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ABSTRACT

The paper deals with the flow of two immiscible couple stress fluids between two homogeneous permeable
beds. The flow is considered in two zones: zone I and II contain free flow of two immiscible couple stress
fluids between two permeable porous beds at the bottom and top. The flow in the free channel bounded by
two permeable beds is assumed to be governed by Stokes’s couple stress fluid flow equations and that in
the permeable beds by Darcy’s law. The continuity of velocity, vorticity, shear stress and couple stress are
imposed at the fluid-fluid interface and Beavers-Joseph (BJ) slip boundary conditions are employed at the
fluid-porous interface. The equations are solved analytically and the expressions for velocity, skin friction
and volumetric flow rate are obtained. The effects of the physical governing parameters on velocity are
investigated.

Keywords: Immiscible fluids; Couple stress fluid; Permeable beds; Darcy’s law; Beavers-Joseph (BJ) slip
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1. INTRODUCTION

The analysis of flow properties of non-Newtonian
fluids are very important in the fields of fluid dy-
namics because of their engineering applications.
Due to the complex stress-strain relationships of
non-Newtonian fluids, not many investigators have
studied the flow behavior of the fluids in various
flow fields. It is well known that the properties of
many rheological complex fluids, such as polymer
solutions, liquid crystals, lubricants, soaps, blood,
and greases are not well described by the Navier-
Stokes equations. For this reason, many non-
Newtonian fluid theories have been proposed. Cou-
ple stress fluid introduced by V. K. Stokes (1966)
is one among the category of non-Newtonian flu-
ids which allows for polar effects such as suste-
nance of couple stresses and body couples in the
fluid medium. It is a simple generalization of the
classical theory of viscous fluids that shows all im-
portant features and effects of couple stresses and
its governing equations are similar to the Navier-
Stokes equations. This theory has attracted the at-
tention of several researchers due to its widespread
applications in lubrication theory, blood flows, liq-
uid crystals etc. Ariman and Cakmak (1967) dis-
cussed couple stresses in fluids. Stokes discussed

the hydromagnetic steady flow of a fluid with cou-
ple stress effects. A review of couple stress (po-
lar) fluid dynamics was reported by V. K. Stokes
(1984). Soundalgekar and Aranake (1978) dis-
cussed the effects of couple stresses on MHD Cou-
ette flow. Rudraiah and Chandrashekara (2010) in-
vestigated the effects of couple stress fluid on the
control of Rayleigh-Taylor instability at the inter-
face between a dense fluid accelerated by a lighter
fluid. Shivakumara et al. (2012) investigated the
effect of different forms of basic temperature gra-
dients on the criterion for the onset of convection
in a layer of couple stress fluid saturated porous
medium. Rani and Reddy (2013) examined the in-
fluence of Soret and Dufour effects on double diffu-
sive transient free convective flow of a couple stress
fluid over a semi-infinite vertical cylinder.

The flow of fluids through a porous medium, es-
pecially, is a topic of current interest in many en-
gineering applications. Examples of these applica-
tions are in the fields of agricultural engineering to
study the underground water resources; in studies
of water in river beds; and in petroleum technol-
ogy to study the movement of natural gas, oil and
water through oil reservoirs. Prasad and Amit Ku-
mar (2001) discussed the flow of a hydromagnetic
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fluid between permeable beds under exponentially
decaying pressure gradient. Vajravelu et al. (2003)
analyzed the pulsatile flow of a viscous fluid be-
tween two permeable beds. Harmindar and Singh
(2005) have studied free convection flow of two im-
miscible viscous liquids through parallel permeable
beds. Malathy and Srinivas (2008) have investi-
gated the pulsating flow of a hydromagnetic fluid
between permeable beds. Iyengar and Punnam-
chandar (2013) studied the flow of an incompress-
ible micropolar fluid between permeable beds with
an imposed uniform magnetic field. Kumar and
Prasad (2014) studied the analytical solution for the
MHD pulsatile flow between permeable beds of a
viscous Newtonian fluid saturated porous medium.
In recent years, the fluid flow in two immiscible
fluids in a channel has received considerable atten-
tion by researchers. Vajravelu et al. (1995) studied
the hydromagnetic unsteady flow of two conduct-
ing immiscible fluids between two permeable beds.

Many problems in the fields of hydrology, geo-
physics, biology and petroleum industry in which
the systems involving two or more immiscible flu-
ids of different densities/viscosities flowing in the
same channel or through porous media are encoun-
tered. Typical fluid flow examples of these systems
are: oil-water, gas-oil, air-water and gas-oil-water
systems (Hochmuth and Sunada (1985)). These
are referred to as multi-phase flows in literature.
Blood flow in arteries has been studied by many
researchers considering blood as a two phase flow.
Several investigations on multiphase flows are re-
ported by various researchers such as Chaturani and
Samy (1985), Rao and Usha (1995), Sharan and
Popel (2001), Garcia and Riahi (2014) etc. In view
of the above discussion, an attempt has been made
in this paper, to the study the flow of two immis-
cible couple stress fluids between two permeable
beds. The non-dimensional velocity profiles are
displayed graphically for different values of couple
stress parameter and other parameters.

2. FORMULATION OF THE PROBLEM

Consider the flow of two immiscible couple stress
fluids in a channel of height 2h bounded by two per-
meable beds of infinite thickness with different per-
meabilities. The permeabilities of lower and upper
beds are K1 and K2, respectively. The flow geom-
etry is described in Fig. 1. X and Y are the axial
(horizontal) and vertical coordinates, respectively
with the origin at the center of the channel. Fluid
flow is generated due to a constant pressure gradi-
ent which acts at the mouth of the channel. The
fluid in the lower zone (viscosity µ1 and density ρ1)
occupies the region (−h ≤ Y ≤ 0) comprising the
lower half of the channel and this region is named
as zone I. The fluid in the upper zone (viscosity µ2

and density ρ2(< ρ1)) is assumed to occupy the up-
per half of the channel (0≤ Y ≤ h), and this region
is called zone II. In the present case, fluid in zone
I is denser than the fluid in zone II. The flow in the
upper and lower permeable beds is assumed to be
governed by Darcy’s law. The Beavers-Joseph (BJ)
slip boundary conditions are used at the interfaces
of the permeable beds. The flow in the zone I and II
(−h≤ Y ≤ h) is assumed to be governed by couple
stress fluid flow equations of V. K. Stokes (1984).

The equations of motion that characterize a cou-
ple stress fluid flow are similar to the Navier-Stokes
equations and are given by

∂ρ

∂t
+div(ρq̄) = 0 (1)

ρ
dq̄
dt

= ρ f̄ +
1
2

curl(ρ ¯̀)−grad(P)+µcurl(curlq̄))

−ηcurl(curl(curl(curlq̄)))+(λ+2µ)grad(divq̄)
(2)

The scalar quantity ρ is the density and P is the
pressure at any point in the fluid. The vectors q̄, ω̄,
f̄ and ¯̀ are the velocity, rotation (vorticity), body
force per unit mass and body couple per unit mass,
respectively. The material constants λ and µ are
the viscosity coefficients and η and η

′
are the cou-

ple stress viscosity coefficients satisfying the con-
straints µ ≥ 0; 3λ + 2µ ≥ 0; η ≥ 0, |η′ | ≤ η.
There is a length parameter l =

√
η/µ which is a

characteristic measure of the polarity of the couple
stress fluid and this parameter is identically zero in
the case of non-polar fluids.

The force stress tensor τi j (V. K. Stokes (1984)) and
the couple stress tensor mi j that arises in the theory
of couple stress fluids are given by

τi j = (−P+λdiv(q̄))δi j +2µdi j

+
1
2

εi jk [m,k +4ηwk,rr +ρck] (3)

mi j =
1
3

mδi j +4ηω j,i +4η
′
ωi, j (4)

In the above ωi, j is the spin tensor and ρck is the
body couple vector, di j is the components of rate of
shear strain, δi j is the Kronecker symbol, εi jk is the
Levi-Civita symbol and comma denotes covariant
differentiation.

Darcy’s law forms a basis for modeling fluid trans-
port in porous media. In applications where fluid
velocities are low, such as movements of ground-
water and petroleum etc. Darcy’s law well de-
scribes the fluid transport in porous media. It states
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Fig. 1. Geometry of the problem.

that the filtration velocity of the fluid is proportional
to the difference between the body force and the
pressure gradient.

The flow in the infinite permeable bed is governed
by Darcy law

q̄ =
K
µ
( f −∇P) (5)

where the constant K is called the permeability of
the porous medium.

The following assumptions are made in the analysis
of the problem:

1. The flow is assumed to be one-dimensional,
steady, laminar and incompressible.

2. The permeable beds are homogeneous.

3. The thickness of the permeable beds is in-
finitely large, so that Darcy law can be applied
with Beavers and Joseph condition at the fluid-
porous interface of the channel.

U =Us1 at Y =−h
dU
dY = α∗√

K1
(Us1 −Q1) at Y =−h

}
(6)

U =Us2 at Y = h
dU
dY =− α∗√

K2
(Us2 −Q2) at Y = h

}
(7)

where Us1 and Us2 are the slip velocities at the in-
terfaces of the lower and upper permeable beds, re-
spectively. Q1 and Q2 are the Darcy’s velocities in
the lower and upper permeable beds, respectively.
K1 and K2 are the permeabilities of the lower and
upper permeable beds, respectively. α∗ is the slip
parameter.

Since the flow is one-dimensional, we assume the
velocity of the fluid to be q̄ = (U(Y ),0,0). We

introduce the non-dimensional variables x =
X
h

,

y =
Y
h

, u =
U
Uo

, p =
P

ρ1U2
0

where Uo is the max-

imum velocity of the fluid in the channel.

Equation of continuity (1) is satisfied identically
for the assumed form of velocity and neglecting
body forces and body couples from equation (2),
we get the following sets of non-dimensional form
of governing equations (neglecting body couples)
and boundary conditions corresponding to the flow
in the two zones.
zone I: (−1≤ y≤ 0)
The governing equation in zone I is:

d4u1

dy4 − s1
d2u1

dy2 =−Re s1
d p
dx

(8)

zone II: (0≤ y≤ 1)
The governing equation in zone II is:

d4u2

dy4 − s2
d2u2

dy2 =−Re s2
1
nµ

d p
dx

(9)

where Re =
ρ1Uoh

µ1
is the Reynolds number, si =

µih2

ηi
is the couple stress parameter and nµ =

µ2

µ1
is

the viscosity ratio (i=1,2).

2.1 Boundary and Interface conditions

A characteristic feature of the two-layer flow prob-
lem is the coupling across fluid/fluid interfaces.
The fluid layers are mechanically coupled via trans-
fer of momentum across the interface. Transfer of
momentum results from the continuity of interface
tangential velocity and from a stress balance across
the interface.

To determine the velocity distributions u1(y) and
u2(y) in the zones I and II described above, we
adopt the following boundary and interface condi-
tions.
(i) at the upper fluid-porous boundary, couple
stresses vanish (no-spin) and Beavers - Joseph (BJ)
slip condition is taken i.e.

du
dy

=− α∗h√
K2

(us2 −up2)

where up2 =−
1
nµ

nK Da Re
d p
dx

(10)

u(1) = us2 and
d2u2

dy2 = 0 at y = 1 (11)
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(ii) at the fluid-fluid interface, velocity, rotation,
shear stress and couple stress are continuous:

u1 = u2,
du1

dy
=

du2

dy
, τxy|1 = τxy|2 and

d2u1

dy2 = nη

d2u2

dy2 at y = 0 (12)

(iii) at the lower fluid-porous boundary couple
stresses vanish (no-spin) and Beavers-Joseph (BJ)
slip condition is taken i.e.

du
dy

=
α∗h√

K1
(us1−up1) where up1 =−Da Re

d p
dx

(13)

u(−1) = us1 and
d2u1

dy2 = 0 at y =−1 (14)

where up1 and up2 are dimensionless Darcy’s veloc-
ities in the lower and upper permeable beds, respec-
tively.

2.2 Velocity distributions

zone I: (−1≤ y≤ 0)
Solving Eqns. (8) and (9), we see that the velocity
component of zone I is given by

u1(y) = c11 + c12y+ c13 coshs1y+ c14 sinhs1y

+
1
2

Re B y2 (15)

zone II: (0≤ y≤ 1)
and that of zone II is given by

u2(y) = c21 + c22y+ c23 coshs2y+ c24 sinhs2y

+
1
2

1
nµ

Re B y2 (16)

The solutions u1(y) and u2(y) involve eight con-
stants c11, c12, c13, c14, c21, c22, c23 and c24.
These constants are found from the eight boundary
conditions given in (10)-(14) and are solved using
MATHEMATICA. As the expressions are cumber-
some, they are not presented here.

2.3 Skin friction

The dimensionless skin friction at the lower and up-
per boundaries are given by

τxy|1 =
[

∂3u1

∂y3 − s1
∂u1

∂y

]
y=−1

=−c12s1−

c13s2
1(s1−1)sinhs1+c14s2

1(s1−1)coshs1+s1 Re B
(17)

τxy|2 =
[

∂3u2

∂y3 − s2
∂u2

∂y

]
y=1

=−c22s2−

c23s2
2(s2−1)sinhs2+c24s2

2(s2−1)coshs2+
1
nµ

s2ReB

(18)

2.4 Volumetric flow rate

The non-dimensional volumetric flow rate of the
channel is given by q = q1 +q2 where

q1 =
∫ 0

−1
u(y)dy = c11 +

c12

2
+ c13

sins1

s1

+ c14
(1− coss1)

s1
+

1
6

Re B (19)

q2 =
∫ 1

0
u(y)dy = c21 +

c22

2
+ c23

sins2

s2

+ c24
(coss2−1)

s2
+

1
6

1
nµ

Re B (20)

3. RESULTS AND DISCUSSION

The analytical solutions for the flow of two immis-
cible couple stress fluids between two permeable
porous beds are obtained. The solutions are eval-
uated numerically and depicted graphically. The
variations of velocity for different values of param-
eters are shown through figures.

Fig. 2. Effect of couple stress parameter on ve-
locity for α∗= 0.5, B=−1.2, Da= 0.01, nβ = 0.8,
nK = 0.8, nµ = 0.8, Re = 2, s2 = 2.

Fig. 3. Effect of couple stress parameter on ve-
locity for α∗= 0.5, B=−0.8, Da= 0.02, nβ = 0.8,
nη = 0.8, nK = 0.8, nµ = 0.8, Re = 2, s1 = 2.
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Fig. 4. Effect of Darcy number on velocity for
α∗ = 0.5, B = −1, nβ = 0.8, nK = 0.8, nµ = 0.8,
nη = 0.8, Re = 1.5, s1 = 2, s2 = 2.

Fig. 5. Effect of slip parameter on velocity for
B = −2, Da = 0.01, nβ = 0.8, nK = 1.2, nµ = 0.8,
nη = 0.8, Re = 0.8, s1 = 1, s2 = 1.

Fig. 6. Effect of Reynolds number on velocity
for α∗ = 0.6, B =−0.5, Da = 0.02, nβ = 0.8, nK =
0.8, nµ = 0.8, nη = 0.8, s1 = 2, s2 = 2.

The effect of the couple stress parameter s1 on the
velocity distribution is shown in Fig. 2. As s1 in-
creases, the velocity increases. Fig. 3 depicts the
effect of the couple stress parameter s2 on the ve-
locity distribution. As s2 increases, the velocity in-
creases. It is seen that as si (i=1,2) increases, the
velocity increases in both zones of the channel. As

Fig. 7. Effect of viscosity ratio on velocity for
α∗ = 0.5, B=−0.5, Da= 0.02, nβ = 0.8, nK = 0.8,
nη = 0.8, Re = 1.5, s1 = 1.2, s2 = 1.2.

si→ ∞ (i.e. η→ 0), we get the case of Newtonian
(viscous) fluid. Hence, from Figs. 2 and 3, we con-
clude that the velocity in case of couple stress fluid
is less than that of a Newtonian fluid case. Thus, the
presence of couple stresses in the fluid decreases
the velocity. This may be due to the fact that the
couple stresses spend some energy to rotate the par-
ticles, thereby decreasing velocity of the particles.

Fig. 4 shows the effect of the Darcy number Da
on the velocity distribution. As Da is increasing,
the velocity is increasing. Fig. 5 depicts the ef-
fects of slip parameter α∗ on the velocity field. As
α∗ increases, the velocity decreases. The effect of
the Reynolds number (Re) on the velocity distribu-
tion is shown in Fig. 6. As the Reynolds number
increases, velocity increases. Fig.7 shows the ve-
locity profiles for different values of the viscosity
ratio nµ. As the viscosity ratio nµ increases and of-
fers more resistance to the flow. Hence, velocity
decreases.

The variation of skin friction is presented numeri-
cally through table. From table 1, we notice that for
fixed values of α∗ = 0.5, c1 = c2 = 0.1, Da = 0.01,
nK = 1.2, nβ = 0.8, nµ = 0.8, s1 = 2 and s2 = 2
as the Reynolds number Re increases from 1 to 4
for B=-0.5 to -2.0 at the lower bed the skin friction
increases while at the upper bed it decreases.

The variation of skin friction is presented numeri-
cally through table. From table 2, we notice that for
fixed values of B=−0.5, c1 = c2 = 0.1, Da= 0.01,
nK = 1.2, nβ = 0.8, nµ = 0.8, s1 = 2 and s2 = 2 as
the α∗ increases from 0.1 to 0.4 for Re=0.5 to 2.0
at the lower bed the skin friction increases while at
the upper bed it decreases.

4. CONCLUSION

The flow of two immiscible incompressible couple
stress fluids between two permeable beds flowing
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Table 1. Variation of skin friction with Re at the
interface of Lower Permeable Bed (LPB) and
Upper Permeable Bed (UPB):α∗ = 0.5, c1 = c2 =
0.1, Da= 0.01, nK = 1.2, nβ = 0.8, nµ = 0.8, s1 = 2
and s2 = 2.

τ Re = 1 Re = 2 Re = 3 Re = 4

B=-0.5
LPB 0.45343 0.90687 1.3603 1.81374
UPB 0.44588 0.89176 1.3376 1.78353

B=-1.0
LPB 0.90687 1.81374 2.72061 3.62748
UPB 0.89176 1.78353 2.67529 3.56705

B=-1.5
LPB 1.36031 2.72061 4.08092 5.44122
UPB 1.33765 2.67529 4.01294 5.35058

B=-2.0
LPB 1.81374 3.62748 5.44122 7.25497
UPB 1.78353 3.56705 5.35058 7.13411

Table 2. Variation of skin friction with α∗ at
the interface of Lower Permeable Bed (LPB)
and Upper Permeable Bed (UPB):B=−0.5, c1 =
c2 = 0.1, Da = 0.01, nK = 1.2, nβ = 0.8, nµ = 0.8,
s1 = 2 and s2 = 2.

τ α∗ = 0.1 α∗ = 0.2 α∗ = 0.3 α∗ = 0.4

Re=0.5
LPB 0.22977 0.22825 0.22749 0.22702
UPB 0.21915 0.22103 0.22198 0.22255

Re=1.0
LPB 0.45955 0.45651 0.45498 0.45405
UPB 0.43830 0.44206 0.44396 0.44511

Re=1.5
LPB 0.68932 0.68477 0.68247 0.68108
UPB 0.65745 0.66309 0.66594 0.66767

Re=2.0
LPB 0.91910 0.91303 0.90996 0.90811
UPB 0.87660 0.88412 0.88793 0.89022

in axial direction under the influence of a constant
pressure gradient has been analyzed. It is observed
that

1. The presence of couple stresses in the fluid de-
creases the velocity.

2. The velocity of the fluid increases by the in-
crease of the Reynolds number Re and Darcy
number Da.

3. The velocity of the fluid is decreased by the
increase of the slip parameter α∗.

4. Flow rate is high when the permeability of the
permeable beds is low.
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