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ABSTRACT

The effect of conjugation on the enhancement of heat transfer in a liquid metal flow past a thermally
conducting and sinusoidally oscillating infinite flat plate, when a constant temperature gradient is
superimposed on the fluid, is investigated. The plate is made up of the materials compatible with the
liquid metals used and is considered to be of finite thickness. Analytical solutions for the velocity
and the temperature of the fluid and the solid are obtained. The effects of thermal conductivity and
the thickness of the plate on the total time averaged heat flux transported and the thermal boundary
layer thickness are investigated in detail. It is found that the effects of wall thickness and wall ther-
mal conductivity on the heat flux transported depend on their effects on the transverse temperature
gradient at any frequency. The optimum value of wall thickness at which the net heat flux trans-
ported attains the maximum value, for each fluid and for each wall material under consideration, is
reported. A maximum increase of 46.14 % in the heat flux transported can be achieved by optimizing
the wall thickness. A maximum convective heat flux of 1.87×108W/m2 is achieved using Na with
AISI 316 wall. All the results obtained have been compared with the experimental and analytical
results reported in the literature and are found to be in good agreement. It is believed that the new
insights gained will be of significant use while designing liquid metal heat transfer systems.

Keywords: Heat transfer enhancement; Conjugate heat transfer; Forced convection; Liquid metals;
Laminar oscillatory flow.

NOMENCLATURE

Ao oscillation amplitude
b half the wall thickness
c f specific heat capacity of the fluid
cs specific heat capacity of the plate
k f thermal conductivity of the fluid
ks thermal conductivity of the plate
k thermal conductivity ratio
Q dimensional total time averaged heat

flux transported for a w wide plate
Q1 non-dimensional total time averaged

heat flux transported for a w wide plate
Qconv dimensional time averaged heat flux

transported within the boundary layer
due to convection

Qcond dimensional time averaged heat flux
transported within the boundary layer
due to conduction

qconv dimensional time averaged heat flux

transported per unit area within the
boundary layer due to convection

qcond dimensional time averaged heat flux
transported per unit area within the
boundary layer due to conduction

t dimensional time
Tf temperature in the fluid
Ts temperature in the plate
u dimensional velocity component

along x axis
x,y dimensional cartesian coordinates
y∗ dimensional thermal boundary layer

thickness

δ Stokes viscous boundary layer thickness
ϕ̇ longitudinal thermal flux at x = 0̂̇ϕ time averaged longitudinal thermal

flux at x = 0
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γ constant temperature gradient
η non-dimensional transverse coordinate
η∗ non-dimensional thermal boundary

layer thickness
κ f thermal diffusivity of the fluid
κs thermal diffusivity of the plate

ν kinematic viscosity of the fluid
ρ density of the fluid
σ thermal diffusivity ratio
τ non-dimensional time
ω oscillation frequency

1. INTRODUCTION

The concept of enhancement of heat transfer
is demanding the constant attention of many
scientists and engineers as modern engineering
and technology has to deal with very high tem-
peratures and heat transfer rates. For exam-
ple, heat flux as high as 3.7 X 109 W/m2 is
encountered during carbon sublimation cooling
(Bergles 2003).

Kurzweg designed a novel heat transfer de-
vice (Patent No: US 4,590,993, May, 1986)
for the enhancement of heat transfer, which
is by far superior to standard heat pipes, in
which the basic idea is to transfer heat at higher
rates, without concomitant net mass transfer,
by sinusoidal oscillation of liquid metals, un-
der laminar conditions, when a constant ax-
ial temperature gradient is maintained. In the
present literature of enhancement of heat trans-
fer (Ozawa and Kawamoto 1991; Zhang et al.
2011), this device is referred to as “dream
pipe”. Heat flux as high as 1010 W/m2 can
be achieved using this dream pipe, when the
fluid is oscillated at high frequency with large
tidal displacements (Kurzweg 1985b). This
is several orders of magnitude greater than
the heat flux achieved in conventional heat
pipes. It has been experimentally and theo-
retically established (Kaviany 1986; Kurzweg
and de Zhao 1997; Kurzweg 1985a; Kurzweg
1985b; Kurzweg 1986; Shailendhra and Devi
2011) that in this novel device, a periodic con-
vective heat transport occurs in the axial direc-
tion and a periodic conductive heat transport oc-
curs between the fluid core and the boundary
layer region of the oscillating flow which ulti-
mately results in enhancement of heat transfer
by several orders of magnitude.

This thermal pumping technique involves no
net convective mass transfer and hence plays an
important role in situations where heat is to be
removed at high rates, without accompanying
net mass transfer as in cooling of radioac-
tive liquids or hazardous chemical solutions
(Kurzweg 1985b). Applications for this heat
transfer process are numerous, ranging from
devices in which heat is removed from the core
of a nuclear reactor without an accompanying
mass transfer to an accelerated cooling device

for removing heat in combustion processes
(Kurzweg 1985b). Further, this heat transfer
process is driven by external oscillations and
hence thermal valves can possibly be designed
based on this technique which may find applica-
tions in the field of cryogenics (Kurzweg 1986).

Dream pipes are desirable and advantageous
compared to the conventional heat pipes owing
to their remarkable qualities, viz., the operating
temperature can be selected optionally, only a
low pressure is needed to operate such pipes,
the operation start and stop can be freely carried
out, both wick device and the vacuum operation
are not necessary and the structure is simple
and compact. In the case of conventional heat
pipes the temperature difference is sufficient to
operate whereas for dream pipes an external
device for vibrating the liquid such as an elec-
tric motor or a compressor has to be provided
(Shailendhra and Devi 2011).

Heat transfer systems using liquid metals as
the heat carrier are becoming more common
because of the excellent heat transport capa-
bilities of liquid metals. Heat transfer systems
with cold or softened metals are replaced by
systems with liquid metals. Steam engine and
turbines have already given a way to machines
using liquid metal as the working fluid. Water
cooled atomic reactors are being replaced by
reactors using a very high temperature zone
cooled by actual streams of alkali metals, viz.,
sodium and potassium or their eutectic mixtures
(Shailendhra and Devi 2011).

Heat transfer using oscillatory flow of liquid
metals has tremendous applications in cool-
ing of high power electronics and electrical
equipments. In Stirling engines the heat flow
through heat pipes is oscillatory and the fluid
flow is driven by cyclic variations of pressure
(Bouvier and Stouffs 2005). Liquid metal heat
pipes are used for transporting thermal energy
in many high temperature and high power
density space and terrestrial power and energy
systems (Genk and Tournier 2011) and in
space reactor power systems they help in the
redundant removal and transport of the fission
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power generated in the reactor to the energy
conversion sub-system. Indeed, the previous
Soviet RORSAT radar satellites were powered
by NaK cooled reactors. NaK was also used
in the U.S.SNAP− 10A fission reactor. Fur-
ther, the scientists and engineers of NASA’s
Exploration Technology Development Program
Fission Surface Power Systems Project have
been carrying out an active research to perform
a non-nuclear laboratory demonstration of
fission surface power technology using Stirling
or Brayton thermal energy conversion which
includes a liquid metal (NaK) loop to transport
the heat to a power conversion unit for electrical
energy production. Further, extensive research
is being carried out to measure the effects of
oscillating flow and pressure on heat transfer
to minimize the thermodynamic loss in Stirling
Engines (Tew and Geng 1992). The possibility
of using alkali metal heat pipes for cooling
space nuclear reactors has been demonstrated
by several prototype experiments without any
reported failures Genk and Tournier (2011).
For further details, on liquid metal heat ex-
changer designs for fission surface power for
Moon and Mars surface missions, one may
refer to Rodger W. Dyson and Geng (2009).

On the other hand, for the liquid metal heat
pipes with Na, NaK and K, the compatible wall
materials are nickel, niobium and stainless steel.
In such heat pipes, apart from the physical prop-
erties of the fluids, the properties of the wall,
like its thermal conductivity and thickness also
play a significant role and hence several au-
thors have considered the walls to be thermally
conducting (Kaviany 1986; Kurzweg 1985b;
Kurzweg and de Zhao 1997). Kurzweg (1985b)
analysed the same heat transfer technique in the
flow between periodically arranged conductive
parallel plate channels. Later, Kurzweg and
de Zhao (1997) dealt with this novel heat trans-
fer in a circular pipe with an infinitely thick wall
and obtained an approximate solution valid for
high frequency cases. Further, Kaviany (1990)
investigated this enhanced heat transfer tech-
nique by considering thermally conducting cir-
cular tubes of finite wall thickness. However,
the effect of thermal conductivity of the wall on
the heat transfer characteristics of the fluid has
not been studied. Inaba et al. (2000) have stud-
ied the effect of the sectional shapes of pipes
on the enhancement of longitudinal heat trans-
fer by fluid pulsation with thermally conduct-
ing walls. However, they have not analyzed ex-
plicitly the effect of thickness or conductivity of
the wall on the thermal flux. Later, Inaba et al.

(2004) investigated the enhancement of longi-
tudinal heat transfer by fluid oscillation in ther-
mally conducting circular pipes of arbitrary but
finite wall thickness and analysed the effects of
wall conductivity and thickness for the case of
large amplitude of fluid oscillation.

In all the above studies, a periodic pressure
gradient produced by moving pistons or mem-
branes is responsible for generating the oscil-
lations in the fluid. Kurzweg and Chen (1988)
have shown that the same enhanced heat trans-
fer can occur along rigid walls bounded by a
viscous fluid when such walls execute a peri-
odic motion parallel to the fluid - solid inter-
face, when a constant longitudinal temperature
gradient is superimposed on the fluid by exam-
ining the problem of thermal pumping in the
classical Stokes problem of a sinusoidally os-
cillating flat plate immersed within a viscous
fluid of infinite extent. They have investigated
the formation and the role of thermal boundary
layer in this novel thermal pumping process. In
their concluding remarks, Kurzweg and Chen
(1988), have stated that plates of finite thickness
with heat storage capability should receive fu-
ture consideration as they expected significant
changes in the results, especially when deal-
ing with low Prandtl number fluids such as liq-
uid metals, owing to the change in the bound-
ary conditions reflecting the effect of conjuga-
tion. This motivated us to extend the work
of Kurzweg and Chen (1988) by considering
the plate to be thermally conducting and study
the effects of thermal conductivity of the wall
and its thickness on the thermal boundary layer
thickness and the heat flux transported. This
analysis may throw some light on the design
of industrial heat exchangers (Walker 1982)
like re-generators in which thermally conduct-
ing parallel plates of finite thickness are stacked
on top of each other with just sufficient space
left between them to accommodate the rela-
tively thin fluid layers within which the heat
transport occurs.

It must be noted that the present problem of
heat transfer in which the walls are thermally
conducting is a conjugate heat transfer problem.
The effect or level of conjugation depends on
various factors and it is more pronounced in the
case of unsteady, laminar flow of low Prandtl
number fluids such as liquid metals (Dorfman
2010) and all these conditions are satisfied in
the present problem.

Incidentally, Kurzweg (1985b) suggested that it
may be of advantage in practical heat transfer
devices, based on this dream pipe technique, to
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use liquid metals as the working fluid as these
fluids have large values of ρ f c f γ where ρ f
and c f are the density and specific heat capac-
ity of the fluid respectively and γ is the con-
stant temperature gradient. Further, in these liq-
uid metal heat transfer systems, the only suit-
able and widely used wall materials are stain-
less steel of grade AISI316, nickel (Ni) and
niobium(Nb) (Kelman et al. 1950; Reay and
Kew 2006). Accordingly, in the present work,
the working fluid is considered to be a liquid
metal (potassium (K) , sodium (Na) , sodium-
potassium alloy NaK(%22Na −%78K)) and
the wall is considered to be made up of stainless
steel of grade AISI 316, Ni and Nb having vari-
ous thicknesses, ranging from 1.35mm to 7mm,
which are commercially available. For further
details on the compatibility of the liquids and
the wall materials used in the liquid metal heat
transfer systems, the operating conditions and
other technical issues one might refer to (Reay
and Kew 2006).

To the best of the authors’ knowledge, this is the
very first realistic, explicit and exhaustive inves-
tigation on the effect of wall conductivity and
thickness on the thermal boundary layer thick-
ness and the net heat flux transported in the con-
text of enhancement of heat transfer by the os-
cillation technique proposed by Kurzweg using
liquid metals and appropriate compatible wall
materials of various thicknesses that are com-
mercially available.

The analytic solutions for the velocity and tem-
perature fields are obtained. The results ob-
tained are compared with the results reported in
the literature and possible explanations are pro-
vided wherever the results are qualitatively dif-
ferent.

The rest of the paper is organized as follows:
Section 2 deals with the mathematical formula-
tion and solution, Section 3 discusses the results
obtained and finally Section 4 presents briefly
the conclusions arrived at.

2. MATHEMATICAL FORMULATION
AND SOLUTION

Consider a thermally conducting infinite flat
plate with finite thickness oscillating sinu-
soidally within an unbounded, viscous, incom-
pressible and thermally conducting fluid of in-
finite extent. The plate is considered to oscil-
late, parallel to the fluid-solid interface, with
an amplitude A0 and an angular frequency ω.
The fluid flow is assumed to be laminar. The
thickness of the plate is assumed to be 2b. The
x−axis is taken along the direction of oscilla-

Fig. 1. Schematic representation of the
problem.

tion of the plate and the y−axis is taken verti-
cally upwards. A constant temperature gradient
γ=

∂Tf
∂x is superimposed on the fluid in the direc-

tion of the oscillation of the plate. Fig1. shows
the schematic representation of the problem.

Following the lines of Kurzweg (1986) it is to
be noticed that the axial temperature gradient
∂Tf
∂x is small compared to the very large time

dependent transverse temperature gradient ∂Tf
∂y

that exists during most of the sinusoidal cycles

which means that ∂2Tf
∂y2 is much larger than ∂2Tf

∂x2

and hence ∂Tf
∂x is taken as γ which is actually

the time averaged value of ∂Tf
∂x . It is pertinent

to note that, the maximum value of the thermal
boundary thickness is 5.152 ×10−4 mm (when
the fluid is NaK). Thus 99% of the heat flux
is transported in such a small thickness of fluid
layer which is negligibly small compared to the
length of the plate. Further the thickness of the
plate is also very small ( maximum thickness =
7 mm). This fact justifies our assumption that
the plate is of infinite length. Owing to this re-
striction, the present model cannot predict the
variation in the thermal boundary layer thick-
ness along the length of the plate in the entrance
region.
The governing equations of the problem are

∇.~q = 0 (1)
ρ f d~q/dt = µ ∇

2~q (2)

Here, since we consider unidirectional flow
along the direction of oscillation of the plate, we
assume that the velocity vector is ~q = (u,0,0).
By eq. (1), it follows that ∂u

∂x = 0 and hence
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u = u(y, t). Hence, eq. (2) becomes,

∂u
∂t

= ν
∂2u
∂y2 (3)

where ρ f is the density, µ is the coefficient of
viscosity and ν = µ

ρ
is the kinematic coefficient

of viscosity of the fluid.

The initial and boundary conditions are given
by :

u = 0 ∀ y≥ 0, t ≤ 0
u = A0 cos(ω t),y = 0, t > 0

and u = 0, y→ ∞, t > 0

We cast the above equations in the non-
dimensional form using the following scheme:

η = y
δ

, τ = ωt and U = u
A0ω

where δ =
√

2ν

ω
,

the Stokes layer thickness.
Hence, eq. (3) becomes, ∂u

∂τ
= ∂2U

∂η2 and the initial
and boundary conditions become

U = 0 ∀ η≥ 0,τ≤ 0
U = cos(τ) , η = 0,τ > 0

and U = 0, η → ∞,τ > 0

Assuming U(η,τ) = Re[eiτ f (η)] (Kurzweg
1985b), it is easy to verify that the dimensional
velocity u(η,τ) is given by

u(η,τ) = A0 ω e−η cos(τ−η), η≥ 0, τ > 0(4)

This is the famous closed form solution of
Stoke’s oscillating flat plate problem.

The temperatures Tf (x,y, t) and
Ts (x,y, t) , respectively, in the fluid and in
the plate are governed by the corresponding
heat equations

ρ f c f

[
∂Tf

∂t
+u

∂Tf

∂x

]
= k f

[
∂2Tf

∂x2 +
∂2Tf

∂y2

]
(5)

ρscs
∂Ts

∂t
= ks

[
∂2Ts

∂y2 +
∂2Ts

∂x2

]
(6)

where k f , ρ f and c f are the thermal conductiv-
ity, the density and the specific heat capacity of
the fluid and ks, ρs and cs are the thermal con-
ductivity, the density and the specific heat ca-
pacity of the solid respectively.

Liquid metals are of very low Prandtl numbers
and hence viscous dissipation is neglected in
equation (5). Infact, the ratios of the viscous
dissipation term to the convective term and the
diffusion term are << 1, justifying the neglect
of viscous dissipation term.

The appropriate boundary conditions are

(i)
∂Tf

∂y
= 0 as y→ ∞

(ii)Tf (y) = Ts (y) at y = 0

(iii) k f
∂Tf

∂y
= ks

∂Ts

∂y
at y = 0

(or)k
∂Tf

∂y
=

∂Ts

∂y
at y = 0 where k =

k f

ks

(iv)ks
∂Ts

∂y
= 0 at y =−2b

These conditions correspond to the vanishing
of heat flux at an infinite distance from the
wall, continuity of temperature and heat flux at
the fluid solid interface and the heat flux at the
insulated bottom of the wall respectively.
Finding exact solutions of the eqns. (5) and (6)
subject to the boundary conditions given above
is not an easy task. Fortunately, finding such
general solutions is not necessary since it is
known that the time-averaged value of the axial
temperature gradient is constant in this heat
transfer process and hence it is enough if one
assumes a locally valid temperature distribution
of the form

T [x,η, t] = γ [x+δ g(η)ei ω t ]R

which was first proposed by Chatwin (1975).

It should be noted that this form has a phys-
ically realistic locally time averaged constant
axial temperature gradient and also exhibits a
time-dependent cross-stream variation in tem-
perature. Further, Kurzweg (1985b) envisaged
that the results obtained, when time-averaged
over a period of oscillation, using this approx-
imation and otherwise will not significantly dif-
fer provided the Prandtl number Pr and ω4 x
are kept sufficiently small. Indeed, Kurzweg
(1985a) and Kaviany (1990) have not assumed
the above approximation but their time averaged
results are not significantly different from the
results reported in the literature with the above
approximation.

Assuming a temperature distribution, for both
the fluid and the solid, in the form proposed by
Chatwin (1975) and used by Inaba et al. (2004),
Kurzweg (1985b), Kurzweg and de Zhao (1997)
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and Kaviany (1986), the eqns. (5) and (6) re-
duce to

g
′′
f (η)−2i Pr g f (η) = Pe exp(−(1+ i)η) (7)

and

g
′′
s (η)−2i Pr σ gs(η) = 0 (8)

where Pr = ν/κ f is the Prandtl number, Pe =
ω δ A0/κ f is the Peclect number, σ = κ f /κs
, κ f = k f /(ρ f c f ) and κs = ks/(ρscs) are the
thermal diffusivities of the fluid and the solid
respectively. Here g f and gs represent η- de-
pendent temperature functions within the fluid
and the plate respectively.

Solving the equations (7) and (8) subject to the
boundary conditions given above, with a little
algebraic manipulation, it is easy to see that

g f (η) = C1 exp(a1η)+D1 exp(−a1η)+E1,

gs (η) = C2 exp
(
a1
√

σ η
)
+D2 exp

(
−a1
√

σ η
)

where

a1 =
√

2iPr,

a2 = A0
√

Pr i/δ

(
1+
√

Pr
)
,

C1 = 0,
E1 = Peexp(−(1+ i)η)/2i(1−Pr),

C2 = D2E2,

E2 = exp
(

4b
√

2iPrσ/δ

)
,

D1 = D2 (1+E2)+A0Pri/(δ(1−Pr)),

D2 = a2/
[(

1+
√

σ/k
)

E2 +
(
1−
√

σ/k
)]
.

2.1 Total time averaged heat flux

The net heat flow expressed as longitudinal ther-
mal flux at x = 0 is given by

ϕ̇ = ρ f c f u T (0,η,τ)

On time averaging ϕ̇ over one period of sinu-
soidal oscillations, we get

̂̇ϕ = E3 [C3 +D3]
√

Pre−(a4)η (9)

where

a3 =
√

Pr−1,
a4 = 1+

√
Pr,

C3 = [w1/a4]cos(a3η) ,

D3 =
[
w2/a4 +

√
Pr/(1−Pr)

]
sin(a3η) ,

E3 =
1
2

ρ f c f γA0
2
ω,

w1 = b1/(b2 +b3),

b1 = 2
√

σ/k exp(k1) sin(k1) ,

b2 = (1+
√

σ/k)2exp(2k1) +
(
1−
√

σ/k
)2
,

b3 = 2
(
1−σ/k2)exp(k1) cos(k1) ,

w2 = (b4 +b5)/(b2 +b3),

b4 =
(
1+
√

σ/k
)

exp(2k1)

b5 = 2exp(k1) cos(k1)+(1−
√

σ/k),

k1 = exp
(

4b
√

Prσ/δ

)
.

The total time averaged heat transport(Q) for a
w wide plate is obtained by integrating (9) over
the entire range of η as

Q = wδ

∫
∞

0
̂̇ϕ dη=−wδE3Q1/2 (10)

where Q1 = H1
√

Pr/(1+Pr) is the non-
dimensional total time averaged heat
transported per unit width of the plate,
H1 =−w1−

(
w2−

√
Pr/a3

)
(a3/a4).

2.2 Thermal boundary layer thickness

The ratio F of the time averaged flux ̂̇ϕ pass-
ing through the thickness η of the fluid near the
plate of width w to Q is obtained as

F (η) = wδ/Q
∫

η

0
̂̇ϕ dη

= 1−H3 exp(−a4η)

where H3 = cos(a3η) + H2 sin(a3η), H2 =[
w1a3/a4−

(
w2−

√
Pr/a3

)]
/H1.

The thermal flux boundary layer thickness (η∗)
is defined as the value of η for which F(η) is
0.99 (Kurzweg and Chen (1988)).

2.3 Enhancement of heat transfer due to os-
cillation

In order to get a quantitative measure of en-
hancement of heat transfer in this heat transfer
process, it is appropriate to compare the con-
vective heat flux transported (due to oscillation)
with the conductive heat flux transported (in the
absence of oscillation). Since 99% of the net
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convective heat flux is transported within the
boundary layer of thickness y∗ = η∗ δ, it is
physically practical and mathematically conve-
nient to make the above comparison within the
boundary layer, by neglecting 1% of the convec-
tive heat flux transported outside the boundary
layer.

The total time-averaged heat flux transported by
convection within the boundary layer for a w
wide plate is given by

Qconv = wω/2π

∫ 2π/ω

0

∫ y∗

0
ρ f c f uTf (0,y, t) dy dt.

= wδ
√

PrE5exp(−a4η
∗) +Q

where

C4 = [w1/a4]cos(a3)η
∗,

D4 =

[
w2/a4 +

√
Pr

(1−Pr)

]
sin(a3η

∗) ,

C5 = [w1/a4]sin(a3)η
∗,

D5 =
[
w2/a4 +

√
Pr/(1−Pr)

]
cos(a3)η

∗,

E4 = a3 (C5−D5)−a4 (C4 +D4) ,

E5 = E3E4/(2(1+Pr)).

Similarly, the total time-averaged heat flux
transported by pure conduction across an area
of width w and height y∗ is given by

Qcond = wω/2π

∫ 2π/ω

0

∫ y∗

0
−k f γ dy dt =−wk f γy∗.

Thus, the time averaged heat fluxes transported
per unit area may be computed as

qconv = Qconv/(wy∗) and qcond = Qcond/(wy∗).

3. RESULTS AND DISCUSSION

The purpose of the present investigation is to
study the effects of the thermal conductivity and
the thickness of the wall on the enhancement of
heat transfer in the fluid.

As stated above, K,Na,NaK(%22Na−%78K)
are taken as the heat carrying fluid and the wall
is considered to be made up of Ni,Nb and stain-
less steel of grade AISI316. The useful oper-
ating temperature range (0C)of heat pipes with
K,Na,NaK as the working fluids are 500−
1000, 600− 1200 and 425− 825 respectively
(Reay and Kew (2006)). Hence, for the sake of
comparing the results, the physical properties of
the fluids and the wall materials are considered

at 6000C. Accordingly, the following values are
fixed for the various physical quantities (Cengel
(2009)).

The thermal conductivities k f (W / (m
K)) and the thermal diffusivities κ f (m2/s)
of K,Na,NaK (%22Na − %78K) are
35.50,63.63,28.28 and 6.765×10−5,
6.220×10−5, 4.408×10−5 respectively.
The Prandtl numbers of these fluids are
0.003143, 0.004202 and 0.00579 respectively.
The thermal conductivities ks (W / (m K))
of the above mentioned wall materials are
65.6, 58.2, 18.3 and the corresponding ther-
mal diffusivities κs(m2/s) are 1.39071× 10−5,
2.39969 × 10−5 and 4.03893 × 10−6 respec-
tively. We acknowledge the limitation of our
modeling in not considering the variation of
the physical properties like density, specific
heat capacity, kinematic coefficient of viscosity
and thermal conductivity with respect to tem-
perature. The thickness of the wall is varied
from 1.35 mm to 7 mm which are commercially
available. Incidentally, ε(= b/δ) is defined as
the ratio of half the thickness of the wall to
the Stokes layer thickness δ. When ω = 15
rad/sec ε is varied from 4.00915 to 20.7882
for K, 3.61561 to 18.7476 for Na and 3.65855
to 18.9703 for NaK. The optimum values of ε

corresponding to the maximum heat flux and
the maximum temperature gradient and the
optimum boundary layer thickness are obtained
and presented in Table. 1 for all the fluids and
solids under consideration.

Table 1 Optimum wall thickness for the
maximum values of Q1 and NT T G,

Optimum Boundary layer thickness and
Total heat flux

Fluid Wall Material
Ni Nb AISI 316

K εQ
∗ 9.6762 13.015 5.2412

εT
∗ 10.517 13.817 5.6292

η∗ 2.4496 2.4512 2.4506
QT
(106W/m2)

4.0487 3.9358 10.131

Na εQ
∗ 8.5896 10.903 4.4166

εT
∗ 9.4316 10.741 4.5496

η∗ 2.4779 2.4774 2.4779
QT
(106W/m2)

16.772 16.742 40.856

NaK εQ
∗ 8.6216 11.140 4.6846

εT
∗ 9.5316 10.981 4.8316

η∗ 2.5141 2.5133 2.5150
QT
(106W/m2)

8.8107 8.7665 21.174
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Fig. 2. The effect of wall thermal
conductivity on the non-dimensional heat

flux transported for K.

Fig. 3. The effect of wall thermal
conductivity on the non-dimensional heat

flux transported for Na.

Fig. 4. The effect of wall thermal
conductivity on the non-dimensional heat

flux transported for NaK.

3.1 The influence of ε on the heat flux trans-
ported

The physical mechanism for the large axial heat
flux achievable in the present heat transfer pro-
cess is an interchange of heat between the fluid
core and the wall. Indeed, the wall contribute
to heat transfer by absorbing the thermal energy
from the hot fluid and giving off the thermal en-
ergy to the cold fluid, during various phases of
the oscillation cycle. Hence, the wall thickness

plays a vital role in this heat transfer process.

Figures 2, 3 and 4 depict the variation of Q1
against ε for K, Na, and NaK respectively, for
different wall materials. It is observed that
when ε increases initially Q1 increases. How-
ever, Q1 attains a constant value for large values
of ε depending on the material of the wall and
the fluid used. The same result was observed
by Inaba et al. (2004), Kaviany (1986) and Ka-
viany (1990).

The effect of ε on NT T G is presented in Figs.
5, 6 and 7 and using these graphs we render a
physical justification for the above observation
as follows.
Energy is transferred from more energetic
to less energetic molecules when neighboring
molecules collide. Conductive heat flow oc-
curs in the direction of the decreasing temper-
atures since higher temperature are associated
with higher molecular energy. By Fourier’s law
of heat conduction the rate of heat transfer is
proportional to the normal temperature gradi-
ent. Larger the normal temperature gradient the
higher will be the rate of heat transfer. Thus
the transverse temperature gradient plays a vi-

Fig. 5. The effect of wall thermal
conductivity on NT T G for K at τ = π/6 and

η = 0.9.

Fig. 6. The effect of wall thermal
conductivity on NT T G for Na at τ = π/6 and

η = 0.9.
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Fig. 7. The effect of wall thermal
conductivity on NT T G for NaK at τ = π/6

and η = 0.9.

tal role on the enhancement of heat transfer.
Here, it is observed that when ε increases the
non-dimensional transverse temperature gradi-
ent NT T G also increases initially but the effect
is saturated beyond a certain wall thickness (Re-
fer Figs. 5, 6 and 7 ). Moreover, the values
of ε at which both Q1 and NT T G attain max-
imum are approximately the same (Refer Ta-
ble. 1). Thus, the effect of ε on Q1 depends
on the effect of ε on NT T G. With the fluid K
and the wall material Nb, it has been observed
that a maximum increase of 46.14 % in the heat
flux (Q1) can be achieved by increasing the wall
thickness. It is also observed that ε has no effect
on Q1 when the frequency is large. This is be-
cause when the frequency is large, the wall ther-

mal penetration distance d =
√

2κs
ω

becomes so
small and hence the wall thickness doesn’t play
any role on the enhancement of heat transfer.
This result is shown in Figs. 2, 3 and 4 when ε

is large (ω is large).

3.2 The effect of ks on the net heat flux
transported

In the thermal pumping process considered
here, during the forward part of the oscillation,
hotter fluid within the core causes a heat flow
to the colder portions of the fluid within the
boundary layers and to the colder solid walls
bounding the fluid. During the other half of the
cycle, heat from the hotter fluid in the boundary
layers and the walls will diffuse into the fluid
core, which is now colder. Therefore the wall
thermal conductivity plays an important role in
this heat transfer process. Figures 2, 3 and 4
represent the effect of the ratio k of the thermal
conductivity of the fluid (k f ) to that of the wall
(ks) on the non-dimensional thermal flux Q1.
It is observed that when k is increased Q1 is
also increased for each fluid whatever may
be the value of ε. In other words, when the

thermal conductivity of the wall is increased
Q1 is decreased. In fact, from Table. 2 it is
clear that the net heat flux is higher in the
case of thermally insulated walls than in the
case of thermally conducting walls. This is
because a part of the total heat flux transported
is conducted through the solid wall when it is
thermally conducting and accordingly there is
a reduction in the heat flux transported by the
fluid when ks is increased (k is decreased).

It is also observed that NT T G behaves in the
same manner as Q in most of the regions of heat
transfer which is explained as follows. With
Na as the working fluid during the forward
part of oscillation, in particular when τ = π/6,
NT T G decreases as ks is increased at any wall
thickness only beyond η = 0.7. This result
is shown in Fig. 6 when η = 0.9. The same
behavior is observed beyond η = 0.9 at τ = π/3
whatever may be the wall thickness. The effect
of ks on NT T G given above is same for τ = π/4
and τ = π only beyond η = 0.8 and η = 0.5 re-
spectively whatever may be the value of ε. The
same result is observed for the other fluid and
solid combinations. When the working fluid is
K, the same result is observed for η ≥ 1.1, η

≥ 0.8, η ≥ 1 and η ≥ 0.6 at τ = π/3, τ = π/6,
τ = π/4 and τ = π respectively whatever may
be the wall thickness. Fig. 5 depicts this fact
for τ = π/6 and η = 0.9. ks has the same effect
on NT T G for η ≥ 1.1, η ≥ 0.8, η ≥ 1 and η

≥ 0.6 at τ = π/3, τ = π/6, τ = π/4 and τ = π

respectively for the fluid NaK irrespective of ε.
This result is shown in Fig. 7 when τ = π/6 and
η = 0.9. Thus, the effect of ks on Q1 depends
on its effect on NT T G in most of the regions of
heat transfer other than the small region closer
to the wall.

3.3 The effect of ks and ε on the thermal
boundary layer thickness

When the fluid is set into oscillatory axial
movement, a time-dependent boundary layer is
formed along the plates, and a large transverse
temperature gradient is established across the
boundary layer. The dependence of the thermal
boundary layer thickness (η∗) on the thermal
conductivity of the wall (ks) and ε is illustrated
in Tables 3, 4 and 5. The results observed are
given below.

For a given fluid, the change in thermal bound-
ary layer thickness due to the wall material is
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Table 2 Heat flux for thermally conducting
and insulated cases

Fluid Wall Material
Ni Nb AISI 316

K T hermally
Insulated
(104W/m2)

4.7330 4.7330 4.7330

T hermally
Conducting
(104W/m2)

1.1595 1.4726 1.7212

Na T hermally
Insulated
(105W/m2)

1.32298 1.32298 1.32298

T hermally
Conducting
(104W/m2)

4.8023 5.9218 6.7315

NaK T hermally
Insulated
(104W/m2)

9.6666 9.6666 9.6666

T hermally
Conducting
(104W/m2)

2.5059 3.1287 3.6224

Table 3 Thermal boundary layer thickness
η∗ for K (Pr = 0.003143, δ = 1.68×10−4 )

Wall Material
2b(m) ε = b

δ
Ni Nb AISI 316

.00135 4.009 2.628 2.740 2.445

.0015 4.455 2.578 2.700 2.444

.0020 5.939 2.475 2.570 2.460

.0022 6.533 2.456 2.531 2.460

.0023 6.830 2.450 2.514 2.460

.0024 7.127 2.446 2.500 2.460

.0030 8.909 2.445 2.451 2.460

.0040 11.879 2.460 2.446 2.460

.0060 17.819 2.460 2.460 2.460

.0070 20.788 2.460 2.460 2.460

Table 4 Thermal boundary layer thickness
η∗ for Na (Pr = 0.004202, δ = 1.87×10−4 )

Wall Material
2b(m) ε = b

δ
Ni Nb AISI 316

.00135 3.616 2.646 2.740 2.476

.0015 4.017 2.600 2.700 2.475

.0020 5.356 2.502 2.585 2.490

.0022 5.892 2.484 2.550 2.490

.0023 6.160 2.479 2.536 2.490

.0024 6.428 2.475 2.523 2.490

.0030 6.696 2.474 2.481 2.490

.0040 8.035 2.490 2.477 2.490

.0060 16.069 2.490 2.490 2.490

.0070 18.748 2.490 2.490 2.490

insignificant as there is only a slight variation
in η∗ with respect to ks. η∗ becomes a constant
as the wall thickness becomes sufficiently

Table 5 Thermal boundary layer thickness
η∗ for NaK (Pr = 0.00579, δ= 1.84×10−4 )

Wall Material
2b(m) ε = b

δ
Ni Nb AISI 316

.00135 3.659 2.682 2.800 2.445

.0015 4.065 2.635 2.757 2.444

.0020 5.420 2.539 2.630 2.530

.0022 5.962 2.521 2.592 2.530

.0023 6.233 2.516 2.577 2.530

.0024 6.504 2.512 2.563 2.530

.0030 8.130 2.511 2.517 2.530

.0040 10.840 2.530 2.512 2.530

.0060 16.260 2.530 2.530 2.530

.0070 18.970 2.530 2.530 2.530

large irrespective of the wall material. These
constant values of η∗ are 2.46 for K, 2.49
for Na and 2.53 for NaK. However, for a
given fluid the minimum wall thickness beyond
which η∗ becomes a constant depends on the
wall material. Comparing the Tables 3, 4 and
5, it is observed that when Pr increases η∗

also increases whatever the material and the
thickness of the wall may be. This result is
in good agreement with the results reported in
Shailendhra and Devi (1997) for low Prandtl
number fluids, in the absence of magnetic field.
It is also observed that when ε increases η∗

decreases up to ε = 8.90923, 4.45462 and
11.879 for the fluid K, up to ε = 8.03469,
4.01734 and 10.7129 for the fluid Na and up
to ε = 8.13011, 4.06506 and 10.8401 for the
fluid NaK respectively for the wall materials
Ni, Nb, AISI 316. These values are very much
closer to the values of ε up to which NT T G
increases for the same fluids and solids (Refer
Table. 1 second row). Therefore, for a given
temperature difference when the transverse
temperature gradient increases η∗ decreases. In
fact, during most of each cycle, the heat transfer
fluid in the boundary layer region adjacent to
the wall has a temperature different from that
of the core region. Therefore, the temperature
difference between the fluid column and the
wall is concentrated within the boundary layer.
Thinner the boundary layer the greater will
be the temperature gradient. Our results are
consistent with these facts.

3.4 Convective and conductive heat flux

The values of convective heat flux (qconv) and
conductive heat flux (qcond) are found for all the
fluids and the solid walls under consideration
and are presented in Table. 6. While calculating
qconv in each case, the optimum value of the
thickness of the wall for which the convective
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Table 6. Comparison of convective heat flux
per unit area (qconv) with conductive heat

flux per unit area (qcond) within the
boundary layer

Fluid Wall Material
Ni Nb AISI 316

K qcond
(104W/m2)

0.7704 0.7704 0.7704

qconv
(107W/m2)

3.6035 4.5733 5.3466

qconv/qcond 4677.7 5936.6 6940.5
Na qcond

(104W/m2)
1.5589 1.5589 1.5589

qconv
(108W/m2)

1.3305 1.6410 1.8650

qconv/qcond 8534.5 10526 11963
NaK qcond

(104W/m2)
0.7042 0.7042 0.7042

qconv
(107W/m2)

6.9241 8.6477 10.006

qconv/qcond 9832.9 12281 14209

heat flux is maximum has been considered. It is
observed that the time averaged convective heat
flux qconv W/m2 transported is maximum for
Na with AISI 316 wall and the maximum value
is 1.87× 108 W/m2. In order to analyze the
enhancement of heat transfer due to oscillation
the ratio qconv/qcond is also computed and
presented in Table. 6 for the various fluids
and the solid walls considered. In general this
ratio varies from 4.678× 103 to 1.421× 104.
Thus, due to oscillation heat flux transported is
increased by more than an order of 103. The
maximum enhancement is observed for NaK
with AISI 316.

3.5 Total heat flux transported in the sys-
tem

The total heat flux transported in the system is
calculated as follows.
The total amount of heat transported in the sys-
tem between y = −2b and y = y∗ per unit time
(QT ) is the sum of the amount of heat trans-
ported by the fluid in the boundary layer region
from y = 0 to y∗ (in the boundary layer) per
unit time (QF) and the amount of heat trans-
ported by the solid from y = −2b to 0 per
unit time (QS).
That is

QT (2b+ y∗)W = QF +QS. (11)

By neglecting the axial conduction in the solid,
the above equation gives

QT =
H1E3

√
Pr(H3e−a4η∗ −1)

2(1+Pr)(2ε+η∗)
(W/m2). (12)

The values of QT corresponding to the optimum
values of η∗ and ε (Refer Table. 1) are com-
puted for various fluids and solids under con-
sideration and are presented in Table. 1. It is
observed that QT is maximum for the fluid Na
with AISI 316 wall and the maximum heat flux
observed is 4.09×107W/m2.

3.6 Comparison of our results with earlier
results

We would like to compare our results with
the earlier works by Kaviany (1990), Kurzweg
(1985b), Inaba et al. (2004), Kurzweg and
de Zhao (1997) and Kurzweg and Chen (1988).

All the results reported in Kurzweg and Chen
(1988) can be recovered from the present inves-
tigation by taking the limit as k = k f /ks −→ ∞

or as b2 −→ 0 (insulated plate).

With water as the working fluid and glass as the
wall material, Kaviany (1990) found that the ef-
fective thermal diffusivity increases as the wall
thickness is increased. Similarly Inaba et al.
(2004) observed that when the pipe inner radius
is fixed the heat transfer through the fluid part
is more enhanced with increasing thickness of
the wall when the working fluid is water and
the wall is made of acrylic, glass and copper.
They also observed that the effect of wall thick-
ness is saturated beyond a certain wall thickness
according to the conductivity of the material.
We have also observed that Q1 increases ini-
tially as the wall thickness is increased and it be-
comes constant for large wall thickness. There-
fore, the role of wall thickness on Q1 depends
on whether the wall thickness is small or large.
On the other hand, Kurzweg (1985b) reported
that the effective thermal diffusivity of the fluid
is not affected by the wall thickness when the
frequency is large. We have also observed the
same result in the case of large frequency. Thus,
our results are in good agreement with Inaba
et al. (2004) and Kurzweg (1985b).

Furthermore, in their parametric analysis,
Kurzweg and de Zhao (1997), showed that large
quantities of heat can be transported through the
tubes when the frequency is large and the ther-
mal conductivity of the wall is higher. But, in
the present problem we observed that the heat
flux decreases when the thermal conductivity
of the wall is increased for each fluid whatever
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may be the wall thickness. The discrepancy of
the result may be due to the fact that the flow
of liquid is confined in a tube in the former case
whereas it is unbounded in the present case. Ac-
cordingly, the boundary conditions are also dif-
ferent and this discrepancy requires further in-
vestigation.

4. CONCLUSIONS

The enhancement of heat transfer in the liquid
metal flow past a thermally conducting infinite
oscillating flat plate of finite thickness, when
a constant temperature is superimposed on the
fluid, has been investigated. In general, it is
found that both the thickness of the wall and
the thermal conductivity of the wall have sig-
nificant influence on the thermal boundary layer
thickness and the total time averaged heat flux,
though the effect of thickness of the wall on the
boundary layer thickness is not very significant.
Following are the results observed:

• For all the fluids under consideration, the
total heat flux (Q1) is enhanced by increas-
ing the ratio (k) of thermal conductivity of
the fluid to that of the wall, when the thick-
ness of the wall (2b) is fixed.

• As the wall thickness is increased, initially
the heat flux Q1 is also increased. How-
ever, when the wall thickness becomes suf-
ficiently large, Q1 becomes constant de-
pending on the fluid and the wall material
used. The optimum value of wall thickness
at which Q1 attains the maximum value,
for each fluid and for each wall material
under consideration, are tabulated. It is be-
lieved that this information will be useful
while designing heat transfer systems us-
ing this technique.

• The thermal boundary layer thickness (η∗)
is not significantly influenced by the wall
thickness and it is found that, for a given
fluid, as b becomes sufficiently large η∗

becomes a constant irrespective of the wall
material used.

• The maximum convective heat flux of
1.87× 108 W/m2 is achieved using Na
with AISI 316 wall.

• Due to oscillation, the heat flux transported
is increased by more than an order of 103,
maximum enhancement of O(104) being
achieved using NaK with AISI 316.

• At ω = 15 rad/sec, by choosing a wall
of low thermal conductivity, an increase

of 46.14 % in the heat flux (Q1) can be
achieved by optimizing the wall thickness.

• When the frequency is very large Q1 is in-
dependent of wall thickness.

• At any frequency, the heat transfer through
the fluid is more enhanced with increasing
ratio of fluid to wall thermal conductivity,
whatever may be the wall thickness.

• The transverse temperature gradient plays
an important role on the enhancement of
heat transfer.

• The effects of ε and ks on the heat flux
transported depend on their effects on
NT T G at any frequency in most of the re-
gions of heat transfer other than the region
very much closer to the wall.

• The total heat flux observed in the sys-
tem by neglecting the axial conduction in
the wall is maximum for the fluid Na with
AISI 316 wall and the maximum value is
4.09×107 W/m2.
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