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ABSTRACT 

The two-dimensional boundary layer flow of an electrically conducting micropolar fluid and heat transfer 

subject to a transverse uniform magnetic field over a curved stretching sheet coiled in a circle of radius 𝑅 has 

been studied. The effect of thermal radiation is also considered using linearized Rosseland approximation. For 

mathematical formulation of the flow equations, curvilinear coordinates system is used. The governing partial 

differential equations describing the flow phenomena and heat transfer characteristics are reduced to ordinary 

differential equations by means of suitable transformations. The system of differential equations is solved 

numerically by shooting method using Runge-Kutta algorithm combined with the Newtons-Raphson 

technique. Some physical features of the flow and heat transfer in terms of fluid velocity, angular velocity, 

temperature profile, the skin-friction coefficient, couple wall stress and the local Nusselt number for several 

values of fluid parameters are analyzed, discussed and presented in graphs and tables. Comparison of the 

present results with the published data for the flat surface i.e. (𝑘 → ∞) is found in good agreement. 
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1. INTRODUCTION 

The study of flow and heat transfer analysis over a 

stretching surface has great interests by many 

researchers in the last few years due to its wide 

range of applications in industries and engineering 

problems. Such applications are the extrusion of 

plastic sheets and rubber sheets, metal spinning and 

drawing plastic films, cooling of continues strips or 

filaments, crystal growing, glass blowing and paper 

production. In all the processes mentioned above 

the final product depends on the skin-friction and 

the rate of heat transfer at the surface. The study of 

the boundary layer flow over a flat surface moving 

with uniform speed was initiated by Sakiadis 

(1961). The pioneer work of Sakiadis has been 

extended by Crane (1970) for the stretching surface 

giving an exact closed form solution. Crane's work 

has been extended by many researchers in different 

directions for both Newtonian and non-Newtonian 

fluids. The study of the characteristics of heat 

transfer was carried out by Tsoue et al. (1967). The 

effects of combined heat and mass transfer on the 

fluid over a stretching surface with suction and 

injection were investigated by Gupta and Gupta 

(1977). A literature survey reveals that different 

aspects of the flow and heat transfer analysis with 

linear and power-law surface velocities have been 

investigated by many researchers. For details the 

readers are referred to Ishak et al. (2009), 

Bhattacharyya et al. (2013), Makinde (2010), 

Chamkha et al. (2006, 2010), Pal and Mondal 

(2014) and Anjalidevi and Kayalvizhi (2013). 
 

The class of non-Newtonian fluids that deals with 

the micro-rotation of the suspended particles is the 

micropolar fluid. The micropolar theory was 

proposed by Eringen (1964, 1966), dealing with the 

effects of local rotational inertia and couple 

stresses, that cannot be explained by the classical 

Navier-Stokes equations. The mathematical 

modeling of micropolar fluid equations for the 

theory of lubrication and theory of porous media are 

given in the books by Eringen (2000) and 

Lukaszewiez (1999). The application of the 

micropolar fluids includes particle suspension, 

liquid crystals, animal blood, paints, lubrication and 

turbulent shear flows. Mixed convection flow of a 

micropolar fluid from an unsteady surface with 

viscous dissipation was investigated by El-Aziz 
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(2013). 

 

The study of the MHD flow for an electrically 

conducting fluid with radiation effects on 

convective heat transfer are vital in process 

incorporating high temperature such as gas turbine, 

nuclear power plant, thermal energy storage, 

electrical power generation, solar power 

technology, space vehicle re-entry and other 

industrial area. The effects of thermal radiation and 

chemical reaction on MHD mixed convection heat 

and mass transfer in micropolar fluid was discussed 

by Srinivasacharya and Upendar (2013). Oahimire 

and Olajuwon (2014) have analyzed the effects of 

Hall current and thermal radiation on heat and mass 

transfer of a chemically reacting MHD flow of a 

micropolar fluid through porous medium. The 

effects of hydromagnetic convectional heat transfer 

in a micropolar fluid over a vertical plate are 

discussed by Ferdows et al. (2013). The combined 

effects of heat generation and radiation on MHD 

flow of a micropolar fluid past a moving surface is 

investigated by Reddy (2013). MHD flow and heat 

transfer of a micropolar fluid over a stretching 

surface with heat generation was carried out by 

Mostafa et al. (2012). The combined effects of heat 

and mass transfer in hydromagnetic micropolar 

fluid over a stretching sheet are analyzed by Kumar 

(2009). The effects of thermal radiation on unsteady 

MHD flow of a micropolar fluid with heat and mass 

transfer is discussed by Hayat and Qasim (2010). 

Rashidi et al. (2011) investigated the heat transfer 

of a micropolar fluid through a porous medium and 

obtained the analytic solution. Hayat et al. (2008) 

studied the mixed convection flow of a micropolar 

fluid over a non-linearly stretching sheet. The 

effects of rotating flow of a micropolar fluid 

induced by a stretching surface are discussed by 

Javed et al. (2010). The influence of suction on the 

micropolar fluid over a stretching/shrinking sheet 

through a porous medium is analyzed by Rosali et 

al. (2012). The effects of MHD stagnation point 

flow of a micropolar viscoelastic fluid towards a 

stretching/shrinking sheet with heat generation are 

investigated by Abbas et al. (2014). 
 

In all above studies, the flow is considered over a 

flat surface, in which Cartesian coordinates are used 

to model the flow phenomena. However, Sajid et al. 

(2010) modeled the flow problem using curvilinear 

coordinates systems by introducing a curvature in 

the surface. In another paper, Sajid et al. (2011) 

discussed the flow of a micropolar fluid over a 

curved stretching surface. The effect of partial slip 

embedded in a porous medium on a curved 

stretching sheet is analyzed by Sajid and Iqbal 

(2011). Recently, Abbas et al. (2013) discussed the 

effects of heat transfer over a curved surface in the 

presence of magnetic field. The aim of present 

study is to discuss the effects of radiation in the 

presence of uniform magnetic field for a micropolar 

fluid over a curved stretching surface. The present 

work is novel because it extends the analysis of 

stretching flow with thermal radiation effects in the 

general case for a curved stretching sheet. 

Moreover, the results of the previous studies can be 

obtained from the present solutions as special cases. 

Numerical solution for the fluid velocity and 

temperature distributions are obtained using Runge-

Kutta algorithm. Numerical results are presented 

through graphs and tables. 

2. MATHEMATICAL 

FORMULATION 

Consider the steady, two-dimensional and 

incompressible flow of a micropolar fluid past a 

curved stretching sheet coiled in a circle of radius 

𝑅. Two equal and opposite forces are applied along 

the 𝑠-direction so that the sheet is stretched keeping 

the origin fixed and 𝑟-direction is perpendicular to 

it. The stretching velocity of the surface is 𝑢 = 𝑎𝑠, 
where (𝑎 > 0) is the stretching constant. The fluid 

is electrically conducting and a constant magnetic 

field 𝐵0is assumed to be applied in the 𝑟-direction. 

The magnetic Reynolds number is taken to be very 

small so that the induced magnetic field can be 

neglected. The temperature of the surface is 

maintained at 𝑇𝑤, where 𝑇𝑤 > 𝑇∞ with 𝑇∞ being the 

uniform temperature of the ambient fluid. Under 

these assumptions along with boundary layer 

approximation and neglecting viscous dissipation, 

the governing equations for micropolar fluid in the 

presence of Lorentz force are 

 

 
Fig. 1. Geometry of the curved surface. 
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where 𝑢 and 𝑣 are the velocity components in 𝑠 and 

𝑟-directions, respectively, 𝜌 is the fluid density, 𝑝 is 

the pressure, 𝜈 is the kinematics viscosity of fluid, 𝜎 

is the electrical conductivity, 𝑁is the micro-rotation 

in the 𝑟𝑠-plane, 𝑗 is the micro-inertial per unit mass, 

𝛾 is the spin gradient viscosity, 𝜅 is the vortex 

viscosity, 𝑐𝑝 is the specific heat at constant 

pressure, 𝑞𝑟 is the radiative heat flux, 𝑘1is the 



M. Naveed et al. / JAFM, Vol. 9, No. 1, pp. 131-138, 2016.  

 

133 

thermal conductivity and 𝑇 is the temperature. It 

may be noted that for a curved stretching surface 

pressure is no more constant inside the boundary 

layer (Sajid et al. (2010)). 
 

According to the study of Nazar et al. (2004) and 

Rees and Pop (1998), the definition of 𝛾 is 

𝛾 = (𝜇 +
𝜅

2
) 𝑗,                               (6) 

 

where 𝜇 is the fluid viscosity and 𝑗 = 𝜈/𝑎𝑠 is the 

reference length. As represented by Ahmadi (1976), 

relation (6) is mentioned to allow Eqs. (1)-(4) to 

present the correct behavior in the limiting case 

when microstructure effects become negligible and 

micro-rotation 𝑁 reduces to the angular velocity. 
 

The appropriate boundary conditions for the flow 

problem are 

𝑢 = 𝑎𝑠, 𝑣 = 0, 𝑁 = −𝑚0
𝜕𝑢

𝜕𝑟
, 𝑇 = 𝑇𝑤  𝑎𝑡  𝑟 = 0,

𝑢 → 0,
𝜕𝑢

𝜕𝑟
→ 0, 𝑁 → 0, 𝑇 → 𝑇∞  𝑎𝑠  𝑟 → ∞.       (7) 

 

where 𝑚0 (0 ≤ 𝑚0 ≤ 1) 𝑖𝑠 a constant and 𝑎 has the 

dimension of (time)-1. The case 𝑚0 = 0, which 

leads 𝑁 = 0 at the wall, represents concentrated 

particle in which the microelements close to the 

wall sheet are unable to rotate (Jena and Mathur 

(1981)). This case is also known as the strong 

concentration of microelements (Guram and Smith 

(1980)). The case 𝑚0 = 1/2 shows the vanishing of 

anti-symmetric part of the stress tensor and denotes 

weak concentration (Ahmadi, G. (1976)) of 

microelements. It can, however, be easily proved 

that for 𝑚0 = 1/2 the governing equations can be 

converted to the classical problem of steady 

boundary layer flow of a viscous  (Newtonian) 

incompressible fluid near the plane wall. The case 

𝑚0 = 1, as pointed by Peddieson (1972) is used for 

the modeling of turbulent boundary layer flows. 

The true boundary condition to be used to the spin 

is still an open question (see Nazar et al. (2004)). 

However, the most common boundary condition 

discussed in the literature is the vanishing of the 

spin on the boundary, so-called strong interaction. 

The opposite extreme, the weak interaction, is the 

vanishing of the momentum stress on the boundary 

microelements (Guram and Smith (1980)). A third 

or compromise is the vanishing of a linear 

combination of spin, shearing stress and couple 

stress, involving some friction coefficients a 

particular case of which was the condition used by 

Peddieson (1972). In the present analysis, we shall 

consider here only the case of 𝑚0 = 0. 
 

Under the Rosseland approximation for radiation 

(Rosseland (1931)) applies to optically thick media, 

the radiative heat flux is given by 

𝑞𝑟 = −
4𝜎∗

3𝑘∗
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 ,                 (8) 

where 𝜎∗ is the Stefan-Boltzman constant and 𝑘∗ is 

the mean absorption coefficient. Under the 

assumption of temperature differences within the 

flow are sufficiently small, we may expand the term 

𝑇4 as a linear function of the temperature in a 

Taylor series about 𝑇∞ and neglecting the higher 

terms, one can get 

𝑇4 = 4𝑇∞
3𝑇 − 3𝑇∞

4.                                             (9) 

 

Now with Eqs. (8) and (9), Eq. (5) can be written as 
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                        (10) 

Following Magyari and Pantokratoras (2011), we 

take 𝑁𝑟 = 16𝜎∗𝑇∞
3/3𝑘1𝑘∗ as a radiation parameter, 

so Eq. (10) becomes 
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where 𝑃𝑟 = 𝜇𝑐𝑝/𝑘1 is the Prandtl number. 

To simplify the flow equations, we define the 

following new variables 
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                                                                         (12) 

With the help of above equation, the continuity 

equation given by Eq. (1) is automatically satisfied 

and Eqs. (2)-(5) yield 
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where 𝐾 = 𝜅/𝜈 is the material parameter, 𝑘 =

𝑅√𝑎/𝜈 is the dimensionless radius of curvature and 

𝑀2 = 𝜎𝐵0
2/𝜌𝑎 is the Hartmann number or magnetic 

parameter. The results in the case when there is no 

thermal radiation can be retrieved by taking 𝑁𝑟 = 0. 
The corresponding boundary conditions becomes 
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On elimination of pressure between Eqs. (13) and 

(14), one obtain 
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Once we obtain the fluid velocity 𝑓(𝜂), the pressure 

can be determined from Eq. (14) in the following 

form 
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The physical quantities of interest are the skin-

friction coefficient, couple stress coefficient and the 

local Nusselt number along the 𝑠-direction, which 

are defined as 
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in which 𝜏𝑟𝑠 is the wall shear stress, 𝑀𝑤 is the wall 
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couple stress and 𝑞𝑤 is the heat flux at the wall 

along the 𝑠-direction, which are given by 
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Using Eqs. (12) and (21), Eq. (20) becomes 

𝑅𝑒𝑠

1

2𝐶𝑓 = (1 + 𝐾) {𝑓 ′′(0) −
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𝑘
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2
) 𝑔′(0), 

𝑅𝑒𝑠
−1/2

𝑁𝑢𝑠 = −(1 + 𝑁𝑟)𝜃′(0), 

where 𝑅𝑒𝑠 = 𝑎𝑠2/𝜈 is the local Reynolds number. 

3. RESULTS AND DISCUSSION 

We compute the velocity profile and characteristics 

of the heat transfer in the flow by solving Eqs. (15), 

(16) and (18) subject to boundary conditions (17) 

numerically using fourth order Runge-Kutta 

algorithm along with Newton-Raphson method. The 

graphical results for magnetic parameter 𝑀, 
material parameter 𝐾, Prandtl number 𝑃𝑟 and 

radiation parameter 𝑁𝑟 are presented through s. 2-

11. The effect of dimensionless radius of curvature 

and fluid parameters on pressure distribution has 

already been discussed in Abbas et al. (2013). 

Furthermore, the magnitude of the skin friction 

coefficient 𝑅𝑒𝑠
1/2

𝐶𝑓, local Nusselt number 

𝑅𝑒𝑠
−1/2

𝑁𝑢𝑠 and couple stress coefficient 𝑅𝑒𝑠𝐶𝑚 for 

different parameters are presented both graphically 

and in tabular form. 

 

Fig. 2 is made to show the variation of the material 

parameter 𝐾on the horizontal component of 

velocity 𝑓′(𝜂) by keeping 𝑘 = 7 and 𝑀 = 0.8 fixed. 

It can be seen from this Fig. that the velocity of the 

fluid increases with increase in 𝐾. It is due to the 

fact that microconcentration of the fluid increased 

by increase in material parameter which alter the 

flow field and hence enhance the boundary layer 

thickness. 

 

 
Fig. 2. Influence of the material parameter 𝑲 on 

the velocity profile 𝒇′(𝜼) with 𝑴 = 𝟎. 𝟖  and 𝒌 =
𝟕. 

 

Fig. 3 elucidate the change in the horizontal 

component of velocity 𝑓′(𝜂) for various values of 

the magnetic parameter 𝑀 by keeping 𝐾 = 1 and 

𝑘 = 7 fixed. It is observed from this Fig. that both 

the velocity and momentum boundary layer 

thickness decreased by increasing the value of 𝑀. It 
is because that the influence of the magnetic field 

act as a resistance to the fluid velocity, which 

reduce the velocity of the fluid. 

 

 
Fig. 3. Influence of the magnetic parameter 𝑴 on 

the velocity profile 𝒇′(𝜼) with 𝑲 = 𝟏  and 𝒌 = 𝟕. 

 

The effect of material parameter on the 

microrotation profile is displayed in Fig. 4. It is 

noticed from this Fig. that the microrotation of the 

fluid increases with an increase in the 𝐾. 

 
Fig. 4. Influence of the material parameter 𝑲 on 

the Micro-Rotation 𝒈(𝜼) with 𝑴 = 𝟎. 𝟓  and 𝒌 =
𝟕. 

 

Fig. 5 depicts the effects of magnetic parameter 𝑀 

on the microrotation. It is noticed from this Fig. that 

initially the microrotation of the fluid decreases by 

increasing the value of 𝑀 but after (𝜂 = 2) it has 

reverse behavior, i.e. the microrotation of the fluid 

increases as 𝑀 increased. 

 

 
Fig.5. Influence of the magnetic parameter 𝑴 on 

the Micro-Rotation 𝒈(𝜼) with 𝑲 = 𝟏 and 𝒌 = 𝟕. 

 

Fig. 6 demonstrates the effects of Prandtl number 𝑃𝑟 

on the temperature distribution by keeping 𝐾 = 1,
𝑘 = 7, 𝑁𝑟 = 2 and 𝑀 = 0.5 fixed. It is found that 

temperature of the fluid decreases as 𝑃𝑟 increases. 
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The thermal boundary layer also decreases in this 

case. The reason for this behavior is that, by 

increasing 𝑃𝑟 rate of thermal diffusion decreases. 
 

 
Fig. 6. Influence of the Prandtl number 𝑷𝒓 on the 

temperature profile 𝜽(𝜼) with 𝑲 = 𝟏, 𝑵𝒓 = 𝟐,
𝑴 = 𝟎. 𝟓 and 𝒌 = 𝟕. 

 
Fig. 7 illustrates the variation of the radiation 

parameter 𝑁𝑟 on the temperature distribution. It is 

observed from this Fig. that the temperature and 

thermal boundary layer thickness is increased by 

increase in radiation parameter 𝑁𝑟. 

 

 
Fig. 7. Influence of the radiation parameter 𝑵𝒓 

on the temperature profile 𝜽(𝜼) with 𝑲 = 𝟏,
𝑷𝒓 = 𝟐, 𝑴 = 𝟎. 𝟓 and 𝒌 = 𝟕. 

 
 Fig. 8 shows the behavior of the temperature 

profile with material parameter by keeping other 

parameters fixed. It is clear from this Fig. that 

temperature of the fluid is decreased with an 

increase in the value of 𝐾.  

 

 
Fig. 8. Influence of the material parameter 𝑲 on 

the temperature profile 𝜽(𝜼) with 𝑴 = 𝟎. 𝟖,
𝑷𝒓 = 𝟏. 𝟓, 𝑵𝒓 = 𝟎. 𝟕 and 𝒌 = 𝟕. 

 

The effect of magnetic parameter 𝑀 on temperature 

profile is shown in Fig. 9. It is found that the 

temperature of the fluid increases by increasing 𝑀. 

Fig. 10 gives the change in the magnitude of the 

local Nusselt number 𝑅𝑒𝑠
−1/2

𝑁𝑢𝑠 verses Prandtl 

number 𝑃𝑟 for different values of the radiation 

parameter 𝑁𝑟. From this Fig. it is evident that the 

absolute values of 𝑅𝑒𝑠
−1/2

𝑁𝑢𝑠 are increased by 

increasing the Prandtl number 𝑃𝑟 and radiation 

parameter 𝑁𝑟 . 
 

 
Fig. 9. Influence of the magnetic parameter 𝑴 on 

the temperature profile 𝜽(𝜼) with 𝑲 = 𝟏, 𝑷𝒓 =
𝟏. 𝟓, 𝑵𝒓 = 𝟎. 𝟕 and 𝒌 = 𝟕. 

 

 
Fig. 10. Influence of radiation parameter 𝑵𝒓 on 

the local Nusselt number 𝑹𝒆𝒔
−𝟏/𝟐

𝑵𝒖𝒔 with 𝑷𝒓 
and 𝒌 = 𝟕, 𝑴 = 𝟎. 𝟐 and 𝑲 = 𝟎. 𝟐. 

 
Fig. 11 indicates the absolute value of the local 

Nusselt number 𝑅𝑒𝑠
−1/2

𝑁𝑢𝑠 verses radiation 

parameter 𝑁𝑟 for various values of the magnetic 

parameter 𝑀. It is observed from this Fig. that the 

absolute value of 𝑅𝑒𝑠
−1/2

𝑁𝑢𝑠 increases by 

increasing the value of 𝑁𝑟, however it is decreased 

by increasing the value of 𝑀. 
 

 
Fig. 11. Influence of magnetic parameter 𝑴 on 

the local Nusselt number 𝑹𝒆𝒔
−𝟏/𝟐

𝑵𝒖𝒔 with 𝑵𝒓 

and 𝒌 = 𝟕,  𝑷𝒓 = 𝟏. 𝟓 and 𝑲 = 𝟏. 

Table. 1 is made to check the validity and accuracy 

of the present results with the results published by 

Hayat and Qasim (2010) (in the case of flat 
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stretching sheet) by taking the dimensionless radius 

of curvature 𝑘 → ∞ i.e. 𝑘 = 1000, and are found in 

good agreement. Hayat and Qasim (2010) obtained 

the analytic solutions using homotopy analysis 

method while we have obtained numerical solutions 

by shooting method using Runge-Kutta algorithm 

and both gives the same results in the special case 

when the surface is flat. 

 

Table 1 Comparison of the values of skin friction 

coefficient 𝑹𝒆𝒔
𝟏/𝟐

𝑪𝒇 for different values of 𝑴 and 

𝑲 keeping 𝒌 = 𝟏𝟎𝟎𝟎 fixed 

M K Hayat and 

Qasim 

(2010) 

Present 

results 

0.0 1 1.3678 1.3678 

0.5  1.5305 1.5305 

1.0  1.9422 1.9422 

1.5  2.4873 2.4873 

0.5 0 1.1180 1.1180 

 1 1.5305 1.5305 

 2 1.8152 1.8152 

 4 2.2456 2.2456 

 
Table. 2 indicate the numerical values of the couple 

stress coefficient 𝑅𝑒𝑠𝐶𝑚 for different values of 𝐾 

and 𝑀 by keeping 𝑘 = 7 fixed. It is noticed from 

this table that magnitude of couple stress coefficient 

increases by increasing the value of 𝐾 and 𝑀. 

 
Table 2 Numerical values of the couple stress 

coefficient for 𝑹𝒆𝒔𝑪𝒎 for different values of 𝑲 

and 𝑴 keeping 𝒌 = 𝟕 fixed 

5379.02

4843.05.1

4297.01

3860.05.0

3688.001

2258.14

9790.03

7201.02

4297.011

Re ms CMK

 

4. CONCLUDING REMARKS 

In the present analysis, the boundary layer flow of a 

viscous fluid over a steady curved stretching sheet 

with effects of radiation is discussed. The resultant 

non-linear equations are solved numerically using a 

Runge-Kutta method combined with Newton-

Raphson technique. The physical interpretation of 

the fluid velocity, temperature distribution, skin 

friction coefficient, couple stress coefficient and 

local Nusselt number for various values of involved 

parameters are given graphically and in tabular 

form. The following conclusions have been made 

from this study: 

 By increasing the value of 𝐾 the velocity and 

microrotation of the fluid increases while 

temperature distribution decreases. 

 Both the momentum boundary layer thickness 

and the flow velocity are decreased by 

increasing the value of 𝑀 but the microrotation 

of the fluid and temperature of the fluid 

increased by increasing 𝑀. 

 An increase in a radiation parameter 𝑁𝑟 

temperature and the thermal boundary layer 

increases. 

 Temperature and the thermal boundary layer 

thickness decreases by an increase in the 

Prandtl and radiation parameter. 

 The absolute value of the local Nusselt number 

increases by increasing both the Prandtl 

number 𝑃𝑟 as well as radiation parameter 𝑁𝑟 

but it decreases by increasing 𝑀. 

 The magnitude of couple stress coefficient 

increases with an increase in material 

parameter 𝐾 and magnetic parameter 𝑀. 

 

The present work can be extended for other non-

Newtonian fluids that exhibit different nonlinear 

characteristics like normal stress effects, shear 

thinning, shear thickening, stress relaxation and 

retardation. 
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