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ABSTRACT

An efficient Collocation method based on the shifted Legendre polynomials is implemented for solv-
ing the Magnetohydrodynamic Hiemenz flow with variable wall temperature in a porous medium.
In the presented method the need for guessing and correcting the initial values during the solution
procedure is eliminated and by using the given boundary conditions of the problem a stable solution
can be derived. Numerical results show influence of the Prandtl number, permeability parameter,
Hartmann number and suction/blowing parameter on the velocity and temperature profiles. The skin
friction coefficient and the rate of heat transfer given by the Spectral Collocation method are in good
agreement with those of the previous studies.

Keywords: Magnetohydrodynamic (MHD); Hiemenz flow; Stagnation flow; Porous media; Shifted
Legendre polynomials; Collocation method.

NOMENCLATURE

B0 externally imposed magnetic field in the
y-direction

C1,C2 Shifted Legendre polynomial coeffcient
D Operational matrix of derivative
fw suction or blowing parameter
K permeability of the porous medium
Lm legendre polynomial
M Hartmann number
P pressure
Pm shifted Legendre polynomial
Pr Prandtl number
T temperature

U∞ free-stream velocity
u,v velocity components along x and y

axes
x,y cartesian coordinates

ψ stream function
vw uniform surface suction/blowing
Ω permeability parameter
ρ density
σ electrical conductivity
ν kinematic viscosity
λ exponent of wall temperature
Ψ shifted Legendre polynomial vector

1. INTRODUCTION

Stagnation flows have many important engi-
neering applications such as flows over the tips
of rockets, aircrafts, submarines and oil ships.
The problem of stagnation flow was studied
by Hiemenz (1911) who demonstrated that the
Navier-Stokes equations for the forced convec-
tion problem can be reduced to an ordinary dif-
ferential equation of third order by means of

a similarity transformation. Two dimensional
flow near a stagnation point was investigated
by Beard and Walters (1964). Schlichting and
Bußmann (1943) investigate the effect of suc-
tion on the Hiemenz flow problem and gave
the numerical results. Ariel (1994) presents
approximate solution to the problem of uni-
form suction. Takhar and Ram (1994) have
studied MHD forced and free convection flow
of water at 4oC through a porous medium in
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the presence of a uniform transverse magnetic
field for the local similarity equations. Kechil
and Hashim (2009) obtaine an approximate an-
alytical solution for the MHD stagnation flow
against a flat plate in porous media. The ef-
fect of uniform suction/blowing on heat trans-
fer of MHD Hiemenz flow through porous me-
dia was solved numerically using the implicit
finite-difference by Yih (1998). An analyti-
cal approximate solution based on DTM-Padé
is presented for MHD stagnation-point flow in
porous media with heat transfer by Rashidi and
Erfani (2011). Erfani et al. (2010) have stud-
ied the steady stagnation flow toward an off-
centered rotating disc by applying the combina-
tion of the differential transform method (DTM)
and the Padé approximation. A Series solu-
tions for unsteady laminar MHD flow near for-
ward stagnation point of an impulsively rotating
and translating sphere in presence of buoyancy
forces is derived by Dinarvand et al. (2010). In
Rashidi et al. (2011) a combination of differen-
tial transform method (DTM) and Padé approx-
imant, called DTM-Padé, is employed to inves-
tigate entropy generation in magnetohydrody-
namic (MHD) stagnation-point flow with heat
transfer in a porous medium. Yildirim and Sezer
(2012) have solved the steady two-dimensional
laminar forced magnetohydrodynamic Hiemenz
flow against a flat plate with variable wall tem-
perature in a porous medium by using the ho-
motopy perturbation method (HPM). Mabood
and Khan (2014) have found an accurate ana-
lytic solution for MHD stagnation point flow in
porous medium for different values of Prandtl
number and suction/injection parameter. The
effects of thermal radiation and viscous dissipa-
tion on a stagnation point flow and heat trans-
fer over a flat stretching/shrinking surface in
nanofluids was analyzed by Pal (2009). Mostafa
and Waheed have investigated the effects of
magnetic field and thermal radiation on a mi-
cropolar fluid flow near a stagnation point to-
wards a moving surface (Mahmoud and Wa-
heed (2012)). Mostafa et al. have studied
stagnation-point flow of a nanofluid towards a
stretching sheet Mustafa et al. (2011). Numer-
ical simulation of MHD stagnation point flow
and heat transfer of a micropolar fluid towards
a heated shrinking sheet has studied by Ashraf
and Bashir (2012). Hydromagnetic stagnation
point flow of a viscous fluid over a stretching or
shrinking sheet was investigated by Van Gorder
et al. (2012). An analysis is carried out to
study the steady two-dimensional stagnation-
point flow of a micropolar fluid over a shrinking
sheet in its own plane by Ishak et al. (2010).

Since the time of Fourier, orthogonal functions
and polynomials have been used in the analytic
study of differential equations and their appli-
cations for numerical solution of ordinary dif-
ferential equations refer, at least, to the time of
Lanczos (1938). It is well known that the eigen-
functions of certain singular Sturm-Liouville
problems such as Legendre or Chebyshev or-
thogonal polynomials allow the approximation
of functions C∞ [a,b] where truncation error ap-
proaches zero faster than any negative power of
the number of basic functions used in the ap-
proximation, as that number (order of truncation
N) tends to infinity. This phenomenon is usu-
ally referred to as spectral accuracy. The accu-
racy of derivatives obtained by direct, term-by-
term differentiation of such truncated expansion
naturally deteriorates Canuto et al. (1988), but
for low-order derivatives and sufficiently high-
order truncations this deterioration is negligi-
ble, For a given ordinary differential equation
which is defined on the interval [a,b], if solu-
tion function and coefficient functions are an-
alytic on [a,b], i.e. C∞ [a,b], spectral meth-
ods are very efficient and suitable (Mohammadi
et al. (2011), Canuto et al. (1988), Babolian
and Hosseini (2002)). The collocation approach
appears to have been first used by Slater and
by Kantorovic (1934) in specific applications.
This approach is especially attractive whenever
it applies to variable-coefficient and even non-
linear problems (Kamrani and Hosseini (2012)).
Some major advantages of the collocation meth-
ods are as follow:
(i) Since no integration is required, the con-
struction of the final system of equations is very
efficient
(ii) The functions must be evaluated only at the
collocation nodes in contrast to other methods
(iii) Computational cost of calculating nonlin-
ear terms is reasonably low with good numeri-
cal accuracy.

The spectral collocation method has been ap-
plied for numerical solution of different kind of
differential and integral equations. For exam-
ple, it has been used for deriving approximate
solution of Burgers-type equation (Khater et al.
(2008)), stochastic Burgers equation (Kamrani
and Hosseini (2012)), Navier-Stokes equations
(Malik et al. (1985)), two-point boundary value
problem in modelling viscoelastic flows (Kara-
georghis et al. (1988)), Poisson equation in
polar and cylindrical coordinates (Chen et al.
(2000)), Volterra integral equations (Chen and
Tang (2010)), (Nemati et al. (2013)) com-
pressible flow, two-dimensional and axisym-
metric boundary layer problems (Pruett and
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Streett (1991)), hypersonic boundary layer sta-
bility (Malik et al. (1985)), Helmholtz and vari-
able coefficient equations in a disk (Bialecki
and Karageorghis (2008)) and Burgers-Huxley
equation (Darvishi et al. (2008)).

The Legendre polynomials Canuto et al. (1988)
are well known family of orthogonal polyno-
mials on the interval [0,1] of the real line.
These polynomials present very good proper-
ties in the approximation of functions. There-
fore, Legendre polynomials appear frequently
in several fields of Mathematics, Physics and
Engineering. Spectral methods based on Leg-
endre polynomials as basis functions for solv-
ing numerically differential equations have been
used by many authors, (see for example Shidfar
and Pourgholi (2006), Khalil and Khan (2014),
Chang and Wang (1984), Saadatmandi and De-
hghan (2010). Here, we have considered the
steady two-dimensional laminar forced convec-
tion in MHD Hiemenz flow of an electrically
conducting viscous fluid against a flat plate
through porous media with variable wall tem-
perature and uniform surface mass flux. A
transverse magnetic field is applied and the fluid
is assumed to have constant properties. The
magnetic Reynolds number is assumed small
and the induced magnetic field, the Hall effect
and the viscous dissipation terms are neglected.
The main goal of this paper is to find the approx-
imate analytic solutions by using the Legendre
polynomials and Spectral Collocation method.

The structure of the paper is as follows. In Sec-
tion 2, the flow analysis and mathematical for-
mulation are presented. In Sections 3 we intro-
duce basic definition of the Legendre polyno-
mials. In Section 4, we extend the application
of the Legendre Spectral Collocation method to
find the approximate solutions of nonlinear sys-
tem derived by similarity solution of the MHD
Hiemenz flow against a flat plate with variable
wall temperature in a porous medium. Section
5 contains the results and discussion. The con-
clusions are summarized in Section 6.

2. PROBLEM STATEMENT AND MATH-
EMATICAL FORMULATION

Let us consider the effect of uniform suction
or blowing rate on the steady two-dimensional
laminar forced convection in MHD Hiemenz
flow through porous media. The fluid is an
electrically conducting incompressible viscous
fluid. Following Raptis and Takhar model
for the porous medium and introducing the
boundary-layer approximation, the governing
equations for the continuity, momentum and
energy can be written as follows Yih (1998),

Rashidi and Erfani (2011):

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+v
∂u
∂y

=−1
ρ

∂P
∂x

+ν
∂2u
∂y2 − ν

K
u−

σB2
0

ρ
u,(2)

u
∂T
∂x

+ v
∂T
∂y

= α2 ∂2T
∂y2 , (3)

where x and y are the coordinates along and nor-
mal to the flat plate, u and v are the components
of the velocity in the x and y directions, respec-
tively, P is the pressure, ρ is the density, ν is the
kinematic viscosity, K is the permeability of the
porous medium, σ is the electrical conductivity
and B0 is the externally imposed magnetic field
in the y-direction. The magnetic Reynolds num-
ber is assumed to be small enough that the thick-
ness of the magnetic boundary-layer is very
large and the induced magnetic field effect is
negligible compared with the applied magnetic
field. The Hall effect and the viscous dissipation
terms are also neglected. Also T is the temper-
ature of the fluid and the porous medium which
are in local thermal equilibrium (LTE) and α is
the equivalent thermal diffusivity. The appro-
priate boundary conditions are introduced as

v = vw, u = 0, T = Tw = T∞ +Axλ as y = 0,

u =U∞ =Cx, T = T∞, as y −→ ∞, (4)

where A is a constant, vw is the uniform sur-
face suction/blowing, λ is the exponent of wall
temperature chosen 0 or 1 here, U∞ =Cx is the
free-stream velocity and C is a positive number.
In the free-stream Eq. (2) becomes

U∞
dU∞

dx
=−1

ρ
∂P
∂x

− ν
K

U∞ −
σB2

0
ρ

U∞. (5)

Eliminating ∂P
∂x between Eqs. (2) and (5), we

have

u
∂T
∂x

+ v
∂T
∂y

= ν
∂2u
∂y2 +U∞

dU∞

dx
− ν

K
(u−U∞)

−
σB2

0
ρ

(u−U∞) . (6)

The mathematical analysis of the problem is
simplified by introducing the following similar-
ity transforms Rashidi and Erfani (2011)

η=

√
C
α

y, f (η)=
ψ√
Cα

x, θ(η)=
T −T∞

Tw −T∞
,(7)
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where ψ is the stream function and is defined as

u =
∂ψ
∂y

, v =−∂ψ
∂x

. (8)

Substituting Eq. (7) into Eqs. (3) and (6), we
obtain

Pr f ′′′+ f f ′′+(1− f ′2)+Ω(1− f ′)

+M2(1− f ′) = 0, (9)

f ′′+ f θ′−λθ f ′ = 0, (10)

subject to the boundary conditions

f (0) = fw, f ′(0) = 0, f ′(∞) = 1, (11)

θ(0) = 1, θ(∞) = 0, (12)

where Pr = ν
α is the Prandtl number, Ω = ν

KC

is the permeability parameter, M =

√
σB2

0
Cρ is the

Hartmann number, fw = − vw√
Cα

is the suction
or blowing parameter, fw < 0 represents blow-
ing, fw > 0 represents suction and fw = 0 corre-
sponds to an impermeable surface.

3. SHIFTED LEGENDRE POLYNOMI-
ALS AND THEIR PROPERTIES

The well known Legendre polynomials are de-
fined on the interval and can be determined with
the aid of the following recurrence formulae
Canuto et al. (1988)

Lm+1(t) =
2m+1
m+1

t Lm(t)−
m

m+1
Lm−1(t),

m = 1, 2, 3, ..., (13)

where L0(t) = 1, L1(t) = t. In order to use Leg-
endre polynomials on the interval [0,1] we de-
fine the so-called shifted Legendre polynomials
by introducing the change of variable t = 2x−1.
Let the shifted Legendre polynomials Lm(t) are
denoted by Pm(x). Then Pm(x) can be obtained
as follows

Pm+1(x) =
2m+1
m+1

(2x−1)Pm(x)−
m

m+1
Pm−1(x),

m = 1, 2, 3, ..., (14)

where P0(x) = 1 and P1(x) = 2x− 1. The or-
thogonality condition for these polynomials is

∫ 1

0
Pm(x)Pn(x)dx=


1

2m+1 f or m = n,

0 f or m ̸= n.
(15)

A function f (t) defined over [0,1] may be ex-
panded in the terms of shifted Legendre poly-
nomials as

f (t) =
∞

∑
k=0

ckPk(t), (16)

where ck = ( f (t),Pk(t)), in which (.,.) denotes
the inner product. If the infinite series in Eq.
(16) is truncated, then it can be written as

f (t) =
N

∑
k=0

ckPk(t) =CT Φ(t), (17)

where C and Φ(t) are (N +1) vectors given by

CT = [c1,c2, ...,cN ] , (18)

Φ(t) = [P1(t),P2(t), ...,PN(t)] . (19)

In the next theorem we derived a relation be-
tween shifted Legendre polynomials and their
derivatives that is very important for deriving
the operational matrix of derivative for shifted
Legendre polynomials.

Theorem 1. Let Pm(x) be the shifted Legendre
polynomials into [0,1] and P′

m(x) be derivative
of Pm(x) with respect to x, then we have

P′
m(x) = 2

m−1

∑
k=0

k+m odd

(2k+1)Pk(x) . (20)

Proof. Consider the Legendre expansion of a
function u(x) as

u(x) =
∞

∑
k=0

ûkLk(x), (21)

then u′(x) can be represented as Canuto et al.
(1988)

u′(x) =
∞

∑
k=0

û(1)k Lk(x), (22)

where

û(1)k = (2k+1)
∞

∑
p=k+1
p+k odd

ûp , k ≥ 0. (23)
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Now, by taking u(x) = Lm(x) in Eq. (2) we have
ûm = 1 and ûi = 0 for i ̸= m, consequently

û(1)k =

{
2k+1 m+ k is odd k ≤ m−1
0 o.w,

(24)

as a result Eq. (23) becomes

L′
m(x) =

m−1

∑
k=0

m+k odd

(2k+1)Lk(x) , (25)

by substituting x = 2t −1 in Eq. (26) we have

P′
m(t) = 2

m−1

∑
k=0

m+k odd

(2k+1)Pk(t) , (26)

and this proves the desired result.

Theorem 2. Let Ψ(t) be the Legendre polyno-
mial vector defined as

Ψ(t) = [P0(t),P1(t), ...,PN(t)], (27)

the derivative of this vector can be expressed by

dΨ(t)
dt

= DΨ(t), (28)

which D is (N + 1)× (N + 1) matrix and its
(i, j)-th element is defined as below

Di, j =

{
2(2 j−1) j = 1, ..., i−1 and (i+ j)odd,
0 o.w.

Proof. By using shifted Legendre polynomial
into [0,1] the i-th element of vector Ψ(t) in Eq.
(27) can be written as

Ψi(t) = Pi−1(t), (29)

by differentiation with respect to t in (29) we
have

dΨi(t)
dt

= P′
i−1(t) , (30)

now by substituting Eq. (26) into (30) we get

dΨi(t)
dt

= 2
i−2

∑
j=0

j+i odd

(2 j+1)Pj(x) , (31)

this equation can be expanded in shifted Legen-
dre polynomials as

dΨi(t)
dt

= 2
i−1

∑
j=1

j+m odd

(2 j−1)Ψ j(x) , (32)

from (32) we conclude that

dΨ(t)
dt

= DΨ(t), (33)

and this leads to desired results.

Corollary 1. By using Eq. (28) the operational
matrix for n-th derivative can be derived as

dnΨ(x)
dxn = DnΨ(x), (34)

where Dn is the n-th power of matrix.

4. METHOD OF SOLUTION

Consider the coupled nonlinear differential
equations (9) and (10) subject to boundary con-
ditions (11) and (12) . By using change of vari-
able

t =
η

η∞
, g(t) = f (tη∞), ϑ(t) = θ(tη∞), (35)

we have the following nonlinear differential
systems in the interval [0,1],

Pr
d3g
dt3 +η∞g

d2g
dt2 +

(
η3

∞ −η∞

(
dg
dt

)2
)

+Ω
(

η3
∞ −η2

∞
dg
dt

)
+M2

(
η3

∞ −η2
∞

dg
dt

)
= 0,

(36)

d2ϑ
dt2 +η∞g

dϑ
dt

−λη∞ϑ
dg
dt

= 0, (37)

subject to boundary conditions

g(0) = fw, g′ (0) = 0, g′ (1) = η∞, (38)

θ(0) = 1, θ(1) = 0. (39)

Now we expand the unknown function f (t) and
ϑ(t) by the shifted Legendre polynomial into in-
terval [0,1] as

g(t) =CT
1 Φ(t), ϑ(t) =CT

2 Φ(t), (40)
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where C1 and C2 are the unknown shifted Leg-
endre polynomial coefficient vectors defined in
(18). By using the operational matrix derived in
(28) we get

dg
dt

=CT
1 DΦ(t),

d2g
dt2 =CT

1 D2Φ(t),

d3g
dt3 =CT

1 D3Φ(t), (41)

dϑ
dt

=CT
2 DΦ(t),

d2ϑ
dt2 =CT

2 D2Φ(t), (42)

substituting Eqs. (41) and (42) into (36) and
(37), we obtain

PrCT
1 D3Φ(t)+η∞

(
CT

1 Φ(t)
)(

CT
1 DΦ(t)

)
+

(η3
∞ −η∞

(
CT

1 DΦ(t)
)2
)+Ω

(
η3

∞ −η2
∞CT

1 DΦ(t)
)

+M2 (η3
∞ −η2

∞CT
1 DΦ(t)

)
= 0, (43)

CT
2 D2Φ(t)+η∞

(
CT

1 Φ(t)
)(

CT
2 DΦ(t)

)
−λη∞

(
CT

1 DΦ(t)
)(

CT
2 Φ(t)

)
= 0. (44)

Moreover, boundary conditions (38) and (39)
result

CT
1 Φ(0) = fw, CT

1 DΦ(0) = 1, CT
1 DΦ(1) = η∞,

(45)

CT
2 Φ(0) = 1, CT

2 Φ(1) = 0, (46)

to find the approximate solution of the nonlinear
system (36) and (40), we use the typical Collo-
cation method and collocate Eq. (4.) at (M−2)
different points and Eq. (44) at (M−1) different
points in the interval [0,1]. For choosing suit-
able Collocation points, we use the first roots
of shifted Legendre PM+1(t). These equations
together 5 equations in (45) and (46) generate
2(M + 1) nonlinear equations. The well-known
Newton-Raphson have been used for approxi-
mate solution of derived nonlinear systems. Af-
ter finding the solution of this nonlinear systems
we obtain unknown vectors C1 and C2. By sub-
stituting these vectors in Eq. (40) the solution
functions g(t) and ϑ(t) can be derived. Using
change of variable in (35), the solution of the
nonlinear system (9) and (10) can be approxi-
mated.

5. NUMERICAL RESULTS

In this section, the nonlinear system (9) and (10)
subject to the boundary conditions (11) and (12)
have been solved analytically by using the Leg-
endre collocation method (LCM) presented in
Section 4. A suitable domain truncation value
for η∞ is determined experimentally. Usually
near suitable values η∞ the results do not change
significantly and the accuracy of the results is
insensitive to the values of η∞. All numerical
results are derived by using Maple 17 with 20
digits precision.

The non-dimensional velocity profiles f ′(η)
and temperature profiles θ(η) for various pa-
rameters M and Pr = 1,λ = Ω = 0 are shown
in Figs. 1-6. As this figures show for imper-
meable surface and suction/blowing cases when
M increases, the velocity and temperature pro-
files increases. Figs. 7 and 8 show that an
increment in the Prandtl number Pr decreases
the velocity profile but increases the tempera-
ture profile. Figs. 9 and 10 illustrates the effect
of the porosity of the medium Ω on the veloc-
ity and temperature. From this figure it can be
concluded that the increment in the permeabil-
ity parameter results in drastic changes in veloc-

Fig. 1. The non-dimensional velocity profiles
f ′(η) for fw =−1, Pr = 1,λ = Ω = 0 and

various parameters M.

Fig. 2. The temperature profiles θ(η) for
fw =−1, Pr = 1,λ = Ω = 0 and various

parameters M.
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Fig. 3. Non-dimensional velocity profiles
f ′(η) for fw = 0, Pr = 1,λ = Ω = 0 and

various parameters M.

Fig. 4. Temperature profiles θ(η) for fw = 0,
Pr = 1,λ = Ω = 0 and various parameters

M.

Fig. 5. Non-dimensional velocity profiles
f ′(η) for fw = 1, Pr = 1,λ = Ω = 0 and

various parameters M.

Fig. 6. Temperature profiles θ(η) for fw = 1,
Pr = 1,λ = Ω = 0 and various parameters

M.

Fig. 7. Non-dimensional velocity profiles
f ′(η) for M = fw = λ = Ω = 0 and various

parameters Pr.

Fig. 8. Temperature profiles θ(η) for
M = fw = λ = Ω = 0 and various parameters

Pr.

Fig. 9. Non-dimensional velocity profiles
f ′(η) for for Pr = 1,M = fw = λ = 0 and

various parameters Ω.

Fig. 10. Temperature profiles θ(η) for for
Pr = 1,M = fw = λ = 0 and various

parameters Ω.
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Fig. 11. Non-dimensional velocity profiles
f ′(η) for Pr = 1,λ = Ω = 0,M = 0,2 and

fw =−1,0,1.

Fig. 12. Temperature profiles θ(η) for
Pr = 1,λ = Ω = 0,M = 0,2 and fw =−1,0,1.

ity profiles, but little variation in the tempera-
ture profiles. Figs. 11 and 12 displays the effect
of suction/injection parameter fw and magnetic
parameter M. As M or fw increases, the veloc-
ity profile increases and the thermal boundary
layer thickness decreases. The magnetic field
has a pronounced effect on the temperature dis-
tribution for injection, while its influence can be
neglected in the case of suction. The influence
of the Prandtl number Pr and fw on the velocity
and temperature profiles are plotted in Figs. 13
and 14. As fw increases from injection to suc-
tion, the velocity profiles f ′(η) increases and
the temperature profile θ(η) decreases. Fig. 15
displays the effect of suction/injection param-
eter and the wall temperature exponent λ. As
the flow problem is uncoupled from the thermal
problem, changes in the values of λ will not af-
fect the fluid velocity. It can be seen that the
temperature decreases and the thermal bound-
ary layer becomes thin as the wall temperature
exponent increases. To see the accuracy of the
solutions, the residual errors of the approximate
solution are plotted in Figs. 16. and 17.

In order to verify the results of this study, the re-
sults have been compared with previously pub-
lished numerical ones of Refs. Kechil and

Fig. 13. Non-dimensional velocity profiles
f ′(η) for λ = Ω = M = 0,Pr = 1,10 and

fw =−1,0,1.

Fig. 14. Temperature profiles θ(η) for
λ = Ω = M = 0,Pr = 1,10 and fw =−1,0,1.

Fig. 15. The temperature profiles θ(η) for
Ω = M = 0,Pr = 1,λ = 0,1 and fw =−1,0,1.

Fig. 16. Residual error for Eq. (9) with
λ = Ω = M = 0,Pr = 1 and fw = 1.
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Table 1 Numerical values of f ′′(0) for Ω = 0,Pr = fw = 1 and various values of M
M LCM (Kechil and Hashim 2009) (Yih 1998)
0 1.889339 1.884684 1.889314
1 2.202943 2.201433 2.202940
2 2.920113 2.920114 2.920111
5 5.676830 5.676830 5.676830
10 10.588367 10.588367 10.588367

Table 2 Numerical values of −θ′(0) for Pr = 1,λ = Ω = 0,M = 0,1,2 and fw =−1,0,1
4*M fw =−1 fw = 0 fw = 1

(lr)2-4 (lr)5-7 (lr)8-10 0 1 2 0 1 2 0 1 2
(lr)1-10 LCM 0.116756 0.140003 0.173123 0.570455 0.595341 0.634129 1.323692 1.338059 1.364461

(Yih 1998) 0.116752 0.140002 0.173124 0.570465 0.595346 0.634132 1.323691 1.338060 1.364466

(Kechil and Hashim 2009) 0.11677 0.14000 0.17312 0.57035 0.59539 0.63418 1.32368 1.33804 1.36446

Fig. 17. Residual error for Eq. (10) with
λ = Ω = M = 0,Pr = 1 and fw = 1.

Hashim (2009) and Yih (1998). Table1 shows
a comparison of the numerical results of f ′′(0)
for the case of Ω = 0,Pr = fw = 1 and M =
0,1,2,5,10 with those of Refs. Kechil and
Hashim (2009) and Yih (1998). Moreover, the
numerical results of θ′(0) compared with those
of Refs. Kechil and Hashim (2009) and Yih
(1998) in Table 2. The obtained results in Ta-
bles 1 and 2 demonstrate the reliability and effi-
ciency of the proposed LCM.

6. CONCLUSION

The shifted Legendre polynomial and its opera-
tional matrix of derivatives are employed obtain
an approximate analytical solution for the MHD
stagnation flow against a flat plate in porous me-
dia. In the proposed method, the requirement of
to guessing the initial condition f ′′(0) and θ′(0)
in order to start the solution which is required
in the conventional shooting methods is elim-
inated. The effect of the suction/injection pa-
rameter, the Hartmann number and the perme-
ability parameter on velocity and temperature
profiles were studied. The numerical results re-
veal that the velocity and the temperature pro-
files increse when the suction/injection parame-
ter, the Hartmann number and the permeability
parameter increses. Moreover, an increment in

the Prandtl number, decreases the velocity pro-
files and increases the temperature profiles. By
increasing the wall temperature exponent, the
temperature profiles increases. The results of
the present study, in a special case, were com-
pared with the published numerical ones to ver-
ify them and excellent agreement was obtained.
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