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ABSTRACT

The problem of transient flow of incompressible third grade fluid on the two-dimensional magnetohydro-
dynamic (MHD) flow in a porous space is analyzed. The flow is generated due to the motion of the plate in
its plane with a periodic velocity. Under the flow assumptions, the governing nonlinear partial differential
equation is transformed into steady-state and transient nonlinear equations. The reduced equation for the
transient flow is solved analytically using symmetry approach while the nonlinear steady-state equation is
solved using a modified version of He’s homotopy perturbation method. The effect of several operating pa-
rameters on the flow hydromagnetic is discussed. The results indicated that for the considered case, t = 1.5
is the moment after which the time-dependent transient motion of the fluid can be approximated with the
steady-state motion, described by the steady-state solution. It is clear that, after this value of time t the
time-dependent transient solution can be neglected.

Keywords: Periodic wall; Transient flow; Third-grade fluid; Analytical solutions; Magnetohydrodynamic;
Porous space.

NOMENCLATURE

A1,A2 arbitrary constants
Ai (i = 1,2) Revlin-Ericksen tensors
B0 applied magnetic field
c constant wave speed
d
dt

material time derivative

h(y) arbitrary function
Hn He’s polynomial
I identity tensor
J×B magnetic body force
k constant wall velocity
K permeability of the porous medium
L ∇v
L linear operator
M magnetic field
N nonlinear operator
p pressure gradient
R Darcy’s resistance due to porous medium
t time variable
u velocity field

us steady velocity
ut transient velocity
vw wall velocity
Ux unknown velocity function
V0 amplitude of wall oscillations
x,y perpendicular distances
X1 time translation
X2 space translation
X1− cX2 wave-front type travelling solutions
v velocity vector
α1,α2, β3 material constants
µ dynamic viscosity
ν kinematic viscosity
ρ fluid density
σ electrical conductivity
τ Cauchy stress tensor
φ porosity of the porous medium
ω frequency of the wall velocity

∇
∂

∂x
i+

∂

∂y
j

and R. Roslan3†



1. INTRODUCTION

Theoretical interest in the flow of third-grade
fluid has increased substantially over the past few
decades due to the occurrence of these fluids in in-
dustrial processes (Fakhar et al. (2008), Ellahi and
Afzal (2009), Siddiqui et al. (2010), Danish et al.
(2012), Hayat et al. (2013), Abdulhameed et al.
(2014)). The fluid of third-grade is a subclass of
the differential type fluid whose equations of mo-
tion are highly non-linear and higher order than the
Navier-Stokes equations for Newtonian fluid. Be-
cause of the complexity of the governing equations
for third-grade fluid, finding analytical solutions is
not easy. Further, these solutions are very useful to
provide a great insight on more complex flow situ-
ations. In addition, they serve as a measurement for
checking the accuracies of numerical solutions and
experimental data.

The magnetohydrodynamic flow through a porous
medium has become an active area of research
due to its applications in several technological pro-
cesses. Among these processes are petroleum
exploration/recovery, cooling of electronic equip-
ment, catalyst, chromatography, etc. The magneto-
hydrodynamic flow through a porous medium due
to an arbitrary profile of a plate occurs in many
industrial processes such as acoustic streaming
around an oscillating body and an unsteady bound-
ary layer with fluctuation. Therefore, it has become
subject of many discussion for a different kind of
flow configurations (Bennecib et al. (2009), Devi
and Ganga (2010), Hayat et al. (2010), Sharma
and Khan (2010), Ahmad and Asghar (2011), Ali
et al. (2012), Aziz and Aziz (2012), Aziz et al.
(2012), Mohammed et al. (2012), Abdulhameed
et al. (2013)).

To the best of the authors knowledge, the time-
dependent transient magnetohydrodynamic flow of
a third-grade fluid due to an oscillating plate in a
porous space has not been studied before, and it is
the main aim of this paper to study this problem.
We make use of symmetry reduction method, such
that the transient governing nonlinear partial differ-
ential equation is reduced to a nonlinear ordinary
differential equation, which further solved analyt-
ically for the time-dependent transient in the form
of wave-front type travelling solution. The nonlin-
ear steady-state equation is solved using a modi-
fied version of He’s homotopy perturbation method.
The results indicated that the differences between
the transient and steady-state solutions solidly de-
pends on small values of the time t. For large values
of t, the starting solution can be approximated with
the steady-state solution. Further, during the course
of computation, it was observed that the transient
and steady-state solutions agree very well at large

value of time when the ratio related to fluid param-

eters
β∗
β

> 1. Effects of pertinent parameters on the

flow fields are analyzed and shown graphically.

2. PROBLEM FORMULATION

Consider the unsteady viscoelastic of an incom-
pressible electrically conducting third-grade fluid
occupying a porous half-space and bounded by an
infinite plane wall situated in the (x,y)−plane sys-
tem of Cartesian coordinate. The fluid motion is
driven due to an oscillating wall. Fig. 1 shows
the physical configuration. Initially, both the plane
wall and the fluid are at rest. At time t > 0 the wall
moves in x−direction with velocity vw(t). A con-
stant magnetic field B0 is applied in the y−direction
and there is no external electric field. The induced
magnetic field and pressure gradient are neglected.
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Fig. 1. The physical model configuration

The governing equations are:

div(v) = 0, (1)

ρ
dv
dt

= divτ+R+J×B, (2)

where v is the velocity vector, ρ is the fluid den-

sity,
d
dt

is the material time derivative, τ is the
Cauchy stress tensor, R is the Darcy’s resistance
due to porous medium and J×B is the magnetic
body force. The stress tensor, τ for a third-grade
fluid is

τ =−pI+µA1 +α1A2 +α2A2
1 +β3

(
trA2

1
)

A1, (3)

where I is the identity tensor, p is the pressure, µ
is the dynamic viscosity, α1,α2, β3 are the material
constants and Ai (i = 1,2) are the Revlin-Ericksen
tensors which are defined by

A1 = L+LT ,

An =
d
dt

An−1 +An−1L+LT An−1, n > 1, (4)
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where L = ∇v.

In line with Davidson (2001) the magnetic
Reynolds number is considered very small. It fol-
lows that the induced magnetic field produced by
the fluid motion is negligible, the magnetic body
force, J×B, becomes σ(v×B0)× B0 when im-
posed and induced electric fields are negligible and
only the magnetic field, B0, contributes to the cur-
rent J = σ(v×B0) .

The Lorentz force on the last term of the right hand
side of Eq. (2) becomes

J×B =−σB2
0v, (5)

where σ is the electrical conductivity.

The constitutive relationship between the pressure
drop and the velocity for the unidirectional flow of
a third grade fluid is

∂p
∂x

=− φ

K

[
µ+α1

∂

∂y
+2β3

(
∂u
∂y

)2
]

u, (6)

where K is the permeability of the porous medium,
u is the velocity field and φ is the porosity of the
porous medium. Using Eqs. (3-6) in Eq. (2), we
obtains the governing equation for time-dependent
transient flow:

ρ
∂u
∂t

= µ
∂2u
∂y2 +α1

∂3u
∂y2∂t

+6β3

(
∂u
∂y

)2
∂2u
∂y2

− φ

K

[
µ+α1

∂

∂t
+2β3

(
∂u
∂y

)2
]

u

−σB2
0u. (7)

Eq. (7) will be solved subject to the boundary con-
ditions as follows:

u(y,0) = h(y) , y > 0, (8)
vw (t) = u(0, t) =V0 exp(iωt), (9)

u(y, t) → 0 as y→ ∞, t > 0, (10)

where h(y) is an arbitrary function, V0 is the ampli-
tude of wall oscillations, ω > 0 is the frequency of
the wall velocity and i is the imaginary unit. Us-
ing the wall velocity vw (t) given by Eq. (9), the
cosine and sine oscillation can be obtained by tak-
ing the real and imaginary parts of the velocity field
u(y, t) .

Introducing the quantities

y∗ =
V0

ν
y, u∗ =

u
V0

, t∗ =
V 2

0
ν

t, ω
∗ =

ων

V 2
0
,

β
∗
3 = 2β3

V 4
0

ν3 , α
∗
1 = α1

(
V0

ν

)2

, φ
∗ =

φν2

KV 2
0
,

M2 =
σB2

0ν

ρV 2
0
, (11)

we obtain the non-dimensional initial-boundary
values problem (after dropping the ∗ notation)

∂u
∂t

= µ∗
∂2u
∂y2 +α∗

∂3u
∂y2∂t

+β

(
∂u
∂y

)2
∂2u
∂y2

− β∗u
(

∂u
∂y

)2

−
(
φ∗+M2

∗
)

u = 0, (12)

subject to

u(y,0) = h(y) , y > 0, (13)
vw (t) = u(0, t) = exp(iωt), (14)

u(y, t) → 0 as y→ ∞, t > 0, (15)

where

µ∗ =
1

(1+α1φ)
, α∗ =

α1

(1+α1φ)
,

β =
3β3

(1+α1φ)
, β∗ =

β3φ

(1+α1φ)
,

φ∗ =
φ

(1+α1φ)
, M2

∗ =
M2

(1+α1φ)
. (16)

3. SOLUTION TECHNIQUE

The flow equation presented in the previous section
is strongly nonlinear and exhibit no closed-form so-
lutions. It will be interesting to reduce the govern-
ing equations of the present problem to a form that
can be solved to a closed-form. A special case of
the present problem that exhibits exact or closed-
form solution is the problem of time-dependent
transient flow. The nonlinear steady-state equation
is approximated using a modified version of He’s
homotopy perturbation method. The accuracy of
the modified version of He’s homotopy perturba-
tion solutions for the velocity field is achieved by
comparing with the exact solutions for the transient
flow.

From Eq. (12) the dimensionless velocity, u can be
expressed respectively as

u(y, t) = us (y)+ut (y, t) , (17)

where us is the steady-state velocity and ut is the
time-dependent transient part. Note that, if we al-
low t→ ∞, we obtain the steady-state solutions.
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3.1 Steady-state solution

Substituting Eq. (17) into (12), the resulting steady-
state equation and boundary conditions for this spe-
cial problem can be written as

µ∗
d2us

dy2 + β

(
dus

dy

)2 d2us

dy2 −β∗us

(
dus

dy

)2

−
(
φ∗+M2

∗
)

us = 0, (18)

with the boundary conditions

us (0) = k,

us (y) = 0 as y→ ∞, (19)

where k represent constant wall velocity.

To construct an approximate analytical solution of
Eq. (18) subject to (19), a modified version of the
He’s homotopy perturbation technique is evoked.

According to the He’s homotopy perturbation
method He (2005), Eq. (18) satisfied by the ve-
locity field us(y) is decomposed into a linear part
L(us) and a non-linear part N(us) and is written in
the form

L(us (y))+N (us (y)) = 0. (20)

We introduce the linear operator L in the form

L =
d2

dy2 +
d
dy

, (21)

thus

L(us (y)) =
(

d2

dy2 +
d
dy

)
us (y) . (22)

Write L(us (y)) in form of series

∞

∑
i=0

L(usi (y)) =
∞

∑
i=0

(
d2

dy2 +
d
dy

)
usi (y) , (23)

while the nonlinear operator N by Eq. (20) can be
decomposed as He’s polynomial as follows

N (us (y)) =
∞

∑
i=0

Hi. (24)

Using Eqs. (20), (23) and (24), we could write

∞

∑
i=0

usi (y) =
∞

∑
i=0

(
d2

dy2 +
d
dy

)
usi (y)+

∞

∑
i=0

Hi. (25)

The recurrence relation are defined as follows:
us0 =

(
d2

dy2 +
d
dy

)
us0 (y) ,

us1 =
(

d2

dy2 +
d
dy

)
us1 (y)+H0,

usn+1 =
(

d2

dy2 +
d
dy

)
usn+1 (y)+Hn,

n = 1,2, ...

(26)

where, the He’s polynomial [Ghorbani (2009)], Hn,
is defined as

Hn (us0 , ...,usn) =
1
n!

[
∂n

∂pn N

(
∞

∑
k=0

pkusk

)]
p=0

,

n = 0, 1, 2, ... (27)

Using the recurrence Eq. (26), Eq. (18) subject to
the boundary condition (19) form a set of system of
differential equation as follows:



d2us0
dy2 +

dus0
dy = 0,

us0 (0) = k, us0 (∞) = 0,
d2us1
dy2 +

dus1
dy = H0,

us1 (0) = 0, us1 (∞) = 0,
d2us2
dy2 +

dus2
dy = H1,

us2 (0) = 0, us2 (∞) = 0,

(28)

where

H0 = µ∗
d2us0

dy2 +β

(
dus0

dy

)2 d2us0

dy2

− β∗us0

(
dus0

dy

)2

−
(
φ∗+M2

∗
)

us0, (29)

H1 = µ∗
d2us1

dy2 −
(
φ∗+M2

∗
)

us1

+ β

[(
dus0

dy

)2 d2us1

dy2 +2
dus0

dy
d2us0

dy2
dus1

dy

]

− β∗

[
us1

(
dus0

dy

)2

+2
dus0

dy
d2us0

dy2
dus1

dy

]
.(30)

The solution of the above system is

us0 = ke−y, (31)

us1 =
1
6

e−3yk
{

k2 (β−β∗)+6ye2y (−µ+φ∗)

+ e2y [6M2y− k2 (β−β∗)
]}

, (32)
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us2 =
1

360
e−5yk

{
3k4 (15β

2−22ββ∗+7β
2
∗
)

+ e4y[−180M4y(2+ y)

+ k4(−15β
2 +6ββ∗+9β

2
∗)+180y(µ∗−φ∗)

× [(−2+ y)µ∗− (2+ y)φ∗]

− 20M2[k2 (−5β+3yβ−β∗−3yβ∗)

+ 18y(yµ∗−2φ∗− yφ∗)]

+ 20k2[β(3(−3+ y)µ∗+(5−3y)φ∗)

+ β∗(−3(−1+ y)µ∗+φ∗+3yφ∗)]]

− 10e2yk2[3k2 (β−β∗)
2

+ 2M2 ((5−9y)β+β∗+9yβ∗)

+ 2(β(9(−1+ y)µ∗+(5−9y)φ∗)

+ β∗((3−9y)µ∗+φ∗+9yφ∗))]} . (33)

If we have

us =
n

∑
i=0

usi , (34)

then the second order solution is obtained by sub-
stituting Eqs. (31-33) into Eq. (34) for n = 2.

3.2 Time-dependent transient solution

The unsteady equation given by Eq. (12) is reduced
to ordinary differential equations using symmetry
approach, which further solved analytically in the
form of wave-front type travelling wave solutions
with constant wave speed c(c > 0).

Consider an invariant solution using the operator X,
in the form

X = X1− cX2, (35)

where X1 =
∂

∂t
(time translation) and X2 =

∂

∂y
(space translation)

The characteristic curves of Eq. (35) is

dy
c

=
dt
1

=
du
0
, (36)

where invariant solution is as follows:

ut (y, t) =U (x) , where x = y+ ct. (37)

Substituting Eq. (37) into Eq. (12), we deduce to a
third-order nonlinear ordinary differential equation
for U (x) along certain curves in the y, t plane

c
dU
dx

= µ∗
d2U
∂x2 +α∗c

d3U
dx3 +β

(
dU
dx

)2 d2U
dx2

−β∗U
(

dU
dx

)2

−
(
φ∗+M2

∗
)

U. (38)

Considering the solution of Eq. (38) as a function
of

U (x) = A1 exp(iωt +A2x) , (39)

where A1 and A2 are constants to be determined,
and substituting Eq. (39) into Eq. (38) and equating
the exponent of e0 and e2(iωt+Bx) we obtain

e0 : µ∗A2
2 +α∗cA3

2− cA2−
[
φ∗+M2

∗
]
= 0, (40)

e2Bx : βA2
1A4

2−β∗A2
1A2

2 = 0. (41)

Constants A1 and A2 are determined through Eqs.
(40) and (41) respectively as

A1 = 1, A2 =±

√
β∗
β
. (42)

Substituting A2 in Eq. (40), we obtain

µ∗

(
β∗
β

)
−α∗c

(
β∗
β

) 3
2
+ c
(

β∗
β

) 1
2

−
(
φ∗+M2

∗
)
= 0. (43)

Assuming that condition (43) holds, U (x) can be
written as

U (x) = exp

[
iωt−

√
β∗
β

x

]
. (44)

Hence, the exact solution for ut (y, t) which satisfy
the conditions (13)-(15) is

ut (y, t) = exp

[
iωt−

√
β∗
β
(y+ ct)

]
. (45)

From Eq. (43), the speed wave propagation c to-
ward the wall in the y−direction is given by

c =
µ∗

(
β∗
β

)
−
(
φ∗+M2

∗
)

α∗

(
β∗
β

) 3
2
−
(

β∗
β

) 1
2
. (46)

The solution above is to the best of the present au-
thors’ knowledge, the first known solution of the
transient MHD flow in a porous space when an os-
cillation infinite plate was is considered. For zero
oscillation rate, ω = 0, the solution is given by Aziz
et al. (2012).
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4. ANALYSIS OF RESULTS

The steady-state velocity, given by Eq. (34) are
shown graphically for various pertinent parameters
in Figs. 2-4. Figs. 2 and 3 show the effects of the
fluid parameters β∗ and β. It is observed from this
figures that β∗ and β have the opposite behavior on
the velocity field. As noted, the fluid velocity in-
creases for increasing values of β∗ whereas it de-
creases for increasing values of β. Fig. 4 demon-
strates the effects of porosity of the porous medium
parameter φ∗ on fluid velocity. It is found from
Fig. 4 that fluid velocity increases on increasing
porosity of the porous medium parameter φ∗ in the
boundary layer region.

The starting velocity u(y, t) is written as the sum
of the steady-state solution us (y, t) given by Eq.
(34) and the transient solution ut (y, t) given by
Eq. (45). Fig. 5 shows the starting and steady
state velocity profiles for different values of time t.
Since limt→∞ ut (y, t) = 0, the time-dependent tran-
sient solution can be neglected for large values of
time t. When taking large values of the time t, the
profiles corresponding to the starting solutions be-
come identical with the profiles corresponding to
the steady-state solutions. In the considered case,
t = 1.5 is the moment that the motion of the fluid
can be approximated with the steady-steady perma-
nent motion, described by the steady state solution.
It is clear that, after this value of time t the transient
solution can be neglected.

Fig. 2. Profiles of the flow velocity with different
values of the material parameter β when β∗ =
0.5, M∗ = 1 φ∗ = 0.5, k = 1, µ∗ = 0.5, α∗ = 0.5 are
fixed

The time-dependent transient velocity, given by Eq.
(45), for various physical parameters are shown
graphically in Figs. 6-8. In all these figures, fre-
quency series of the flow velocity are shown for
both cosine and sine oscillations of the plate. Fig. 6

Fig. 3. Profiles of the flow velocity with different
values of the material parameter β∗ when β = 1,
M∗ = 1 φ∗ = 0.5, k = 1, µ∗ = 0.5, α∗ = 0.5 are
fixed

Fig. 4. Profiles of the flow velocity with different
values of the porosity of the porous medium pa-
rameter φ∗ when β= 1.5, β∗ = 1, M∗ = 0.5, k = 1,
µ∗ = 0.5, α∗ = 0.5 are fixed

Fig. 5. Profiles of the starting and steady-state
flow velocity with different values of the time t
when when ω = 0.5, k = 1, β∗ = 2.5, β = 1.5,
M∗ = 0.5, φ∗ = 1, µ∗ = 0.5, α∗ = 0.5 are fixed
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(a)

(b)

Fig. 6. Frequency series of the flow velocity with
different values of the magnetic field parameter
M∗ when β = 1.5, β∗ = 1, y = 0, φ∗ = 0.5, t = 1,
µ∗ = 0.5, α∗ = 0.5 are fixed (a) Cosine oscillation
and (b) Sine oscillation

shows the influence of magnetic field on the time
series of the flow velocity. It is revealed from Fig. 6
that the frequency series of the flow velocity de-
creases on increasing magnetic parameter M∗ in the
boundary layer region for both types of oscillations.
So, the higher values of M∗, the more prominent is
the reduction in oscillating velocity. Fig. 7 illus-
trates the influences porosity of the porous medium
parameter φ∗ on fluid oscillating velocity. It is ob-
served that the velocity amplitude increases with
an increasing in porous medium parameter φ∗ for
both types of oscillations. As noted, the effects of
φ∗ on the time-dependent transient velocity profiles
are the same as previous for the steady-state veloc-
ity profiles. Fig. 8 displayed the time series of the
flow velocity for different distances from the plate.
As can be seen, the velocity amplitude decreases
rapidly with the increase of the distance from the
plate while the flow of the third grade fluid oscil-
lates in the whole domain approximately in phase
with the driving phase movement.

(a)

(b)

Fig. 7. Frequency series of the flow velocity with
different values of the porosity of the porous
medium parameter φ∗ when β = 0.5, β∗ = 2.5,
y = 0, M∗ = 0.5, t = 1, µ∗ = 0.5, α∗ = 0.5 are fixed
(a) Cosine oscillation and (b) Sine oscillation

5. CONCLUSION

In this work, analytical solutions are obtained for
the time-dependent transient as well as the steady-
state flow induced by an oscillating profile of infi-
nite wall with uniform magnetic field, located in a
porous medium. The nonlinear steady-state equa-
tions are solved analytically using a modified ver-
sion of He’s homotopy perturbation method, and
the transient equations are solved using symmetry
reductions technique. Furthermore, in the present
analysis, the results for the time-dependent tran-
sient and steady-state velocity are plotted and dis-
cussed. The results show that the variation of the
starting and steady-state solutions mainly depends
on small values of the time. For the large values
of the time, the two solutions are identical. The
period can determined before the transient solution
vanishes. The results also show that the effects of
the fluid material parameters exert great influence
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(a)

(b)

Fig. 8. Frequency series of the flow velocity with
different values of the distances from the plate y
when β = 1.5, β∗ = 0.5, M∗ = 1 φ∗ = 0.5, t = 1,
µ∗ = 0.5, α∗ = 0.5 are fixed (a) Cosine oscillation
and (b) Sine oscillation

on the general flow pattern, by enhancing or decel-
erating the fluid flow.
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