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ABSTRACT 

A spectral homotopy analysis method (SHAM) is used to find numerical solutions for the unsteady viscous 

flow problem due to an infinite rotating disk. The problem is governed by a set of two fully coupled nonlinear 

partial differential equations. The method was originally introduced for solutions of nonlinear ordinary 

differential equations. In this study, its application is extended to a system of nonlinear partial differential 

equations (PDEs) that model the unsteady von Kàrmàn swirling flow. Numerical values of the pertinent flow 

properties were generated and validated against results obtained using the Keller-box numerical scheme. The 

results indicate that the present method is very accurate and can be used as an efficient tool for solving 

nonlinear PDEs of the type discussed in this paper. 
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1. INTRODUCTION 

The study of the steady, laminar and axially 

symmetric viscous flow due to an infinite disk 

rotating steadily with constant angular velocity was 

pioneered by von Kàrmàn (1921). He provided the 

basis for the mathematical study of the rotating disk 

problem and introduced his famous transformations 

that reduced the governing partial differential 

equations to ordinary differential equations. His 

solution was improved by Cochran (1934) who 

patched together two series expansions. Since then 

solutions of the von Kàrmàn equations describing 

different aspects of the disk flow problem have 

been of interest to researchers in diverse fields of 

science. Swirling flows have many interesting 

features and occur frequently both in nature and in 

technology Zandbergen and Dijkstra (1987). 

Technical applications can be found in viscometry, 

in lubrication, in centrifuges, in turbines and in the 

fabrication of computer memories by crystal growth 

processes (Zandbergen and Dijkstra 1987; 

Turkyilmazoglu 2011; Sahoo 2009).  

The von Kàrmàn swirling viscous flow problem is a 

well-documented classical problem in fluid 

mechanics and has been investigated by many 

researchers experimentally (Dernoncourt et al. 

1998; Urzay et al. 2011; Poncet et al. 2007; 

Nayagam et al. 2009), numerically (Attia 2009; 

Bouffanais and Jacono 2009; Chawla et al. 2006; 

Devi and Devi 2011; Dong et al. 2008) and 

analytically (Turkyilmazoglu 2011; Abdou 2010; 

El-Nahhas 2007; Turkyilmazoglu 2010; Öztekin et 

al. 2002). 

In this study we carry out a numerical investigation 

to test the accuracy and applicability of the spectral 

homotopy analysis method (SHAM) in solving 

nonlinear partial differential equations. We consider 

the problem of unsteady von Kàrmàn swirling 

viscous flow due to an infinite rotating disk, 

governed by a set of two fully coupled nonlinear 

partial differential equations which are derived 

directly from the exact Navier-Stokes equations. 

The problem under investigation was previously 

considered by Xu and Liao (2006) using the 

analytic homotopy analysis method (HAM). The 

proposed SHAM approach is a discrete version of 

the well-known homotopy analysis method 

described comprehensively in (Liao 2003; Liao 

2012). Some examples of the HAM applications in 

fluid mechanics related problems can be found in 

(Rashidi et al. 2008, 2011). The corresponding 

SHAM was introduced in (Motsa et al. 2010) who 

used Chebyshev spectral collocation methods to 

solve the highorder deformation equations in the 

frame of the HAM. The initial approximation was 

also found systematically as the solution of the non-

homogeneous linear part of the differential equation 

to be solved even if it was impossible to solve 

exactly. The immediate benefit of these innovations 
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was better accuracy and faster convergence of the 

solution series, requiring fewer iterations and less 

computational effort. Other benefits of the SHAM 

are that (i) the range of admissible convergence 

controlling values is much wider in the spectral 

homotopy analysis method than in the original 

homotopy analysis method, (ii) the method allows 

for a much wider range of linear and nonlinear 

operators.  

The use of the spectral homotopy analysis method 

in fluid mechanics applications has largely been 

restricted to the solution of systems defined as 

nonlinear nonlinear ordinary differential equations 

(Makukula et al. 2010a, 2010b, 2012; Sibanda et al. 

2012). An attempt to extend the application of the 

SHAM to nonlinear partial differential equations 

was recently presented in Motsa (2013) in which 

the problem of unsteady boundary layer flow 

caused by an impulsively stretching plate was 

investigated. The problem considered in Motsa 

(2013) was a one equation nonlinear PDE. The aim 

of this work is to investigate the applicability of the 

SHAM on the coupled system of nonlinear PDEs 

considered in Xu and Liao (2006). The accuracy of 

the SHAM numerical results was validated against 

results reported in the literature and against those of 

the Keller-box numerical scheme. The Keller-box 

method is a popular implicit finite differences based 

method that has been used by many researchers to 

solve non-linear differential equations with fluid 

mechanics applications (see, for example, Molla et 

al. 2012; Rashad et al. 2013; Prasad et al. 2013).  

2. PROBLEM STATEMENT 

We consider the unsteady, laminar, axially 

symmetric viscous flow of an incompressible fluid 

introduced by an infinite disk (     which is 

started impulsively (at    ) into a steady rotation 

with constant angular velocity        . The flow 

satisfies the continuity and Navier- Stokes 
equations, Xu and Liao (2006).  
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subject to the initial and boundary conditions 

                                              (5) 

                     
               
where       are velocity components in the 

directions of increasing     and   ,   denotes the 

time,   the pressure,   the coefficient of kinematic 

viscosity and   the density of the fluid, 

respectively. Following Xu and Liao (2006), we use 

the similarity variables  
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and similarity transformations  
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The governing equations are reduced to  
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subject to the boundary conditions  

                    
       

  
        

          
       

  
                                

(10) 

The skin friction coefficients in the radial and 

tangential directions are given by, Xu and Liao 

(2006)  
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where           represents the local Reynolds 

number,    and    are the radial and tangential 

shear stress, respectively. 

3. METHOD OF SOLUTION 

The spectral homotopy analysis method (SHAM) is 

a discrete version of the homotopy analysis method 

(HAM) which is employed to decompose a system 

of nonlinear differential equations into a sequence 

of linear ordinary differential equations. In the 

discrete version of the HAM, the linearised 

equations are solved using the Chebyshev spectral 

collocation method. Spectral methods are preferred 

over other numerical solutions for problems with 

smooth solutions because of their pronounced 

accuracy (Canuto et al. 2007; Hesthaven et al. 

2007). 

In the framework of the SHAM, the nonlinear 

equations are decomposed into their linear and 

nonlinear parts and the governing Eqs. (9) and (10) 

are written, respectively, as follows;  
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with   ,    and   ,    representing the linear and 

nonlinear operators of the equations respectively 

We note that the linear operators used in (15) and 

(17) are PDEs with variable coefficients. This is in 

direct contrast to the standard linear operator that 

was used in (Xu and Liao 2006) which was defined 

as the linear operators  
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The HAM formulation starts with the construction 

of the zeroth-order deformation equations are 

formulated as;  
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subject to the boundary conditions  
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where         is an embedding parameter and   is 

the convergence controlling parameters. The 

functions          and          are unknown 

functions and         and         are the initial 

approximate solutions. Higher order deformation 

equations are derived by differentiating the zeroth-

order deformation Eqs. (20) and (21)   times with 

respect to   then dividing by    to get  
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The higher order deformation Eqs. (23) and (24) 

can be explicitly written as 
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respectively subject to the boundary conditions 
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In their form, Eqs. (27) and (28) are difficult to 

solve using the traditional HAM approach of Xu 

and Liao (2006). However, if we assume a series 

expansion in the  -direction, the problem can be 

dealt with quite easily in the frame of the SHAM. 

To this end, we assume that the solution can be 

expressed in the form  
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The initial solutions are chosen to obey the rule of 

solution expressions (30) and (31) respectively and 

satisfying the boundary conditions of the governing 

Eq. (29) such that  
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Substituting Eq. (30) and (31) into Eqs. (32) and 

(33) respectively, and balancing terms of equal 

order in   gives  
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For     the resulting equations are  
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Substituting Eqs. (30) and (31) into the higher order 

deformation Eqs. (27) and (28) respectively and 

balancing terms of order   gives rise to the 

following equations when    ,  
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The higher order deformation equations when 

   , are  
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subject to the boundary conditions  
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Since the right hand side of Eqs. (40) and (41) for 

    are known from previous iterations, the 

equations may be solved using any numerical 

method. In this work, we apply the Chebyshev 

spectral collocation method to integrate Eqs. (40) 

and (41). The method is based on the Chebyshev 

polynomials defined on the interval        by  

                                                        (43) 

We first transform the physical region       into 

the region        using the domain truncation 

technique. The problem is solved in the interval 

       instead of      . This leads to the 

following algebraic mapping  

  
  

  
                                                  (44) 

 

where    is the scaling parameter used to invoke 

the boundary condition at infinity. The Chebyshev 

nodes in        are defined by the Gauss-Lobatto 

collocation points (Canuto et al. 1988; Trefethen 

2000) given by  

       
  

 
                                               (45) 

for j =0,1,…,N where     is the number of 

collocation points. The unknown functions      and 

     are approximated using a Lagrange form of 

interpolating polynomial which interpolates      

and      at the Gauss-Lobatto collocation points 

(45). This gives vector functions      and      

which are associated with the functions      and 

    , respectively, at the collocation points. The 

derivatives are obtained by differentiating the 

interpolating functions at the collocation points to 

give  
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where   is the order of differentiation,   
 

  
  

and   is the Chebyshev spectral differentiation 

matrix whose entries are given by  
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Substituting Eqs. (44) to (46) in (40) to (42) yields  
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In the above definitions   is an             

identity matrix and        represents a diagonal 

matrix of size            . The vectors    

and    are generated by evaluating the right hand 

side of Eqs (40) and (41) respectively at the 

collocation points with the derivatives replaced by 

spectral differentiation matrices.  

Suitable initial approximate solutions are found by 

solving the initial unsteady state solutions at 

            of Eqs. (8) and (9) given by  
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respectively. The function         is the standard 

complementary error function defined by  
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The solutions      and     ,         can be 

obtained consequently from  
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The approximate solutions for        and        

are given by the following finite series 

approximations  
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4. RESULTS AND DISCUSSION 

Numerical solutions to the governing system of 

partial differential Eqs. (9) and (10) were computed 

using the spectral homotopy analysis method 

(SHAM). The solution process was started from the 

initial analytical solutions at    , corresponding 

to    . The series form of the higher order 

deformation equations of the SHAM was used to 

solve the system for solutions up to close to the 

steady state at    . Simulations were carried out 

numerically to obtain approximate solutions of the 

skin friction coefficients in the radial and tangential 

directions. The results obtained were validated 

against those of Xu and Liao (2006) and against 

numerical results obtained using the Keller-box 

implicit finite difference method as described by 

Cebeci and Bradshaw (1984). The Keller-box 

method is a well-documented numerical scheme 

known to be accurate, fast and easier to program for 

boundary layer flow problems. After a series of 

numerical trials it was discovered that optimal 

results are obtained for values of       and 

     . The residual error was also used to check 

the accuracy of the proposed SHAM . Series 

solutions were generated until the maximum error 

of the residual was less than     . The maximum 

error of the residual was calculated from the 

equations  
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where  
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In the Tables that follow the values of   and   

represent the number of iterations it took a certain 

solution to converge for a specified accuracy.  

Figures 1 and 2 present the maximum error of the 

residual for        and        respectively as 

functions of the convergence controlling parameter 

  at different iterations. From the figures we are 

able to approximate the optimal value of   which 

corresponds to the smallest possible residual error 

at each iteration. As can be seen from the figures, 

increasing the number of iterations decreases the 

residual error. For example, in Fig. 1, when 

       the residual error is less than      

compared to about      for      . The 

optimal value of   that gives the smallest error is 

shown in Fig. 1 to be in the range             

at all iterations. The plots in Fig. 2 rather show a 

single optimal value in each case and as seen from 

the figure it is roughly      when     
          and about        for       .  

 

 

Fig. 1. Maximum residual error for        

 

Fig. 2.  Maximum residual error for g(η,ξ) 

Table 1 compares the SHAM solutions for the 

radial skin friction coefficient (        ) at different 

values of   against those of Xu and Liao (2006) and 

those of the Keller-box numerical scheme. The 

SHAM results are in good agreement with those of 

the Keller-box for all values of  . Similar trends are 

observed with the tangential skin friction coefficient 

values (       ) in Table 2 and        in Table 3 

where exact match with the Keller-box results is 

observed. The results are also comparable with the 

results reported in Xu and Liao (2006). We remark 

here that the Keller-box method used to generate all 

the tabulated results was implemented with very 

small step sizes in order to ensure high accuracy. 

All Tables reveal a decrease in the values 

of         ,         and        when approaching 

the steady state solution.  
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Table 1 SHAM solutions for          against 

those of Xu and Liao and the Keller-box at 

different values of   for          
                 

 Xu and Liao (2006) Present   

  Numerical HAM Keller-box  SHAM   

0.1 -0.0841074  -0.0841062  -0.084117  -0.084117   

0.2  -0.172689  -0.172688  -0.172708  -0.172709   

0.3  -0.266130  -0.266129  -0.266158 -0.266158   

0.4  -0.364801  -0.364799  -0.364836  -0.364836  

0.5  -0.468997  -0.468996  -0.469038  -0.469038  

0.6  -0.578810  -0.578809  -0.578853  -0.578854  

0.7  -0.693825  -0.693824  -0.693867 -0.693868  

0.8  -0.812375  -0.812374  -0.812411 -0.812412  

0.9  -0.929237  -0.929239  -0.929267  -0.929268  

Table 2  SHAM solutions for         against 

those of Xu and Liao and the Keller-box at 

different values of   for          
                

 Xu and Liao (2006) Present   

  Numerical HAM Keller-box  SHAM   

0.1 -0.550693  -0.550707  -0.550668  -0.550668   

0.2  -0.538573  -0.538585  -0.538552  -0.538552   

0.3  -0.528308  -0.528316  -0.528290  -0.528290   

0.4  -0.520502  -0.520512  -0.520488  -0.520488  

0.5  -0.515989  -0.515997  -0.515977  -0.515977  

0.6  -0.515940  -0.515947  -0.515930 -0.515930  

0.7  -0.522060  -0.522067  -0.522051  -0.522051  

0.8  -0.536944  -0.536953  -0.536935 -0.536935  

0.9  -0.564858  -0.564871  -0.564845  -0.564845  

Table 3  SHAM solutions for        against 

those of Xu and Liao and the Keller-box at 

different values of   for          
                

 Xu and Liao Present   

  Numerical HAM Keller-box  SHAM   

0.1 -0.0361299  -0.0361355  -0.036128  -0.036128   

0.2  -0.0782994  -0.0783056  -0.078294  -0.078294   

0.3  -0.127749  -0.127758  -0.127738  -0.127738   

0.4  -0.186021  -0.186034  -0.186003  -0.186003  

0.5  -0.255031  -0.255049  -0.255005 -0.255005  

0.6  -0.33714  -0.337165  -0.337103  -0.337103  

0.7  -0.435198  -0.435202  -0.435148  -0.435148  

0.8  -0.552471  -0.552517  -0.552406 -0.552405  

0.9  -0.695393  -0.695411  -0.692220  -0.692217  

Table 4          at different values of   when 

     

iter.                              

4 -0.172706  -0.364678  -0.576309  -0.780669  

6 -0.172709 -0.364840 -0.579076 -0.820966  

8  -0.172709  -0.364836  -0.578835  -0.810158  

12  -0.172709  -0.364836  -0.578854  -0.812266  

16  -0.172709  -0.364836  -0.578854  -0.812404  

18  -0.172709  -0.364836  -0.578854  -0.812414  

20  -0.172709  -0.364836  -0.578854  -0.812412  

22  -0.172709 -0.364836 -0.578854 -0.812412  

24  -0.172709 -0.364836 -0.578854 -0.812412  

Keller-

box 

-0.172708  -0.364836 -0.578853  -0.812411   

In order to investigate the speed at which the 

proposed SHAM converges to the Keller-box 

numerical results, we present the number of 

iterations required to reach a certain level of 

accuracy for         ,        , and        in 

Tables 4 to 6 respectively. For smaller values of  , 

convergence of up to five decimal places is reached 

after six iterations and may take up to fourteen 

iterations for values of   close and equal to one. It 

can be seen from the tables, that the method 

converges fully to the numerical results after only a 

few iterations in all cases. Again the slower 

convergence rates for          and        are 

observed as compared to        . These results 

indicate that the proposed SHAM approach is a 

viable solution tool for solving the type of nonlinear 

PDEs considered in this study. 

Table 5         at different values of   when 

      
iter.                              

2  -0.538572  -0.521004  -0.520549  -0.569336  

4  -0.538551  -0.520474  -0.515534  -0.529007  

6  -0.538552  -0.520488  -0.515963  -0.538558  

8  -0.538552  -0.520488  -0.515928  -0.536683  

10  -0.538552  -0.520488  -0.515930  -0.536956  

12  -0.538552  -0.520488  -0.515930  -0.53693  

14  -0.538552  -0.520488  -0.515930  -0.536935  

16  -0.538552  -0.520488  -0.515930  -0.536935  

18  -0.538552  -0.520488  -0.515930  -0.536935  

20  -0.538552  -0.520488  -0.515930  -0.536935  

Keller-box -0.538552 -0.520488 -0.515930 -0.536935   

 

Table 6         at different values of   when 

     
iter.                             

4  -0.078289  -0.185733  -0.332014  -0.472247  

6  -0.078294  -0.186013  -0.337691  -0.581415  

8  -0.078294  -0.186003  -0.337040  -0.542247  

12  -0.078294  -0.186003  -0.337103  -0.551260  

16  -0.078294  -0.186003  -0.337103  -0.552297  
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18  -0.078294  -0.186003  -0.337103  -0.552434  

20  -0.078294  -0.186003  -0.337103  -0.552397  

22  -0.078294  -0.186003  -0.337103  -0.552406  

26  -0.078294  -0.186003  -0.337103  -0.552405  

Keller-box -0.078294 -0.186003 -0.337103 -0.552406   

5. CONCLUSION 

The purpose of the current study was to determine 
the applicability and efficiency of the spectral 
homotopy analysis method (SHAM) in solving 
nonlinear partial differential equations. The 
numerical investigation was carried out using the 
classic unsteady von Kármán equations. Numerical 
solutions of the radial and tangential skin friction 
coefficients were computed and validated against 
results present in the literature and using the Keller-
box numerical scheme. The comparison revealed 
matching results for a certain level of accuracy. 
Computational efficiency of the SHAM was 
measured in terms of the number of iterations taken 
to give converging results. Convergence rates were 
relatively very fast, that is few iterations were 
required to give converging results. This study has 
shown the potential of the SHAM in solving 
nonlinear partial differential equations. The current 
success of the method adds to a growing body of 
literature on the development of improved accurate 
and efficient tools for solving nonlinear equations. 
The current study has only examined a nonlinear 
system of equations without flow parameters. 
Further work needs to be done to establish whether 
the method generally works for the common types 
of nonlinear partial differential equations 
encountered specifically in fluid flow analysis, 
including larger systems, strong nonlinearity and 
large parameter values in the nonlinear equations to 
mention a few. 
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