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ABSTRACT

This paper presents an analytical study of an infinite expanse of uniform flow of steady axisymmetric Stokes
flow of an incompressible Newtonian fluid around the spherical drop of Reiner-Rivlin liquid coated with
the permeable layer with the assumption that the liquid located outside the capsule penetrates into the
permeable layer, but it is not mingled with the liquid located in the internal concave of capsule. The flow
inside the permeable layer is described by the Brinkman equation. The viscosity of the permeable medium
is assumed to be same as pure liquid. The stream function solution for the outer flow field is obtained
in terms of modified Bessel functions and Gegenbauer functions, and for the inner flow field, the stream
function solution is obtained by expanding the stream function in terms of S. The flow fields are determined
explicitly by matching the boundary conditions at the pure liquid-porous interface, porous-Reiner-Rivlin
liquid interface, and uniform velocity at infinity. The drag force experienced by the capsule is evaluated,
and its variation with regard to permeability parameter α, dimensionless parameter S, ratio of viscosities
λ2, and thickness of permeable layer δ is studied and graphs plotted against these parameters. Several cases
of interest are deduced from the present analysis. It is observed that the cross-viscosity increases the drag
force, whereas the thickness δ decreases the drag on capsule. It is also observed that the drag force is
increasing or decreasing function of permeability parameter for λ2 < 1.

Keywords: Brinkman equation; Drag force; Modified Bessel functions; Reiner-Rivlin liquid; Permeability
parameter; Stream functions; Permeable spherical shell.

NOMENCLATURE

a radius of the liquid sphere
b radius of the outer permeable shell
DN dimensionless drag
F drag force
Pn(ζ) Legendre functions
S dimensionless parameter
r,θ,φ spherical polar coordinates
u(i) velocity vectors
µc cross viscosity

yn(αr),y−n(αr) modified Bessel functions
µ1,µ3 viscosity coefficients
µe effective viscosity of permeable region
κ permeability
ψ(i)(r,ζ) stream functions
τrr,τrθ dimensionless stress components
λ2 relative viscosity(µ1/µ3)
δ thickness of permeable layer
α permeability parameter

1. INTRODUCTION

The study of viscous flow through permeable me-
dia has attracted substantial practical and theoret-
ical interest in science, engineering, and technol-
ogy. The flow through permeable media takes
place generally in geophysical and bio-mechanical
problems and also has many engineering applica-
tions, such as, flow in fixed beds, petroleum in-

dustry, hydrology, lubrication problems, etc. The
most practical example of physical process of vis-
cous flow within a permeable spherical region is
the structure of the earth. Due to its broad areas
of applications in science, engineering and indus-
tries, many different theoretical and experimental
models have been used for describing the viscous
flow past and through the solids or porous bod-
ies. For efficient and effective utilization of bodies
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with porous structured in the above mentioned ar-
eas, the structure of porous lamina must be consid-
ered and analyzed from all point of views. For ana-
lytical study of the fluid flows within porous struc-
tured bodies, so called porous media, the two terms:
porosity and permeability, play significant and vi-
tal role. The porosity is the measure of how much
of a porous material has tiny spaces in it. More
precisely, it is defined as the ratio of voids’ vol-
ume to that of the volume of the material. The-
oretically, it seems that if the material has more
pores (voids), it will allow the fluid to pass through
it easily, but actually it is not so and could be
understood through the permeability which is de-
fined as the easiness or ability (inter connectivity
of pores) of the material to allow the fluids to pass
through it. The first model that was initially intro-
duced to analyze the fluid flow in permeable me-
dia was Darcy’s law by Darcy (1856). In his pro-
posed model he stated that the rate of flow in porous
media (through a densely packed bed of fine par-
ticles) is proportional to pressure gradient. This
model was broadly used as the basic model in lit-
erature. Several studies of the flow field within and
outside porous spheres are limited mainly to low
Reynolds numbers. Joseph and Tao (1964) inves-
tigated the problem of creeping flow past a porous
spherical shell immersed in a uniform steady, vis-
cous, and incompressible fluid using Darcy’s law
for the flow inside the porous region and Stokes
equations for the fluid outside the sphere using no-
slip condition for tangential velocity component at
the surface of the sphere and reported that the drag
on the porous sphere is the same as that of a rigid
sphere with minimized radius. Padmavathi et al.
(1994) have solved the problem of creeping flow
past a porous sphere immersed in a uniform vis-
cous incompressible fluid using Darcy’s law tak-
ing into account the Saffman boundary condition
in place of no-slip boundary condition at the sur-
face of the sphere. Whereas, Sutherland and Tan
(1970) assumed continuity of the tangential veloc-
ity component at the sphere surface. However,
Darcy’s law seems to be inadequate for the flows
with high porosity. Most of the early authors like
Boutros et al. (2006), Mukhopadhyay and Layek
(2009) etc. applied various types of extended Darcy
models on convection in porous media. During
nineteenth century, after the Darcy’s work, flow
through porous media was influenced and emulated
by questions emerging in practical problems. To
study the flows with high porosity media and large
shear rates, Brinkman (1947) proposed a modifica-
tion to Darcy’s law which was assumed to be gov-
erned by a swarm of homogeneous spherical par-
ticles by appending a Laplacian term in velocity
and is commonly known as Brinkman’s equation.
Experimental results of Ooms et al. (1970), and

Matsumoto and Suganuma (1977) are theoretically
verified by Tam (1969), and Lundgren (1972) es-
tablished the validity of the Brinkman’s equation.
The problem of creeping flow relative to permeable
spheres was solved by Neale et al. (1973). Higdon
and Kojima (1981) have studied the Stokes flow
past porous particles using the Brinkman’s equation
for the flow inside the porous media and derived
some asymptotic results in case of low and high per-
meability by using Greens function formulation of
the Brinkman’s equation. A numerical study was
done by Nandkumar and Masliyah (1982) to inves-
tigate the flow field within and around an isolated
porous sphere taking into account the low Reynolds
number using the Brinkman’s equation for the inter-
nal flow field. The computed hydrodynamic resis-
tances were found to agree with the experiments on
settling of porous spheres by Masliyah and Polikar
(1980). By using Stokes approximation, Birikh and
Rudakoh (1982) investigated the problem of slow
motion of a permeable sphere in a viscous fluid and
calculated the drag and the flow rate of the fluid.
Masliyah et al. (1987) solved analytically the prob-
lem of creeping flow past a sphere having solid
core with porous shell and found that the results are
in excellent agreement with the experimental ones.
Using this Brinkman’s equation for the flow inside
the permeable sphere, Qin and Kaloni (1988) ob-
tained a Cartesian-tensor solution for the flow of
incompressible viscous fluid past a porous sphere
and evaluated the hydro dynamical force experi-
enced by a porous sphere and also discussed and
laid emphasis on the merits of Brinkman’s equation
over Darcy’s equation. Bhatt and Sacheti (1994)
have studied the problem of viscous flow past a
porous spherical shell using the Brinkman’s model
and they evaluated the drag force experienced by
the shell. Barman (1996) has investigated the prob-
lem of a Newtonian fluid past an impervious sphere
embedded in a constant permeable medium by ap-
plying Brinkman’s model and he obtained an ex-
act solution to the governing equations in terms of
stream function setting forth constant velocity far
from the sphere. Using the stream function for-
mulation, Zlatanovski (1999) obtained a conver-
gent series solution to the Brinkman’s equation for
the problem of creeping flow past a porous pro-
late spheroidal particle and recovered the solution
for flow past a porous spherical particle as a limit-
ing case of the spheroidal particle. Srinivasacharya
(2003) has discussed the creeping flow of a viscous
fluid past and through a porous approximate sphere
neglecting inertia terms, and deduced the result
for an oblate spheroid in an unbounded medium.
The motion of a porous sphere in a spherical con-
tainer using Brinkman’s model in the porous re-
gion was studied by Srinivasacharya (2005). Deo
and Gupta (2009) investigated the problem of sym-
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metrical creeping flow of an incompressible vis-
cous fluid past a swarm of porous approximately
spheroidal particles with Kuwabara boundary con-
dition with vanishing vorticity on the boundary. Re-
cently, Deo and Gupta (2010) have evaluated the
drag force on a porous sphere embedded in another
porous medium. Yadav et al. (2010) have evalu-
ated the hydrodynamic permeability of membranes
built up by spherical particles covered by porous
shells. The problem of the flow around particles
with porous shell, and the filtration of viscous liq-
uid in the porous medium with complex internal
structure are closely interconnected.

At present, authors are paying much attention on
keen and thorough study of microcapsules. As
these microcapsules are used for supplying of drugs
and reagents. Modern microcapsules represent
porous shells that may contain either desired par-
ticles or liquids. The properties of porous media
differ from the properties of a dispersion medium.
These capsules are of very great importance for
modern nanotechnologies and are characterized by
diverse values of their parameters. Hence, the the-
oretical prediction of the hydrodynamic behavior
of microcapsules presents not only mathematical
interest, but can also be useful for the formation
and application of encapsulated media. The mo-
tion of capsules in the flow of liquid is of great
applied and theoretical interest. There are devel-
opments that involve the encapsulation of anticor-
rosive additives for paint and lacquer coatings. In
all of these cases, the motion of the drop-shell sys-
tem relative to the external flow occurs either at the
material production stage or in the practical use of
capsules. Sekhar and Bhattacharyya (2005) used
stress jump boundary condition to study the Stokes
flow of a viscous fluid inside a sphere with internal
singularities enclosed by a porous spherical shell,
and concluded that the fluid velocity at a porous-
liquid interface varies with the stress jump coeffi-
cient and plays an important role in describing the
flow field associated with porous medium. Vasin
and Kharitonova (2011a) investigated the problem
of a viscous liquid flow past a spherical porous cap-
sule. Stokes flow of an assemblage of porous par-
ticles was studied by Prakash et al. (2011). Vasin
and Kharitonova (2011b) solved the problem of the
flow around the encapsulated drop of Newtonian
liquid. In these right above discussed problems, au-
thors have taken into consideration the tangential
stress jump condition on the porous - pure liquid
interface. Ramkissoon and Rahaman (2001) solved
the problem of Non-Newtonian fluid sphere in a
spherical container and found that cross-viscosity
decreases the wall effects. Recently, Jaiswal and
Gupta (2014a) solved a problem of Reiner-Rivlin
liquid sphere placed in micro-polar fluid with non-

zero boundary condition for micro-rotation and
found that spin parameter τ decreases the drag on
the body. And later, the same problem was re-
investigated by Jaiswal and Gupta (2014b), Jaiswal
and Gupta (2015), respectively, for the case of non-
Newtonian liquid spheroid in spherical container,
and non-Newtonian liquid sphere embedded in a
porous medium saturated with Newtonian fluid. All
these investigations mentioned above, motivated us
to study the slow viscous flow past and within a
spherical shell encapsulated by non-Newtonian liq-
uid.

In this paper, we consider the problem of steady
axisymmetric creeping flow of Newtonian fluid
around the capsule that contains the non-Newtonian
liquid which can not flow out of the permeable
layer, but the liquid outside the capsule can per-
meates into the porous layer. Both, the internal
and external, flow fields are determined by using
the stokes approximation and expanding the inter-
nal stream function in powers of a dimensionless
parameter S. The flow within the permeable region
of the capsule is governed by Brinkman’s equa-
tion. The stream functions have been determined
by matching the solutions. Some well known re-
sults are also deduced from the present study. The
drag force experienced by capsule is calculated and
its variation with respect to the fluid parameters is
studied numerically and graphically as well.

2. MATHEMATICAL FORMULATION AND
SOLUTION OF THE PROBLEM

We consider steady, axis-symmetric, creeping flow
of a viscous and incompressible Newtonian fluid
(region I) of viscosity µ1 with a constant uniform
velocity U at infinity relative to the spherical cap-
sule with radius b comprises the drop of a Reiner-
Rivlin liquid (region III) of viscosity µ3 with ra-
dius a covered by a permeable layer (region II) with
thickness δ, porosity ε, and permeability κ with the
assumption that the fluid outside the capsule pen-
etrates into the permeable layer but is not mingled
with the liquid in the region III. The flow field due
to the motion of the uniform stream of a steady,
incompressible Newtonian fluid past the encapsu-
lated drop of radius b is to be determined in the
absence of body forces and couples. We take into
consideration that the inner flow (region III) is also
steady and incompressible. Further, we assume that
the capsule to be stationary having its center at the
origin of the spherical co-ordinates system (R,θ,φ)
and taking θ = 0 as an axis in the direction of the
free stream flow directed along the + ve z-direction
as depicted in Fig.1. The parameters pertaining to
the exterior, the permeable layer, and the interior of
the liquid capsule to be distinguished by the index
in the superscripts under the bracket of an entity
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Fig. 1. Schematic representation of flow

χ(i), i = 1,2,3 related to the region I (i = 1), region
II (i = 2) and region III (i = 3) respectively.

Within the unimpeded fluid in the region I, outside
the capsule, the Stokes and continuity equations
characterize the prevailing flowfield as follows:

µ1∇̃
2ũ(1) = ∇̃ p̃(1), b≤ R < ∞ (1)

and

∇̃ · ũ(1) = 0, b≤ R < ∞ (2)

and the corresponding flowfield equations govern-
ing the motion of the fluid within the permeable re-
gion are described by the Brinkman and continuity
equations with inertial terms omitted, respectively,
as

∇̃
2ũ(2)−

(
α

b

)2
ũ(2) =

1
µe

∇̃p̃(2), a≤ R≤ b (3)

and

∇̃ · ũ(2) = 0, a≤ R≤ b, (4)

α2 = µ1b2

µeκ
is the dimensionless parameter pertaining

to the permeable region, µ1 is the viscosity of the
clear fluid, µe is an effective viscosity of the perme-
able shell and κ is the permeability of the permeable
shell. The velocity vector and the pressure for re-
gion I and II are, respectively, denoted by ũ(i) and
p̃(i), i = 1,2.

The constitutive equation for isotropic non-
Newtonian Reiner-Rivlin liquid in the region III
takes the form

τ̃i j =−p̃(3)δi j +2µ3d̃i j +µcd̃ikd̃k j, (5)

where

d̃i j =
1
2
(ũ(3)i, j + ũ(3)j,i ),

τ̃i j is the stress tensor, d̃i j is the rate of strain (defor-
mation) tensor, p̃(3) is an arbitrary hydrostatic pres-
sure, µ3 is the coefficient of viscosity and µc is the
coefficient of cross-viscosity of Reiner-Rivlin liq-
uid in region III.

Taking in view of the axial symmetry flow in which
all the flow functions are independent of φ, the ve-
locity vector ũ = (ũR, ũθ,0) can be expressed by in-
troducing the stream function through

ũR =
−1

R2 sinθ

∂ψ̃

∂θ
, ũθ =

1
Rsinθ

∂ψ̃

∂r
. (6)

In order to non-dimensionalize the quantities and
operators appearing in the governing equations, we
insert the following non-dimensional variables

R = br, ũR =Uur, ũθ =Uuθ, τ̃i j = µi
U
b

τi j,

d̃i j =
U
b

di j, p̃ = µi
U
b

p, ψ̃ =Ub2
ψ,

where U and b represent some typical velocity and
length of the flow field, respectively.

Introducing the stream function, we write for the
internal flow within the liquid drop (region III) of
radius a as follows

ψ
(3) = ψ0 +ψ1S+ψ2S2 + .....,

p(3) = p0 + p1S+ p2S2 + ......., (7)

where S is the dimensionless number µcU
µ3b assumed

to be small. It can be shown by Ramkissoon (1989)
that the Stokes approximation of momentum equa-
tion for Reiner-Rivlin fluid provides

E4
ψ0 = 0, E4

ψ1 = 8r sin2
θcosθ,

E4
ψ2 =

32
3

r2 sin2
θ, (8)

where

E2 =
∂2

∂r2 +
sinθ

r2
∂

∂θ

(
1

sinθ

∂

∂θ

)
. (9)

Particular solutions of the equations (8) are given
by

ψ0 = (r4− r2)sin2
θ, ψ1 =

2
21

r5 sin2
θcosθ,

ψ2 =
2
63

r6 sin2
θ. (10)

Eliminating the pressures from the Eqs. (1) and (3),
the stream function formulation of these equations
for regions I and II get reduced, respectively, into
the following non-dimensional forms

E4
ψ
(1) = 0, (11)
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and

E2(E2−α
2)ψ(2) = 0, (12)

where the second order differential operator is
given in Eq. (9).

The surviving velocity components are

u(i)r =
−1

r2 sinθ

∂ψ(i)

∂θ
, u(i)

θ
=

1
r sinθ

∂ψ(i)

∂r
. (13)

The dimensionless expression of tangential and
normal stresses for region I and II, respectively, are
given by

τ
(i)
rθ

=
1

r sinθ

[
∂2ψ(i)

∂r2 −
2
r

∂ψ(i)

∂r

]
−

− 1
r sinθ

[
sinθ

r2
∂

∂θ

(
1

sinθ

∂ψ(i)

∂θ

)]
, (14)

τ
(i)
rr =−p(i)+

2µ1

r2 sinθ

[
2
r

∂ψ(i)

∂θ

]
+

+
2µ1

r2 sinθ

[
∂2ψ(i)

∂r∂θ

]
, i = 1,2. (15)

Also, the dimensionless pressures in both the re-
gions may be evaluated by integrating the following
relations

∂p(1)

∂r
=− 1

r2 sinθ

∂

∂θ
(E2

ψ
(1));

∂p(1)

∂θ
=

1
r sinθ

∂

∂r
(E2

ψ
(1)), (16)

∂p(2)

∂r
=− µe/µ1

r2 sinθ

∂

∂θ
[(E2−α

2)ψ(2)],

∂p(2)

∂θ
=

µe/µ1

r sinθ

∂

∂r
[(E2−α

2)ψ(2)]. (17)

In case of axisymmetric incompressible creeping
flow, the particular regular solutions of Stokes
equation (11) by Happel and Brenner (1983), and
Brinkman equation (12) by Zlatanovski (1999) on
the symmetry axis in spherical polar coordinates,
respectively, may be taken as

ψ
(1)(r,ζ)= [A?

2r−1+r2+C?
2r]G2(ζ),1≤ r <∞,(18)

and

ψ
(2)(r,ζ) = [A2r−1 +B2r2 +C2y−2(αr)+

+D2y2(αr)]G2(ζ), l ≤ r ≤ 1 (19)

where l = a/b, and A?
2, C?

2 , A2, B2, C2, D2 are
constants to be determined, y−2(αr)=αsinh(αr)−

1
r cosh(αr), y2(αr) = αcosh(αr) − 1

r sinh(αr),
and G2(ζ) is Gegenbauer function defined in
Abramowitz and Stegun (1970).

While for flow within the Reiner-Rivlin drop in re-
gion III, we may take Ramkissoon (1989)

ψ
(3) = ψ0 +ψ1S+ψ2S2

+
∞

∑
n=2

[anrn +bnrn+2]Gn(ζ). (20)

With the aid of the Eq.(10), we can now write the
Eq. (20) explicitly in the form:

ψ
(3)(r,ζ) = [(a2−2)r2 +(b2 +2)r4 +

4
63

S2

r6]G2(ζ)+ [a3r3 +(b3 +
4

21
S)r5]G3(ζ)

+
∞

∑
n=4

[anrn +bnrn+2]Gn(ζ), r ≤ l. (21)

3. BOUNDARY CONDITIONS AND DE-
TERMINATION OF ARBITRARY CON-
STANTS

The unknown appearing in Eqs. (18), (19) and (21)
to be determined by the following boundary condi-
tions:

On the outer shell surface r = 1

(i). Continuity of velocity components implies
that we may take

ψ
(1) = ψ

(2) and
∂ψ(1)

∂r
=

∂ψ(2)

∂r
. (22)

(ii). Also, we assume that the tangential and nor-
mal components of stresses are continuous
across the surface, so we can take

τ
(1)
rθ

= τ
(2)
rθ

and τ
(1)
rr = τ

(2)
rr (23)

On the inner shell surface r = l(a/b)

(iii). Impenetrability at the inner shell surface re-
quires that

ψ
(2) = 0, ψ

(3) = 0. (24)

(iv). Continuity of tangential velocity requires that

∂ψ(2)

∂r
=

∂ψ(3)

∂r
. (25)

(v). We further assume that the theory of interfa-
cial tension is applicable to our problem. This
means that the presence of interfacial tension
only produces a discontinuity in the normal
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stress τrr and does not in any way affect tan-
gential stress τrθ. i.e. τ

(2)
rθ

= τ
(3)
rθ

which can be
shown to be equivalent to

µ1
∂

∂r

(
1
r2

∂ψ(2)

∂r

)
= µ3

∂

∂r

(
1
r2

∂ψ(3)

∂r

)
. (26)

As a result of the employment of boundary condi-
tions (Eqs. (22)–(26) ) , we are led to the following
linear equations:

A?
2 +C?

2 −A2−B2−C2y−2(α)−D2y2(α)

+1 = 0, (27)

−A?
2 +C?

2 +A2−2B2− [α2y−1(α)− y−2(α)]C2

− [α2y1(α)− y2(α)]D2 +2 = 0, (28)

6A?
2−6A2− [(α2 +6)y−2(α)−2α

2y−1(α)]C2

− [(α2 +6)y2(α)−2α
2y1(α)]D2 = 0, (29)

6A?
2 +3C?

2 −
(

µeα2

2µ1
+6
)

A2 +
µeα2

µ1
B2+

+2[−3y−2(α)+α
2y−1(α)]C2+

+2[−3y2(α)+α
2y1(α)]D2 = 0, (30)

l2a2 + l4b2−2l2 +2l4 +
4

63
S2l6 = 0, (31)

l−1A2 + l2B2 +C2y−2(αl)+D2y2(αl) = 0, (32)

−l−2A2 +2lB2 +[−l−1y−2(αl)+α
2y−1(αl)]C2

+[−l−1y2(αl)+α
2y1(αl)]D2−2la2

−4l3b2 +4l−8l3− 8
21

S2l5 = 0, (33)

4λ
2l−5A2−2λ

2l−2B2 +λ
2[(l−2

α
2 +4l−4)y−2(αl)

−2α
2l−3y−1(αl)]C2 +λ

2[(l−2
α

2 ++4l−4)y2(αl)

−2α
2l−3y1(αl)]D2 +2l−2a2−4b2−4l−2

−8− 8
7

S2l2 = 0, (34)

anln +bnln+1 = 0, (35)

3a3l2 +5
(

b3 +
4

21
S
)

l4 = 0, (36)

nanln−1 +(n+2)bnln+1 = 0, (37)

10
(

b3 +
4

21
S
)

l = 0, (38)

n(n−3)ln−4an +(n−1)(n+2)ln−2bn

= 0, n≥ 4. (39)

Solving the above system of linear Eqs. (27) to
(39), we have determined all the unknowns ap-
pearing in the stream functions (18), (19) and (21)
which are given in the appendix A.

Hence, the dimensionless stream functions for the
flow fields corresponding to the regions I, II and III
are now known, and they are given, respectively, as

ψ
(1)(r,ζ)= [A?

2r−1+r2+C?
2r]G2(ζ),1≤ r <∞,(40)

ψ
(2)(r,ζ) = [A2r−1 +B2r2 +C2y−2(αr)+

+D2y2(αr)]G2(ζ), l ≤ r ≤ 1 (41)

and

ψ
(3)(r,ζ) = [(a2−2)r2 +(b2 +2)r4+

+
4

63
S2r6]G2(ζ), r ≤ l (42)

where the values of arbitrary constants A?
2, C?

2 , A2,
B2, C2, D2, a2, and b2 are listed in the appendix A.

4. EVALUATION OF DRAG ON CAPSULE

The drag force F to the capsule by external fluid
is evaluated by integrating the normal and tangen-
tial stresses over the surface by Happel and Brenner
(1965) as follows

F = 2πb2
∫

π

0

(
τ
(1)
rr cosθ− τ

(1)
rθ

sinθ

)
r=1

sinθdθ.(43)

On evaluating dimensional stress-components, we
get

τ
(1)
rr =

Uµ1

b

(
3C?

2
r2 +

6A?
2

r4

)
cosθ,

and
τ
(1)
rθ

=
3Uµ1A?

2
br4 sinθ.

Substituting the values of τ
(1)
rr and τ

(1)
rθ

in Eq. (43)
and integrating w.r.t. ‘θ’, we obtain

F = 2πbUµ1

{
2
3

(
3C?

2
r2 +

6A?
2

r4

)
− 4A?

2
r4

}
,

= 4πbUµ1C?
2 , at r = 1. (44)

The ultimate expression for F is obtained by sub-
stituting for C?

2 , and is presented in by Eq. (A.2)
of the appendix A. The algebraic calculation lead-
ing to Eq. (A.2) is although unsophisticated but ex-
tremely cumbersome. However, the genuineness of
C?

2 may be examined by considering few limiting
cases for which the analytical solutions already ex-
ist in the literature.
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5. RESULTS AND DISCUSSION

At the outset, it is instructive to consider some lim-
iting situations of the drag force as discussed below:

As a→ b (for a liquid sphere of radius b):

In this case, encapsulated drop reduces into the liq-
uid sphere of radius b, and drag in this case comes
out as

F =− 2bπUµ1

3(1+λ2)

[
6λ

2 +9+
32
63

S2
]
. (45)

Where λ2 = µ1/µ3. This result was previously ob-
tained by Ramkissoon (1989).

As a→ 0 (for a homogeneous permeable sphere of
radius b):

The drag on the permeable sphere of radius b is ob-
tained by letting the inner radius a to zero as follows

F =−
12bπUα2

[
1− tanhα

α

]
µ1

3α2 +3
[
1− tanhα

α

] , (46)

this result agrees with a well-known result earlier
reported by Brinkman (1947), Ooms et al. (1970),
Neale et al. (1973), Masliyah et al. (1987), Qin
and Kaloni (1988), Qin and Kaloni (1993), Vasin
and Kharitonova (2011a), Vasin and Kharitonova
(2011b) and later Yadav and Deo (2012) for the
drag force experienced by a permeable sphere in an
unbounded clear fluid.

As µ3 → ∞,S = 0 (permeable sphere with solid
core):

In this case, the drag on the permeable sphere with
solid core is obtained as

F =−2bπUµ1[567(2+ l3)α3 cosh(δα)+3(−378α
2

−189l3
α

2 +567l2(−1+α
2))sinh(δα)]/[189

× (α(3+3l2 +2α
2 + l3

α
2)cosh(δα)

−3(2lα+(1− l2
α

2)sinh(δα)))] (47)

here δ = 1− l. This is the same result Earlier re-
ported byMasliyah et al. (1987).

As κ→ 0, when l→ 1(δ = 0) and µ3→∞ (Stokes’
force on a sphere of radius b):

F =−6bπUµ1, (48)

this is the well known Stokes force on a solid sphere
as required.

NON-DIMENSIONAL DRAG

Dimensionless force DN is defined as the ratio of
the force F to the Stokes force Fst = −6bπUµ1 as

follows

DN =
F

−6bπUµ1

=
2
3

C?
2 , (49)

here C?
2 is given in Eq. (A.2).The expression (49)

therefore gives the drag force in non-dimensional
form experienced by a capsule when a Newtonian
fluid stream past it.

The drag coefficient DN is plotted for numerous val-
ues of thickness of permeable layer(δ), ratio of vis-
cosities (λ2), dimensionless parameter S character-
izing the cross viscosity of the Reiner-Rivlin liquid
and permeability parameter (α) and its variation is
depicted in Figs.2–7. Dependence of force DN

Fig. 2. Variations in dimensionless force DN with
respect to the parameter δ at λ2 = 1.5,α = 2 for
various values of S.

on the dimensionless thickness of permeable layer
δ at the various values of parameter S are shown
in Fig.2. It is evident from the figure that the non-
dimensional drag DN decreases with increasing val-
ues of δ between 0 and 1 and increases with the
increasing values of S. At δ = 0, we deal with the
liquid drop, and the drag on liquid drop is differ-
ent for different values of S. It is obvious from
the Fig.2 that the drag on Newtonian liquid drop
(S = 0) is less than the drag on non-Newtonian liq-
uid drop(S 6= 0). It is also clear that for small val-
ues of S(< 4) the decrements in DN is slow and for
higher values of S(≥ 4) drag decreases rapidly. At
δ→ 1, the encapsulated drop becomes absolutely
permeable and drag in this case becomes almost
same and constant for all the values of S.

The variation of DN with λ2 is depicted in Fig.3 for
various values of α which shows that corresponding
to very low permeability parameter, drag decreases
vary rapidly and as the permeability parameter in-
creases, there takes place a slight decrease in drag
and then it becomes almost constant with increasing
λ2. It is interesting to note that when the perme-
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Fig. 3. Variations in drag coefficient DN versus
viscosity ratio λ2 at S = 0.5,δ = 0.3 for various
values of permeability parameter α.

ability parameter α is very high, i.e. permeability is
very low, the drag throughout is almost constant.

Fig. 4. Variations in drag coefficient DN versus
permeability parameter α at S = 1,δ = 0.2 for
various values of viscosity ratio λ2.

The variation of the drag coefficient DN with re-
spect to permeability parameter α for various val-
ues of viscosity ratio λ2 is shown in Fig.4. It can
be observed from the Fig.4 that the drag DN in-
creases with increasing permeability parameterα ,
i.e., it decreases with permeability, for various val-
ues of relative viscosity λ2 and initially increases
very rapidly and then decreases very slowly with
increasing viscosity ratio λ2. Figures 5–7 depict
the variation in non-dimensional drag with regard
to S for λ2 = 0.2,0.5,0.7 respectively. Figure 5
shows that the value of non-dimensional drag DN
on the permeable sphere increases with the increase
of permeability parameter α for S < 4.25, and then
it becomes almost constant for all the values of per-
meability parameter α, when 4.15 ≤ S < 4.35; but
the value of DN increases with decrease of perme-
ability parameter α, when S≥ 4.35.

Figure 6 shows that the value of DN on the perme-
able sphere increases as the dimensionless parame-

Fig. 5. The variation of non-dimensional drag
DN versus S for λ2 = 0.5 at δ = 0.2.

Fig. 6. The variation of non-dimensional drag
DN versus S for λ2 = 1.0 at δ = 0.2.

ter S increases and increasing permeability param-
eter α as well, and it becomes almost constant for
all values of permeability parameter α as S→ 5 for
viscosity ratio λ2 = 1. Whereas Fig.7 exhibits that
the value of DN on the permeable sphere increases
differently for increasing permeability parameter α

for λ2 = 1.5 at δ = 0.2. This variation of the drag
coefficient DN with S for the specified values of rel-
ative viscosity λ2 can also be viewed in tables 1–3.

Table 1 Numerical values of DN with respect to
parameter S for various values of permeability

parameter α;δ = 0.2,λ2 = 0.5
S Drag coefficient →
↓ α = 0.5 α = 3.5 α = 6.5 α = 9.5
0 0.7100 0.7715 0.8422 0.8874
1 0.7227 0.7803 0.8471 0.8899
2 0.7608 0.8070 0.8617 0.8976
3 0.8243 0.8514 0.9103 0.9103
4 0.9132 0.9135 0.9202 0.9282
5 1.0274 0.9934 0.9640 0.9511

The numerical values of non-dimensional drag DN
for λ2 = 0.5, λ2 = 1.0, and λ2 = 1.5 are presented,
respectively, in Tables 1, 2 and 3, and the cor-
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Fig. 7. The variation of non-dimensional drag
DN versus S for λ2 = 1.5 at δ = 0.2.

responding variations are shown in Figs.5–7. It
may be seen from the tables that for the relative
viscosity(λ2 < 1), the numerical values of the drag,
for S > 4, decreases as permeability parameter in-
creases which is in good agreement with the graph-
ical representation of the drag, which may also be
further checked experimentally. These values are
useful in estimating of optimum drag profiles in low
Reynolds number flows also.

Table 2 Numerical values of DN with respect to
parameter S for various values of permeability

parameter α;δ = 0.2,λ2 = 1.0

S Drag coefficient →
↓ α = 0.5 α = 3.5 α = 6.5 α = 9.5
0 0.6618 0.7498 0.8362 0.8858
1 0.6716 0.7560 0.8394 0.8874
2 0.7008 0.7748 0.8489 0.8922
3 0.7494 0.8062 0.8648 0.9000
4 0.8176 0.8500 0.8871 0.9111
5 0.9052 0.9064 0.9157 0.9253

Table 3 Numerical values of DN with respect to
parameter S for various values of permeability

parameter α;δ = 0.2,λ2 = 1.5

S Drag coefficient →
↓ α = 0.5 α = 3.5 α = 6.5 α = 9.5
0 0.6319 0.7498 0.8362 0.8851
1 0.6398 0.7560 0.8394 0.8863
2 0.6635 0.7748 0.8489 0.8897
3 0.7029 0.8062 0.8648 0.8954
4 0.7582 0.8500 0.8871 0.9034
5 8292 0.9064 0.9157 0.9137

6. CONCLUSION

The expressions for stream function solutions to the
flow field equations for the steady axisymmetric
Stokes flow of Newtonian fluid around the encap-
sulated drop of Reiner-Rivlin liquid are obtained.

Various useful results are obtained from the solu-
tion, particularly the closed form expression for the
drag force and the dependence of the dimension-
less drag on the various fluid parameters. It has
been found that an increase in the thickness of the
permeable layer δ decreases the drag force experi-
enced by the encapsulated drop. It is also observed
that hydrodynamic drag, in general, is increasing
or decreasing function of the permeability param-
eter α when the relative viscosity λ2 < 1.The ef-
fect of the dimensionless parameter S on the drag
for fixed values of the remaining fluid parameters is
also studied and found that it increases the drag on
the encapsulated drop.
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APPENDIX A:

Determination of arbitrary constants

Solving the Eqs. (27) to (39) for the special case µe = µ1, we obtain the surviving coefficients as given below

(A.1) A?
2 =− (−2l(16l7S2

α
2 +32l4S2(3+α

2)−189(3+2λ
2))+3α(64l6S2 +84lα2

λ
2 +42l4

α
2
λ

2

+126l2(3+2λ
2)−21l3

α
2(3+2λ

2)−42(6+α
2)(3+2λ

2))cosh(δα)+3(32l6S2(1+

+α
2)−21l4

α
2(−3+α

2)λ2−42l(−6+3α
2 +α

4)λ2 +63l3
α

2(3++2λ
2)−63l2(−3+

+α
2)(3++2λ

2)+126(2+α
2)(3+2λ

2))sinh(δα))/(126∆),

(A.2) C?
2 =− (32l5(2+ l3)S2

α
3 +189(2+ l3)α3(3+2λ

2)cosh(δ)+α3(32l6S2(−1+α
2)+126lα2

× (−1+α
2)λ2 +63l4

α
2(−1+α

2)λ2−126α
2(3+2λ

2)−63l3
α

2(3+2λ
2)+189l2(−1

+α
2)(3+2λ

2))sinh(δα))/(126∆),

(A.3) A2 =− (l(2α
3(567+16l7S2 +378λ

2)+ l2
α

3(567+64l3S2 +378λ
2)cosh(δα)+ l(32l4S2(−3

+3α
2 +2α

4)+189l2
α

2(−1+α
2)λ2−189lα2(3+2λ

2)−567(1−α
2)(3+2λ

2))

× sinh(δα)))/(63α
2
∆),

(A.4) B2 =− (lα(567−32l4S2 +378λ
2)+α(32l6S2−189(3+2λ

2))cosh(δα)+(32l6S2
α

2−189l

× (−1+α
2)λ2 +189(3+2λ

2))sinh(δα))/(63∆),

(A.5) C2 =− (lα(32l7S2
α

2 +32l4S2(3+2α
2)+567(3+2λ

2))cosh(α)−3(lα(32l5S2 +126α
2
λ

2+

+63l3
α

2
λ

2 +189l(3+2λ
2))cosh(lα)+ l(567+32l4S2 +378λ

2)sinh(α)− (32l6S2+

+126lα2
λ

2 +63l4
α

2
λ

2 +189l2(3+2λ
2)+126α

2(3+2λ
2)+63l3

α
2(3+2λ

2))

× sinh(lα)))/(63α
2
∆),

(A.6) D2 =+(−3l(567+32l4S2 +378λ
2)cosh(α)+3(32l6S2 +126lα2

λ
2 +63l4

α
2
λ

2 +189l2(3+

+2λ
2)+126α

2(3+2λ
2)+63l3

α
2(3+2λ

2))cosh(δα)+ lα((32l7S2
α

2 +32l4S2(3+

+2α
2)+567(3+2λ

2))sinh(α)−3(32l5S2 +126α
2
λ

2 +63l3
α

2
λ

2 +189l(3+2λ
2))

× sinh(lα)))/(63α
2
∆),

(A.7) a2 =− (3α(126α
2
λ

2 +63l3
α

2
λ

2 +504l(3+2λ
2)+16l5S2(7+2λ

2))−4α(126lα2
λ

2 +4l5S2

×α
2
λ

2 +2l8S2
α

2
λ

2 ++189l2(3+2λ
2)+63l3

α
2(3+2λ

2)+63(3+2α
2)(3++2λ

2)+

+6l6S2(7+2λ
2)+2l7S2

α
2(7+2λ

2)+ l4(63α
2
λ

2 +2S2(3+2α
2)(7+2λ

2)))cosh(δα)−
− (8l8S2

α
4
λ

2 +8l5S2(−3+3α
2 +2α

4)λ2 +63l(−3+3α
2 +8α

4)λ2−756(3+2λ
2)+

+756l2
α

2(3+2λ
2)+24l6S2

α
2(7+2λ

2)−12l4(−21α
42 +2S2(7+2λ

2)))

× sinh(δα))/(126∆),

(A.8) b2 =− (−3α(126α
2
λ

2 +32l5S2(5+2λ
2)+63l3(24+(16+α

2)λ2))+4l2
α(126lα2

λ
2 +4l6S2

×α
2
λ

2 +63(3+2α
2)(3+2λ

2)+4l5S2
α

2(5+2λ
2)+ l3

α
2(189+2(63+4S2)λ2)+3l4

× (21α
2
λ

2 +4S2(5+2λ
2))+ l2(189(3+2λ

2)+4S2(3+2α
2)(5+2λ

2)))cosh(δα)+

+ l(16l7S2
α

4
λ

2−567(−1+α
2)λ2 +252l2(−3+3α

2 +2α
4)λ2 ++16l4S2(−3+3α

2+

+2α
4)λ2−756l(3+2λ

2)+12l5
α

2(21α
2
λ

2 +4S2(5+2λ
2))−12l3(−63α

2(3+2λ
2)+

+4S2(5+2λ
2)))sinh(δα))/(126l2

∆),

349



B.R. Jaiswal et.al / JAFM, Vol. 8, No. 3, pp. 339-350, 2015.

where

∆ =−6lα(3+2λ
2)+α(2lα2

λ
2 + l4

α
2
λ

2 + l3
α

2(3+2λ
2)+(3+2α

2)(3+2λ
2)+ l2(9+6λ

2))

× cosh(δα)+(−9−6λ
2 + l4

α
4
λ

2 + l(−3+3α
2 +2α

4)λ2 +3l2
α

2(3+2λ
2))sinh(δα),

α =
b√
κ
, δ = 1− l, λ

2 =
µ1

µ3
.

APPENDIX B:

The Gegenbauer functions Gn(ζ) of first kind are the solutions of the following differential equation, which
are the polynomials of degree n

(B.1) (1−ζ
2)

d2ψ

dζ2 +n(n−1)ψ = 0,

where the Gegenbauer polynomials Gn(ζ) are related to the Legendre polynomials of degree n by the
following relation

(B.2) Gn(ζ) =
Pn−1(ζ)−Pn(ζ)

2n−1
, n≥ 2.

The governing equation in the stream function solution of Brinkman equation takes the following form

(B.3) r2 d2R
dr2 +[α2r2 +n(n−1)]R = 0.

The linearly independent solutions of (B.3) are
√

αrIν(αr) and
√

αrI−ν(αr).

To facilitate our calculation, we have utilized the under-mentioned notations in dimensionless form

(B.4) yn(αr) =

√
παr

2
α

νIν(αr) and y−n(αr) =

√
παr

2
α

νI−ν(αr), ν =
n−1

2
.

In particular,

(B.5) y1(αr) = sinh(αr); y−1(αr) = cosh(αr),

y2(αr) = αcosh(αr)− 1
r

sinh(αr); y−2(αr) = αsinh(αr)− 1
r

cosh(αr).
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