX X Xα δ+ = +
% % %

,                        (8) 
where α  is an under-relaxation factor, and ( )nXδ

%
 is 

the correction vector obtained by solving the linearized 
system 
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.                        (9) 

Here, [J] is the Jacobian matrix, 
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and { }( )n
XR
%

 is the residual vector. Newton’s iteration is 

continued till the infinity norm of the correction vector 
( )nXδ

%
 converges to a prescribed tolerance of 10-6. In 

modified Newton's algorithm, the Jacobian is 
calculated only during the first iteration and is not 
updated during the subsequent iterations. 
 
We observe that the discretizations of the governing 
partial differential Eqs. (7)-(10) by the GFEM scheme 
results in a set of nonlinear equations. The core of the 
resulting nonlinear equations is the solution of a sparse 
linear system, which is the most computationally 
intensive part of the solver. This is exploited in the work 
described here, via implementation of the state-of-the-
art algorithms for ordering, preprocessing, and LU 
factorization. Highly optimized Intel® Math Kernel 
Library BLAS is used during the factorization and solve 
phase. Here four different solvers, UMFPACK, 
MUMPS, HSL-MA78 and PARDISO implemented and 
are compared.  
 
The numerical algorithm can be broadly classified into 
three categories namely 1) numerical formulation with 
finite element discretization, 2) solution strategy for 
solving the resultant nonlinear equations and 3) 
solution of linear equations. The solution of the linear 
system of equations is the bottleneck both in term of 
computational time and memory requirements. Good 
non-linear solution strategy like modified Newton can 
help reduce the number of times the system of linear 
equations being solved. The latter section of the paper 
deals with the reduction in CPU time offered by 
modified Newton's method. 

4. LINEAR SOLVERS 
The core of any iterative solver like Newton iteration is 
the solution of a system of equations represented by   
Eq. (9). The Jacobian matrix is highly sparse and the 
fill-in is very low. We use this fact to gain 
computational efficiency by employing direct sparse 
linear solvers which use multifrontal or supernodal 
methods. 
 
In general, the algorithms for sparse matrices are more 
complicated than for dense matrices. The complexity is 
mainly attributed to the need to efficiently handle fill-in 
in the factor matrices. A typical sparse solver consists 
of four distinct phases as opposed to two in the dense 
case: 

1. The ordering step minimizes the fill-in and 
exploits special structures such as block 
triangular form. 

2. An analysis step or symbolic factorization 
determines the nonzero structures of the 
factors and creates suitable data structures 
for the factors. 

3. Numerical factorization computes the factor 
matrices. 

4. The solve step performs forward and/or 
backward substitutions. 

 The section below presents a brief overview of the 
sparse direct solvers that are being used in this study. 

4.1  Overview of the sparse direct solvers 

UMFPACK 
In the present study, UMFPACK v5.3.0 (Davis et al. 
2004) is used. UMFPACK consists of a set of ANSI/ISO 
C routines for solving unsymmetric sparse linear 
systems using the unsymmetric multifrontal method. It 
requires the unsymmetric, sparse matrix to be input in a 
sparse triplet format. Multifrontal methods are a 
generalization of the frontal methods developed 
primarily for finite element problems (Amestoy and 
Duff 1989) for symmetric positive definite systems 
which were later extended to unsymmetric systems 
(Davis and Duff 1999).  
 
UMFPACK first performs a column pre-ordering to 
reduce the fill-in. It automatically selects different 
strategies for pre-ordering the rows and columns 
depending on the symmetric nature of the matrix. The 
solver has different built in fill reducing schemes- 
COLAMD (Davis et al. 2004) and AMD (approximate 
minimum degree) (Davis 2004). During the 
factorization stage, a sequence of dense rectangular 
frontal matrices is generated for factorization.  A 
supernodal column elimination tree is generated in 
which each node in the tree represents a frontal matrix. 
The chain of frontal matrices is factorized in a single 
working array.  
 
MUMPS 
MUMPS 4.8.3 (“Multifrontal Massively Parallel 
Solver”) written in Fortran 90, is a package, based on 
multifrontal algorithms (Amestoy et al. 2000, 2002, 
2006; Duff and Reid 1983, 1984; Guermouche and 
L’Excellent 2006; Guermouche et al. 2003), for solving 
systems of linear equations of the form in Eq. (9), where 
A is a square sparse matrix that can be either 
unsymmetric, symmetric positive definite, or general 
symmetric. It performs a direct factorization A = LU or 
A = LDLT depending on the symmetry of the matrix. 
MUMPS is primarily a parallel solver designed for 
computational efficiency and exploits both parallelism 
arising from sparsity in the matrix A and from dense 
factorizations kernels. The parallel version of MUMPS 
requires MPI for message passing and makes use of the 
BLAS, BLACS, and ScaLAPACK libraries. The 
sequential version only relies on BLAS. MUMPS has 
several built-in ordering algorithms, and provides a 
tight interface to external ordering packages such as 
PORD (Schulze 2001), METIS (Karypis and Kumar 
1998) and also a possibility for the user to input a given 
ordering. In this paper, only the sequential version of 
the solver is evaluated. 
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HSL_MA78  
HSL_MA78 solves one or more sets of sparse linear 
equations, Ax = b or ATx = b, by the multifrontal 
method, optionally using direct access files for the 
matrix factors. The code has low in-core memory 
requirements. HSL_MA78 is written using FORTRAN 
95. The code implements multifrontal algorithm and 
takes advantage of the dense linear algebra kernels. 
These kernels are available as a separate package 
HSL_MA74, which uses high level BLAS to perform the 
partial factorization of frontal matrices. Ordering has 
to be supplied by hooking external ordering packages 
like METIS etc. HSL package HSL_MC68 offers 
efficient implementation of minimum degree algorithm 
(Tinney and walker 1967) and approximate minimum 
degree algorithm (Amestoy et al. 1996, 2004). The code 
is primarily designed as an efficient out-of-core solver, 
although it is capable of solving it in-core.  While 
solving in-core, if the memory is not sufficient, the code 
automatically shifts to out-of-core solution. In this 
paper, only the in-core option of the solver is evaluated. 
 
PARDISO 
PARDISO solver is a part of the INTEL MKL Library. 
The PARDISO package is high-performance, robust, 
memory efficient and easy to use software for solving 
large sparse symmetric and unsymmetric linear systems 
of equations on shared memory multiprocessors. The 
solver uses a combination of left- and right-looking 
Level-3 BLAS supernode techniques (Schenk et al. 
2000). To improve sequential and parallel sparse 
numerical factorization performance, the algorithms 
are based on a Level-3 BLAS update and pipelining is 
used with a combination of left- and right-looking 
supernode techniques (Schenk 2000, Schenk and 
Gartner 2001, 2002, 2004). Unsymmetric permutation 
of rows is used to place large matrix entries on the 
diagonal. Complete block diagonal supernode pivoting 
allows dynamical interchanges of columns and rows 
during the factorization process. The level-3 BLAS 
efficiency is retained and an advanced two-level left–
right looking scheduling scheme is used to achieve 
higher efficiency. The goal is to preprocess the 
coefficient matrix A so as to obtain an equivalent 
system with a matrix that is better scaled and more 
diagonally dominant. This preprocessing reduces the 
need for partial pivoting, thereby speeding up the 
factorization process. PARDISO also supports out-of-
core solution. In this paper PARDISO is evaluated for 
the in-core sequential solver on a single processor. 

5. COMPUTATIONAL CHALLENGES 
It is to be noted that for three dimensional grids, the 
matrices generated are less sparse compared to the 
matrices generated from two-dimensional grid. 
Typically an interior node in a three-dimensional finite 
element grid is connected to 27 nodes including it. 
Since there are 3 dof's at each node, a typical row 
consists of 81 non-zero entries. In a two-dimensional 
grid, a typical row consists of 27 non-zero entries. This 
would increase the frontal size considerably. Hence 
solving three-dimensional finite element problems using 
direct solvers is quite challenging both in terms of 
computational time and memory requirements. Large 
problems cannot be solved on a 32-bit machine using 

in-core techniques. Hence there is a need for 
alternative strategies for handling large three-
dimensional problems. There are 3 different ways of 
handling this problem. 

(a) Using a 64 bit machine with larger RAM  

(b) Using out-of-core solvers 

(c) Using parallel solvers  

This paper studies the performance of sequential in-
core direct solvers on a 64 bit machine with 16GB 
RAM. All the computations are run a windows machine 
with Intel Xeon processor. 

6. IMPLEMENTIONAL CHALLENGES 
The solvers used in this paper are either public domain 
solvers or commercial solvers. The solvers are hooked 
to the finite element code to solve the linear system of 
equations. Although the codes are readily available, the 
integration of the solvers with the finite element code 
on a 64 bit windows machine is not straightforward. 
UMFPACK, MUMPS are public domain solvers. 
PARDISO is a commercial solver available within the 
Intel MKL package. HSL_MA78 is part of the HSL 
2007 package. An evaluation version of HSL_MA78 is 
being used in this paper. Except for PARDISO, the 
source code is available for the remaining solvers. The 
following points will serve as guideline for future 
researchers who would like to implement these solvers 
on a 64 bit windows machine.  
 
(1) MUMPS has both C and Fortran routines. Separate 
libraries are built for the C and Fortran routines using 
Intel Visual Fortran and Microsoft Visual Studio 2005. 
Makefiles are supplied within the MUMPS package 
only for Linux environments. The project workspaces 
are appropriately built to include the preprocessing 
directives to build libraries. UMFPACK is based on C 
code. Library is also built for the UMFPACK solver on 
the 64 bit machine. The main finite element code is 
based on Fortran 90. Hence appropriate interfacing 
routines are written to call routines from a C library. 
METIS library is not available for 64 bit windows 
machine. Hence a 64 bit library is built using the 
METIS source code. While compiling the solvers on a 
64 bit machine and integrating it to the finite element 
code, precaution has to be taken to prevent mixing of 
short integers and long integers. This could lead to 
garbage values. 
 
(2) The finite element code generates element entries 
for each element. Except HSL_MA78 and MUMPS, all 
the other solvers requires global assembly matrix as the 
input. UMFPACK provides a matrix manipulation 
routine (umfpack_triplet_to_col) which converts matrix 
entries in coordinate format to compressed column 
format. This routine automatically sums up the 
duplicate entries arising from finite element matrix 
entries. Hence it is a useful routine for handling finite 
element entries. UMFPACK requires the assembled 
matrix in compressed column format. PARDISO 
requires the assembled matrix in compressed row 
format. By suitably modifying the 
umfpack_triplet_to_col routine, finite element entries 
can be assembled to a compressed row format.   
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(3) METIS has to be externally linked to HSL_MA78 to 
generate the reduced fill ordering. For this the finite 
element entries have to be assembled without the 
numerical values to generate the adjacency matrix. This 
can be provided as an input to METIS_NODEND 
routine to generate the reduced fill ordering. 

7. RESULTS AND DISCUSSION 
Before comparing the various solvers for their relative 
performances, each individual solver is tuned for its 
optimal performance, specifically the choice of the 
ordering package. Each solver has inbuilt ordering 
packages, whose choice can affect the performance of 
the solver.  
 
Mumps has different inbuilt ordering packages (AMD, 
QAMD, AMF) and a strong coupling interface with 
external orderings like METIS and PORD. Memory 
relaxation is taken as 100%. It is commonly observed 
that if we use values much lower than 100%, the solver 
crashes for some problems due to insufficient memory. 
The actual memory used by the solver does depend on 
the choice of the memory relaxation parameter. 
MUMPS in-core solver is used for all the cases. Table 1 
shows the performance comparison of the various 
ordering methods. All the cases are run for 30x30x30 
mesh. The term “30x30x30” represents a grid with 30 
elements in the x direction, 30 elements in the y 
direction and 30 elements in the z directions. The CPU 
time and memory for each of the solver are compared. 
The CPU time reported is the CPU time for a single 
Newton iteration. It includes analysis phase, 
factorization phase and solve phase. Table 1 shows that 
AMD and QAMD perform very poorly for the given 
system of equations resulting from three dimensional 
finite element simulations. Of all the ordering 
packages, METIS gives best results. Compared to 
AMD, METIS results in almost one-third of the floating 
point operations. The computational time and memory 
requirements are lower for the METIS ordering. Based 
on this result, METIS ordering is used for all 
subsequent runs using MUMPS solver.  

UMFPACK by default chooses the CHOLAMD 
ordering method for unsymmetric matrices. METIS 
ordering is not provided within the solver. So the 
default ordering CHOLMOD is retained for the 
subsequent calculations for UMFPACK solver. 
HSL_MA78 solver can be externally hooked to another 
HSL routine which generates the ordering 
(HSL_MC68) or it can be hooked to METIS ordering. 
HSL_MC68 uses minimum degree algorithms to 
generate the ordering of matrices generated from finite 
element assembly. Table 2 shows that METIS ordering 
gives very good performance compared to the 
HSL_MC68 ordering. PARDISO has two ordering 
methods within the solver itself - minimum degree (MD) 
ordering and METIS ordering. Table 3 shows that 
METIS ordering significantly improves the efficiency of 
the solver. Table 4 shows the comparison of 
computational time and memory requirement of 
different solvers. The computational time is split into 4 
stages. (a) time for matrix generation (b) time for 

analysis phase or symbolic factorization, (c) time for 
numeric factorization, (d) time for the solve phase.  

Table 1 Performance of different orderings for 
MUMPS solver 

Ordering #dof's Cpu time (sec) Memory (GB) 

AMD 89373 142.8 4.06 

QAMD 89373 142.75 4.04 

AMF 89373 105.7 3.48 

PORD 89373 86.6 3.18 

METIS 89373 59.01 3.02 

 
Table 2 Performance of different orderings for HSL 

solver 

Ordering #dof's Cpu time (sec) Memory (GB) 

HSL_MC68 89373 524 6.88 

METIS 89373 318 4.63 

 
Table 3 Performance of different orderings for 

PARDISO solver 

Ordering #dof's Cpu time (sec) 
Memory 
(GB) 

MD 89373 162 2.78 

METIS 89373 60 1.42 
 
This table will give an idea of how much time the solver 
is spending on each of the stages. The table shows that 
factorization is the most time consuming step. Around 
85-99% of the time is spent in numerical factorization 
step.  Note that for HSL solver, the time for numerical 
factorization and solve phase are reported together as 
the solver performs these both functions together. HSL-
MA78 takes the longest time for solving the linear 
system of equations. It is around two times slower than 
UMFPACK and around six times slower than MUMPS 
or PARDISO solver. The memory requirement for HSL 
is similar to that of MUMP solver. MUMPS and 
PARDISO perform equally well in terms of 
computational time. In terms of memory requirement, 
UMFPACK requires largest memory and PARDISO 
requires the least memory. UMFPACK requires around 
4 times the memory required by PARDISO. In 
summary, MUMPS and PARDISO perform equally well 
in terms of computational time and PARDISO requires 
the least memory compared to all the other solvers. 
 
Tables 5-8 show the comparison of different solvers for 
different mesh sizes. The general observation is that as 
the number of degrees of freedom (dof's) increase, the 
computational time and memory requirements increase, 
which is expected. However, the increase is not linearly 
proportional to the number of the dof's. For example, if 
we compare the mesh sizes 100x20x10 and 50x20x20, 
the number of dof's are the same for both meshes. But 
the computational time and memory requirement are 
quite different. This observation is valid for all the 
solvers.  
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Table 4 Computational time and memory requirements for 30x30x30 grid  

  Computational time (Seconds) Memory (MB) 

Solver Matrix assembly Analysis phase 
Numeric 

factorization Solve phase 
Total 
time   

UMFPACK 4 0.84 154.8 1.1 160.74 5520
MUMPS 4 1.51 53.3 0.58 59.39 3020 

PARDISO 4 2.19 52.6 0.47 59.26 1420 
HSL_MA78 4 0.64 313.14 317.78 4720 

 
 

Table 5 Performance of UMFPACK solver for different mesh sizes  

    UMFPACK 

nex ney nez #dof's Cpu time (sec) Memory (MB) Gflops 

50 10 10 18513 1.75 200 5.10E+09 

100 10 10 36663 4.29 470 1.40E+10

200 10 10 72963 7.7 840 2.70E+10 

50 20 10 35343 9.3 630 3.90E+10 

100 20 10 69993 22.94 1220 1.00E+11 

100 20 20 133623 188 7170 2.56E+12 

100 50 20 324513 1505.6 15830 9.30E+12 

100 50 50 788103 - insufficient - 

50 20 20 67473 64.92 3580 3.50E+11 

50 50 10 85833 65.28 1960 3.60E+11 

50 50 20 163863 522 9170 3.10E+12 

50 50 50 397953 - insufficient - 
 

Table 6 Performance of MUMPS solver for different mesh sizes 

    MUMPS 

nex ney nez #dof's Cpu time (sec) Memory (MB) Gflops 

50 10 10 18513 2.79 230 6.70E+09 

100 10 10 36663 5.32 520 1.52E+10

200 10 10 72963 10.6 1100 3.00E+10 

50 20 10 35343 8.4 650 2.73E+10 

100 20 10 69993 16.7 1400 6.50E+10 

100 20 20 133623 67.6 3870 3.34E+11

100 50 20 324513 384 134200 2.32E+12 

100 50 50 788103 - insufficient - 

50 20 20 67473 27 1810 1.30E+11

50 50 10 85833 29.7 2110 1.40E+11 

50 50 20 163863 133.7 5930 7.60E+11 

50 50 50 397953 - insufficient - 
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Table 7 Performance of HSL MA78 solver for different mesh sizes 

    HSL_MA78 

nex ney nez #dof's Cpu time (sec) Memory MB) Gflops 

50 10 10 18513 11 240 4.40E+10 

100 10 10 36663 20.9 500 8.40E+10 

200 10 10 72963 35.4 790 1.48E+11 

50 20 10 35343 46.7 650 1.95E+11 

100 20 10 69993 63.4 1530 2.89E+11 

100 20 20 133623 290 3910 1.3E+12 

100 50 20 324513 1732 13940 7.9E+12 

100 50 50 788103 - Insufficient - 

50 20 20 67473 145 1980 6.28E+11 

50 50 10 85833 159 2380 6.81E+11 

50 50 20 163863 715 7120 3.1E+12 

50 50 50 397953 - Insufficient - 
 

Table 8 Performance of PARDISO solver for different mesh sizes 

    PARDISO 

nex ney nez #dof's cpu time (sec) Memory (MB) Gflops 

50 10 10 18513 2.3 80 6.71E+09 

100 10 10 36663 4.36 250 1.60E+10 

200 10 10 72963 9.4 570 3.50E+10 

50 20 10 35343 6.3 290 2.60E+10 

100 20 10 69993 14.6 690 6.70E+10

100 20 20 133623 64.4 1920 3.48E+11 

100 50 20 324513 391 6620 2.30E+12 

100 50 50 788103 - insufficient - 

200 50 20 645813 901 17200 6.00E+12 

50 20 20 67473 25.9 850 1.35E+11 

50 50 10 85833 27.4 1020 1.38E+11 

50 50 20 163863 134 2860 7.63E+11 

50 50 50 397953 1059 10670 6.30E+12 
 

This kind of behavior is to be expected when using 
direct solvers using frontal type methods. The size of 
the frontal matrix or frontal width depends on the grid 
structure and hence the performance will be dependent 
on the grid distribution.   
  
Both MUMPS and PARDISO perform well in terms of 
computational time, especially for finer meshes. For 
very coarse meshes, UMFPACK seems to perform 
slightly better. However as the number of dof's 
increase, MUMPS and PARDISO outperform 
UMFPACK. Of the two, PARDISO perform slightly 
better than MUMPS in most of the cases. HSL-MA78 is 
the slowest solver amongst all of them. The numbers of 
floating point operations (FLOPS) follow similar trends 
as the computational time. In terms of memory 
requirement, PARDISO outperforms all the other 

solvers. UMFPACK seems to require largest memory 
requirement for most of the cases. HSL and MUMPS 
require similar amounts of memory.  
 
Table 8 shows that on a 64 bit machine with 16 GB 
memory, PARDISO was able to solve up to 200x50x20 
grid size, which corresponds to approximately 0.65 
million dof’s. This shows that even with the best solver 
and using 64 bit machine and 16 GB RAM, the size of 
the problems being handled is still moderate. For fair 
comparison of the maximum capacity for 32 bit and 64 
bit machines, grids of aspect ratio 1 are considered. On 
a 32 bit machine, a maximum of 36x36x36 grid (151959 
dof’s) can be solved. This grid requires around 3 GB of 
RAM, which is the maximum capacity that windows 32 
bit machine can handle. On a 64 bit machine with 16 
GB RAM, a maximum of 54x54x54 grid (499125 dof’s) 
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can be solved, which requires 15.8 GB. An increase in 
capacity of around 3.3 times (in terms of dof’s) by 
upgrading from 3GB RAM to 16 GB RAM (an increase 
by 5.33 times). By upgrading from 32 bit, 3GB machine 
to 64 bit, 16 GB machine, moderately larger problems 
can be solved. This paper can serve as a guideline to 
decide if one would like to go a 64 bit machine to 
enhance the computational capacity or to go for an out-
of-core solver, with a compromise in the computational 
time. In essence, using a 64 bit machine with larger 
RAM can help solve moderately larger problems than 
with using a 32 bit machine but will eventually run out 
of memory.   
 
Correlations are generated for the computational time 
and memory requirement of the four solvers as a 
function of the number of grid nodes and grid aspect 
ratios. Correlations will give an idea of how the solver 
performs in terms of computational time and memory as 
the size of problem increases. In addition to the results 
shown in the Tables 3-6, the correlations are generated 
from a set of 50 different grid sizes (not presented 
here). The correlations are presented below. In the Eqs. 
11-18, T represents the computational time in seconds, 
n represents the number of degrees of freedom, ar1 and 
ar2 are the grid aspect ratio’s nex/ney and nex/nez 
respectively and M is the memory requirement in Mega 
Bytes. The variables nex, ney and nez represent the 
number of grid elements in the x,y and z respectively. 
The exponent’s of ar1 and ar2 are purposely chosen to 
be identical in the correlation. 

UMFPACK: 
9 2.1 0.356 0.356 2

1 28.54 10 ;   0.967T n ar ar R− − −= × =     (11) 

5 1.595 0.21 0.21 2
1 26.2 10 ;   0.85M n ar ar R− − −= × =     (12) 

MUMPS: 
6 1.54 0.173 0.173 2

1 21.47 10 ;   0.934T n ar ar R− − −= × =     (13) 

4 1.37 0.114 0.114 2
1 24.76 10 ;   0.99M n ar ar R− − −= × =     (14) 

PARDISO: 
7 1.656 0.21 0.21 2

1 24.42 10 ;   0.912T n ar ar R− − −= × =     (15) 

5 1.46 0.086 0.086 2
1 27.57 10 ;   0.99M n ar ar R− − −= × =     (16) 

HSL MA78: 
6 1.71 0.218 0.218 2

1 21.22 10 ;   0.853T n ar ar R− − −= × =     (17) 

4 1.366 0.222 0.222 2
1 27.4 10 ;   0.87M n ar ar R− − −= × =     (18) 

The above correlations indicate that the computational 
time and memory requirement for the solvers is not only 
dependent on the dof's but is also dependent on the grid 
aspect ratio's. The above correlations indicate that the 
absolute values exponents of n and grid aspect ratio is 
higher for UMPACK. This implies that as the dof’s 
increase, the solver becomes inefficient. For MUMPS 
and PARDISO, the exponent for n is around 1.5-1.7. 
Hence the shoot up of computational time with the 
number of dof’s is not quite high. Hence for solving 
large problems, MUMPS or PARDISO solvers will be a 
good option. It is also observed that the memory 

requirement for MUMPS and PARDISO is almost 
independent on the grid aspect ratio’s.  The correlation 
coefficients indicate that both MUMPS and PARDISO 
behave almost similarly with respect to its sensitivity 
towards changes in grid size and grid aspect ratio’s.  
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Fig. 1. Comparison of CPU time and convergence rates 

of Newton and modified Newton algorithms. 

The next section deals with the performance of Newton 
and modified Newton algorithms. Figure 1 shows the 
rate of convergence of Newton's algorithm for a 
30x30x30 grid using PARDISO solver. For this simple 
problem of flow through a rectangular channel, it is 
observed that Newton gives full quadratic convergence 
and the residual norm fall below 10-8 in 4 iterations. 
For more complex problems, initial guess may not be 
close enough for Newton iterations to converge.  

In these cases, the first few iterations may have to be 
performed with Picard iteration and then Newton 
iterations could be applied subsequently to harness the 
advantage of quadratic convergence. Modified Newton 
takes 6 iterations to converge to a level of 10-7. The rate 
of convergence is observed to be superlinear instead of 
quadratic. However, it is observed that modified 
Newton iterations (83 seconds) significantly much less 
CPU time compared to the Newton iterations  (240 
seconds).The CPU time for first iteration is the same in 
both the methods but in the subsequent iterations, the 
CPU time for modified Newton is significantly lower. 
This is because, the Jacobian is no longer updated and 
consequently the LU factorization step is eliminated. 
The LU factors from the first iteration are reused 
repeatedly during the solve phase. By avoiding LU 
factorization, a significant savings in computational 
time is observed. The loss in quadratic convergence is 
more than compensated by the significant savings in 
CPU time. The memory requirement is exactly identical 
for both the methods. This is one of the major 
advantages of using a direct solver. Newton or Picard 
can be modified in such a way that it can repeatedly 
reuse the LU factors and thus obtain a significant 
savings in the computational time.  

The application of modified Picard (Raju and T'ien 
2008a) has been successfully demonstrated in the 
context of finite volume combustion application. The 
major drawback of direct solvers is the memory 
requirement. This paper demonstrates that moderately 
larger problems can be solved using a 64 bit machine 
with a larger RAM. On a 64 bit machine with 16 GB 
RAM, three to four times larger problems can be solved 
as compared to a 32 bit machine with 3 GB RAM. 
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8. CONCLUSION 
The performance of sequential direct sparse solvers in 
the context of three dimensional finite element 
formulations for rectangular channel is evaluated on a 
64 bit windows machine with 16 GB RAM. Four sparse 
solvers UMFPACK, MUMPS, PARDISO, HSL-MA78 
are evaluated in this paper. Based on the results, the 
following conclusions are derived. Of all the ordering 
methods, METIS gives good fill reduced ordering for 
three dimensional problems. In terms of computational 
time both MUMPS and PARDISO perform well. The 
memory requirement PARDISO solver is the least and 
hence larger problems can be solved using PARDISO. 
Hence PARDISO (with METIS ordering) is a better 
choice for selecting an in-core sparse direct solver for 
three dimensional problems. By upgrading from 32 bit, 
3 GB machine to a 64 bit, 16 GB machine, the size of 
the problem could be roughly increased by a factor of 
3.3 using PARDISO solver. While using a sparse direct 
solver, advantage can be taken from modified Newton's 
method to gain significant computational savings. 
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