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ABSTRACT

In the present study an unsteady mixed convection boundary layer flow of an electrically conduct-
ing fluid over an stretching permeable sheet in the presence of transverse magnetic field, thermal
radiation and non-uniform heat source/sink effects is investigated. The unsteadiness in the flow
and temperature fields is due to the time-dependent nature of the stretching velocity and the surface
temperature. Both opposing and assisting flows are considered. The dimensionless governing or-
dinary non-linear differential equations are solved numerically by applying shooting method using
Runge-Kutta-Fehlberg method. The effects of unsteadiness parameter, buoyancy parameter, thermal
radiation, Eckert number, Prandtl number and non-uniform heat source/sink parameter on the flow
and heat transfer characteristics are thoroughly examined. Comparisons of the present results with
previously published results for the steady case are found to be excellent.

Keywords: Boundary layer flow; Stretching sheet; Magnetohydrodynamic; Thermal radiation;
Mixed convection; Heat transfer.

NOMENCLATURE

a,b,c empirical constants
A∗ coefficients of space heat source/sink
B∗ temperature-dependent heat source/sink
B0 magnetic field
cp specific heat at constant pressure
C f local skin-friction coefficient
Ec Eckert number
f (η) dimensionless stream function
f0 suction/injection parameter
g acceleration due to gravity
Grx local Grashof number
K∗ mean absorption coefficient
M magnetic parameter
Nr thermal radiation parameter
Nux local Nusselt number
Pr Prandtl number
q
′′′

non-uniform heat source/sink
qr radiative heat flux
qw local heat flux
Rex local Reynolds number
T fluid temperature
Tw wall temperature

T∞ free-stream temperature
t time (s)
Uw stretching surface velocity
Vw mass suction/injection velocity
u, v x and y components of fluid velocity
x vertical or tangential distance
y normal distance

α unsteadiness parameter
β thermal expansion coefficient
η similarity variable
κ thermal conductivity
λ mixed convection or buoyancy

parameter
µ fluid dynamic viscosity
ν fluid kinematic viscosity
ρ fluid density
ψ stream function
σ electric conductivity
σ∗ Stephan-Boltzman constant
θ(η) dimensionless temperature
τw wall shear stress
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1. INTRODUCTION

The problem of flow and heat transfer induced
by continuous stretching heated surface is im-
portant as it has many practical applications in
the manufacturing processes with obvious rel-
evance to polymer extrusion, in which the ex-
trudate emerges from a narrow slot. For in-
stance, in a melt-spinning process, the extrudate
from the die is generally drawn and simultane-
ously stretched into a filament or sheet, which
is thereafter solidified through rapid quenching
or gradual cooling by direct contact with water
or chilled metal rolls. In fact, stretching will
bring in an unidirectional orientation to the ex-
trudate, thereby improving the quality of the fi-
nal product considerably which greatly depends
on the flow and heat transfer mechanisms. Glass
blowing, wire drawing, continuous casting, and
spinning of fibers also involve the flow due to
a stretching surface. Tsou et al. (1967) con-
sidered the effect of heat transfer on a continu-
ously moving surface with a constant velocity.
Dutta et al. (1985) determined the temperature
distribution in the flow over a stretching sur-
face subject to uniform heat flux. Vajravelu and
Hadjinicolaou (1997) studied flows and heat
transfer characteristics in an electrically con-
ducting fluid near an isothermal sheet. Ravin-
dranath et al. (2010) discussed the combined
effect of convective heat and mass transfer on
hydromagnetic electrically conducting viscous,
incompressible fluid through a porous medium
in a vertical channel bounded by flat walls. Re-
cently, Basiri Parsa et al. (2013) presented
MHD boundary-layer flow over a stretching sur-
face with internal heat generation or absorption.

All the above mentioned studies deal with
stretching surface by considering flow to be
steady. Not much attention has been given in the
above studies when the stretching force and sur-
face temperature are varying with time. Several
authors (Na and Pop, 1996; Andersson et al.,
2000) studied the heat transfer in a liquid film
on an unsteady stretching surface by using a
similarity method to transform governing time-
dependent boundary layer equations into a set
of ordinary differential equations. Elbashbeshy
and Bazid (2004) have presented similarity so-
lutions of the boundary layer equations in the
study of unsteady flow and heat transfer over an
unsteady stretching sheet. Ishak et al. (2009a)
analyzed the unsteady laminar boundary layer
flow over a continuously stretching permeable
surface with prescribed wall temperature. Xu
and Liao (2005) presented an accurate series
solution for an unsteady MHD flow of a non-
Newtonian fluid over a non-impulsively stretch-

ing flat sheet. Ali and Magyari (2007) studied
the unsteady fluid and heat flow induced by a
submerged stretching surface while its steady
motion is slowed down gradually.

A new dimension is added to the study of
flow and heat transfer in a viscous fluid over
a stretching surface by considering the effect
of thermal radiation. The radiative effects have
important applications in physics and engineer-
ing particularly, in the space technology and
high temperature processes. But very little is
known about the effects of thermal radiation on
the boundary layer flows. Thermal radiation ef-
fects might play a significant role in controlling
heat transfer process in polymer processing in-
dustry. The quality of the final product depends
to a great extent on the heat controlling factors
and the knowledge of radiative heat transfer in
the system which leads to a desired product of
sought characteristics. The effect of radiation
on heat transfer problems have been studied by
Hossain and Takhar (1996). The radiation ef-
fect on heat transfer of a micropolar fluid past a
continuously moving plate was investigated by
Raptis (1998). Pal and Malashetty (2008) have
presented similarity solutions of the boundary
layer equations to analyze the effects of ther-
mal radiation on stagnation-point flow over a
stretching sheet with internal heat generation or
absorption. Pal (2009) investigated the effect
of thermal radiation on heat and mass transfer
in two-dimensional stagnation-point flow of an
incompressible viscous fluid over a stretching
sheet in the presence of buoyancy force. Re-
cently, Pal and Mondal (2010) examined the ef-
fect of non-uniform heat source/sink and vari-
able viscosity on MHD non-Darcy mixed con-
vection heat transfer over a stretching sheet
embedded in a porous medium in the pres-
ence of Ohmic dissipation. Srinivasacharya and
Reddy (2013) investigated on mixed convec-
tion heat and mass transfer over a vertical plate
in a Power-Law fluid-saturated porous medium
with thermal radiation and chemical reaction ef-
fects. Recently, Poornima1 and Bhaskar Reddy
(2013) studied the effects of thermal radia-
tion and chemical reaction on magnetohydrody-
namic free convective flow past a semi-infinite
vertical porous moving plate.

Therefore, the aim of the present paper is to ana-
lyze the combined effects of viscous and Ohmic
heating on MHD mixed convection flow of an
electrically conducting incompressible viscous
fluid over an unsteady vertical stretching per-
meable surface in the presence of non-uniform
heat source/sink and thermal radiation. The
stream function is defined differently (com-
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pared to uniform stretching sheet case) in arriv-
ing at the non-linear ordinary differential equa-
tions. These non-linear equations along with the
appropriate boundary conditions are then solved
by employing a numerical shooting technique
with Runge-Kutta-Fehlberg integration scheme
to study the effect of unsteadiness on heat trans-
fer in the laminar flow in a porous medium past
a semi-infinite stretching sheet. The results of
these studies are of great importance, for exam-
ple in the prediction of skin-friction (or shear
wall stress rate) as well as heat transfer rate over
a stretching sheet which would find applications
in technological and manufacturing industries
such as polymer extrusion to obtain quality fi-
nal product.

2. MATHEMATICAL FORMULATIONS

Consider an unsteady two-dimensional laminar
mixed convection boundary layer flow due to
stretching vertical permeable sheet in a quies-
cent viscous incompressible fluid which issues
from a thin slit, as shown in Fig. 1. The ab-
breviations VBL and TBL mentioned in Fig.
1. mean velocity boundary layer and thermal
boundary layer, respectively. It is assumed that
for time t < 0 the fluid and heat flows are
steady and at time t = 0, the sheet is impul-
sively stretched with the velocity Uw(x, t) along
the x-axis, keeping the origin fixed in the fluid
of ambient temperature T∞. The x-axis is taken
along the stretching surface in the direction of
the motion and the y-axis is perpendicular to
the sheet in the outward direction towards the
fluid of ambient temperature T∞. The flow is as-
sumed to be confined in a region y > 0.The flow
is caused by the stretching of the sheet which
moves in its own plane with the surface velocity
Uw(x, t) = ax/(1− ct), where a(stretching rate)
and c are positive constants having dimension
time −1 (with ct < 1,c ≥ 0). It is noted that
the stretching rate a/(1−ct) increases with time
since a > 0.

In order to get the effect of temperature differ-
ence between the surface and the ambient fluid,
we consider the non-uniform heat source/sink
in the flow. The wall mass suction velocity is
Vw = Vw(x, t), which will be determined later.
The flow is subject to a transverse uniform mag-
netic field of strength

−→
B = (0,B,0). Appli-

cation of such a magnetic field stabilizes the
boundary layer flow. The magnetic Reynolds
number is assumed to be small so that the in-
duced magnetic field is negligible. We also
take the strength of the electric field due to po-
larization of the electric charges to be negligi-

Fig. 1. Schematic diagram of the problem.

bly small. Under these assumptions along with
the Boussinesq and boundary layer approxima-
tions, the governing unsteady basic boundary
layer equations for momentum and heat trans-
fer in the presence of thermal radiation and non-
uniform source/sink may be written as

∂u
∂x

+
∂v
∂y

= 0 , (1)

∂u
∂t

+u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 +gβ(T −T∞)−

σB2(t)
ρ

u ,

(2)

∂T
∂t

+u
∂T
∂x

+ v
∂T
∂y

=
κ

ρcp

∂2T
∂y2 +

ν
cp

(
∂u
∂y

)2

−σB2(t)
ρcp

u2 − 1
ρcp

∂qr

∂y
+

q
′′′

ρcp
, (3)

where u and v, respectively are the velocity
components along x− and y− directions, t is
the time, g is the acceleration due to gravity, β
is the thermal expansion coefficient, σ and B0
are the electric conductivity and magnetic field,
respectively. T is the temperature inside the
boundary layer, cp is the specific heat at con-
stant pressure, κ is the thermal conductivity, µ
is the fluid viscosity, ν=µ/ρ is the kinematics
viscosity of the fluid and ρ is density of fluid
and B2(t) = B2

0(1− ct)−1. Temperature of the
stretching surface is Tw(x, t), T∞ is the temper-
ature far away from the stretching surface with
Tw > T∞ and Vw = −(νUw/x)1/2 f (0) represent
the mass transfer at the surface with Vw > 0 for
injection and Vw < 0 for suction (see Ishak et
al., 2009b).
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The associated boundary conditions to the prob-
lem are

u=Uw(x, t), v=Vw, T =Tw(x, t) at y= 0 ,(4)

u → 0, T → T∞ as y → ∞ . (5)

To transform the governing equations into a set
of similarity equations, the following dimen-
sionless parameters are introduced (see Fang et
al., 2009)

Ψ(x,y) =
(

νa
1− ct

) 1
2
x f (η) , (6)

η =

√
a

ν(1− ct)
y , (7)

where Ψ(x,y, t)) is the stream function defined
as

u =
∂Ψ
∂y

= ax(1− ct)−1 f
′
(η) , (8)

and

v =−∂Ψ
∂x

=−
[

νa(1− ct)−1
] 1

2
f (η) , (9)

which identically satisfies the conservation of
mass Eq. (1).

The non-uniform heat source/sink, q
′′′

(Tsai et
al., 2008), is modelled as

q
′′′
=

κUw(x)
xν

[A∗(Tw−T∞)e−η+(T −T∞)B∗] ,(10)

where A∗ and B∗ are parameters of space-
dependent and temperature-dependent heat gen-
eration/absorption, respectively. It is to be noted
that the case A∗ > 0,B∗ > 0 corresponds to in-
ternal heat source and that A∗ < 0,B∗ < 0 corre-
sponds to internal heat sink. It should be noted
that when t = 0 (initial motion), Eqs. (2)-(4) de-
scribe the case of steady flow over a stretching
sheet. The surface temperature of the sheet Tw is
considered as a function of the distance x from
the slot and time t in the form

Tw = T∞ +
bx

(1− ct)2 , (11)

where b is constant with b ≥ 0. Both heating
(Tw > T∞) and cooling (Tw < T∞) of the sheet
are considered, which correspond to assisting
and opposing flows, respectively. The particu-
lar form of Uw(x, t) and Tw(x, t) presented in this

paper has been chosen in order to devise a sim-
ilarity transformation (see Ishak et al., 2009a),
which transform the governing partial differen-
tial equations (2)-(4) into a set of highly nonlin-
ear ordinary differential equations.

The non-dimensional temperature is taken of
the following form:

T (x,y)= T∞+
bx

(1− ct)2 , θ(η)=
T −T∞

Tw −T∞
.(12)

It must be noted that the expressions (8) - (10),
on which the analysis is based are valid only for
t < c−1.

By using Rosseland approximation, the radia-
tive heat flux is given by

qr =− 4σ∗

3K∗
∂T 4

∂y
, (13)

where σ∗ and K∗ are respectively the Stephan-
Boltzman constant and the mean absorption co-
efficient. We assume the differences within the
flow are such that T 4 can be expressed as a lin-
ear function of temperature. Expanding T 4 in
a Taylor series about T∞ and neglecting higher
order terms thus,
T 4 ∼= 4T∞T −3T 4

∞ .

Substituting Eqs. (8)-(13) into (3) - (6), we ob-
tain the following similarity equations

f
′′′
+ f f

′′
− f

′2
−α

(
f
′
+

1
2

η f
′′
)
+λθ−M f

′
= 0 ,

(14)

1+Nr
Pr

θ
′′ − f

′
θ+ f θ

′ −α
(

2θ+
1
2

ηθ
′
)

+
1

Pr
(A∗ f

′
+B∗θ)+Ec (M f

′2
+ f

′′2
) = 0 , (15)

where Pr =
µcp
κ is the Prandtl number, Nr =

16σ∗T 3
∞

3K∗κ is the thermal radiation parameter, α= c
a

is a parameter that measures the unsteadiness.
Further λ is the buoyancy or mixed convection
parameter defined as λ = Grx/Rex

2, in which
Grx = gβ(Tw − T∞)x3/ν2 is the local Grashof
number, Ec = U2

w/[cp(Tw − T∞)] is the Eckert
number, M =σB2

0/(aρ) is the magnetic parame-
ter and Rex =Uwx/ν is the local Reynolds num-
ber. It is to be noted that λ > 0 and λ < 0 cor-
respond to assisting and opposing flows respec-
tively, whereas λ = 0 is referred to the case of
forced convection.

The boundary conditions (4)-(5) now become

f (0) = f0, f
′
(0) = 1, θ(0) = 1 , (16)

f
′
(∞)→ 0, θ(∞)→ 0 , (17)
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where f (0) = f0 with f0 < 0 and f0 > 0 corre-
sponding to injection and suction, respectively.

In Eqs. (14) - (17), prime denotes derivative
with respect to η. It is worth mentioning that
the Eq. (15) reduces to Ishak et al. (2009a) as
Nr,A∗,B∗ → 0.

The quantities of physical interest in this
problem are the skin friction coefficient C f and
the local Nusselt number, Nux, which are de-
fined as

C f =
τw

ρU2
w/2

, Nux =
xqw

κ(Tw −T∞)
, (18)

where the wall shear stress τw and the surface
heat flux qw are given by

τw = µ
(

∂u
∂y

)
y=0

, qw =−κ
(

∂T
∂y

)
y=0

, (19)

with µ and κ being dynamic viscosity and ther-
mal conductivity, respectively.

Using Eq. (19), quantity (18) can be expressed
as

1
2

C f Re
1
2
x = f

′′
(0), Nux/

√
Rex =−θ

′
(0).(20)

It is to be noted that the present problem reduces
to steady-state flow in the absence of magnetic
field, viscous and Ohmic dissipations, thermal
radiation and non-uniform heat source/sink (i.e.
M = Ec = Nr = A∗ = B∗ = 0) for α = 0, then
the closed-form solutions for velocity and tem-
perature fields, in terms of Kummer’s functions,
are respectively given by (Ishak et al., 2009a) as

f (η) = 1− e−η, (21)

θ(η)=
M(2,Pr+1,−Pr.e−η)

M(2,Pr+1,Pr)
e(1−η−e−η)Pr,(22)

where M(a,b,z) denotes the confluent hyperge-
ometric function (see Abramowitz and Stegun,
1965) as follows

M(a,b,z) = 1+
∞

∑
n=1

anzn

bnn!
(23)

where

an = a(a+1)(a+2)...(a+n−1),
bn = b(b+1)(b+2)...(b+n−1). (24)

Thus using Eqs. (21) and (22), the skin friction
coefficient f

′′
(0) and local Nusselt −θ′

(0) are
given by

f
′′
(0) =−1 , (25)

θ
′
(0) =− 2Pr

1+Pr
M(3,Pr+2,Pr)
M(2,Pr+1,Pr)

. (26)

3. THE METHOD OF SOLUTION

The coupled ordinary differential Eqs. (14) -
(15) are of third order in f and second order
in θ, which have been reduced to a system of
five simultaneous equations of first-order for
five unknowns. In order to solve this system
of equations numerically we require five initial
conditions but two initial conditions on f and
one initial condition on θ are known. However,
the values of f

′
and θ are known at η → ∞.

Thus, these two end conditions are utilized to
produce two unknown initial conditions at η= 0
by using shooting technique. The most crucial
factor of this scheme is to choose the appropri-
ate finite value of η∞. Thus to estimate the value
of η∞, we start with some initial guess value
and solve the boundary value problem consist-
ing of Eqs. (14) and (15) to obtain f ′′(0) and
θ′(0). The solution process is repeated with
another large value of η∞ until two successive
values of f ′′(0) and θ′(0) differ only after de-
sired significant digit. The last value of η∞ is
taken as the finite value of the limit η → ∞ for
a particular set of physical parameters for de-
termining velocity f (η) and temperature θ(η)
in the boundary layer. After knowing all the
five initial conditions we solve this system of si-
multaneous equations using fifth-order Runge-
Kutta-Fehlberg integration scheme. The value
of η∞ was selected to vary from 3 to 25 de-
pending upon the physical parameters such as
Prandtl number, non-uniform heat source/sink
parameter, thermal radiation parameter and un-
steadiness parameter so that no numerical os-
cillations would occur. The code was validated
using the previously reported values (Grubka,
Bobba, 1985; Ishak et al., 2009a) and exact so-
lutions (Ishak et al., 2007) under some limit-
ing cases. During the computation, the shoot-
ing error was controlled by keeping it to be
less than 10−6. Thus, the coupled nonlinear
boundary value problem of third-order in f and
second-order in θ has been reduced to a system
of five simultaneous equations of first-order for
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five unknowns as follows:

f
′
1 = f2, f

′
2 = f3,

f
′
3 =− f1 f3 + f 2

2 +α( f2 +
1
2

η f3)−λ f4 +M f2,

f
′
4 = f5,

f
′
5 =− Pr

(1+Nr)

[
f1 f5 − f2 f4 −α(2 f4 +

1
2

η f5)

+
1

Pr
( f2A∗+ f4B∗)+Ec(M f 2

2 + f 2
3 )

]
,

(27)

where f1 = f , f2 = f
′
, f3 = f

′′
, f4 = θ, f5 =

θ′
and a prime denotes differentiation with re-

spect to η.

The boundary conditions now become

f1 = 0, f2 = 0, f3 = β, f4 = 1,
f5 = γ at η = 0 , (28)

f2 = 0, f4 = 0 as η → ∞ . (29)

Since f3(0) and f5(0) are not prescribed so we
have to start with the initial approximations as
f3(0) = β0 and f5(0) = γ0. Let β and γ be the
correct values of f3(0) and f5(0), respectively.
The resultant system of five ordinary differ-
ential equations is integrated using fifth-order
Runge-Kutta-Fehlberg method and denote the
values of f3 and f5 at η = η∞ by f3(β0,γ0,η∞)
and f5(β0,γ0,η∞), respectively. Since f3 and
f5 at η = η∞ are clearly function of β and
γ, they are expanded in Taylor series around
β − β0 and γ − γ0, respectively by retaining
only the linear terms. The use of difference
quotients is made for the derivatives appeared
in these Taylor series expansions. Thus, after
solving the system of Taylor series expansions
for δβ = β−β0 and δγ = γ− γ0, we obtain the
new estimates β1 = β0 +δβ0 and γ1 = γ0 +δγ0.
Next the entire process is repeated starting
with f1(0), f2(0),β1, f4(0) and γ1 as initial
conditions. Iteration of the whole outlined
process is repeated with the latest estimates of
β and γ until prescribed boundary conditions
are satisfied. Finally, βn = βn−1 + δβn−1
and γn = γn−1 + δγn−1 for n = 1,2,3, ... are
obtained which seemed to be the most desired
approximate initial values of f3(0) and f5(0).
In this way all the five initial conditions are
determined. Now it is possible to solve the
resultant system of five simultaneous equations
by fifth-order Runge-Kutta-Fehlberg integra-
tion scheme so that velocity and temperature
fields for a particular set of physical parameters
can easily be obtained. The results are provided
in several tables and graphs.

4. DISCUSSION OF THE RESULTS

The transformed momentum and heat transfer
equations (14) and (15) subject to the bound-
ary conditions (16) and (17) for the flow of
Newtonian fluid over a stretching sheet were
approximated by a system of non-linear ordi-
nary differential equations. These equations
were solved numerically using Runge-Kutta-
Fehlberg method with shooting technique. In
order to verify the accuracy of the present nu-
merical method, we have shown a comparison
of the present results for skin friction coefficient
with the exact solution when f0 = α = A∗ =
B∗ = λ = 0.0 and results are tabulated in Ta-
ble 1. Also, a comparison of the present re-
sults for wall temperature gradient −θ′

(0) for
α = 0.0,1.0 and for various values of Pr and λ
with those of Grubka and Bobba (1985), Ishak
et al. (2009a) and exact solution reported in
Ishak et al. (2007), in the absence of non-
uniform heat source/sink (i.e. A∗ = B∗ = 0.0)
are tabulated in Table 2. From these Tables 1-
2, it is noted that the comparisons are in ex-
cellent agreement with the previously published
work which verifies the accuracy of the numer-
ical method used in the present work.

It is also observed that the present results co-

Table 1 Comparison of skin friction
coefficient fff

′′
(((000))) for various values of PPPrrr

when AAA∗ === 000...000, BBB∗ === 000...000 with the exact
solution

α λ Pr Exact Present
solution result

(Ishak et al.)
(2007)

0.0 0.0 0.72 −1.000000 −1.000000
1.0 −1.000000 −1.000000
3.0 −1.000000 −1.000000

1.0 1.0 −0.560752
2.0 −0.177824
3.0 0.176881

1.0 0.0 −1.320522
1.0 −1.000835
−0.5 10.0 −1.390258
0.5 −1.251086

incides very well with the exact solution (Ishak
et al., 2007). The slight deviation in the values
may be due to the use of Runge-Kutta-Fehlberg
method which has fifth order accuracy. This
shows that the present results are very accurate.
Further, the impact of some important physi-
cal parameters on skin friction coefficient f

′′
(0)

and wall temperature gradient -θ′
(0) may be an-

alyzed from Table 1 and 2. It is to be noted that
the effect of increasing the unsteadiness param-
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eter, α, is to decrease the skin friction coeffi-
cient f

′′
(0) whereas the wall temperature gra-

dient increases with unsteadiness parameter. It
is also observed that the effect of buoyancy pa-
rameter λ is to increase the wall temperature
gradient and the skin friction coefficient. Simi-
larly the effect of Prandtl number is to increase
the Nusselt number.

The combined effects of both Nr and Ec on
temperature profiles are shown in the Fig. 2.
It is observed from this figure that the effect
of increasing the value of the thermal radiation
parameter is to increase the temperature in the
thermal boundary layer for both positive and
negative values of the Eckert number far away
from the stretching sheet. This is due to the fact
that, the divergence of the radiative heat flux,
∂qr/∂y, as the Rosseland radiative absorptivity
K∗ decreases (see expression for Nr) which in
turn increases the rate of radiative heat trans-
fer to the fluid which causes the fluid tempera-
ture to increase. In view of this fact, the effect
of thermal radiation becomes more significant
as Nr → ∞ and the radiation effects can be ne-
glected when Nr = 0. It is found that in the ab-
sence of thermal radiation the temperature goes
on decreasing towards negative temperature till
it reaches to a minimum value in the bound-
ary layer and thereafter the temperature starts
increasing till it matches the boundary condi-
tion at η = ∞ for the case when the value of the
Eckert number is negative. Similar behavior is
seen when Nr = 1.0 but when Nr = 2.0 negative
value of the temperature is not noticed instead
all the values are found to be positive which
shows that thermal radiation appreciably influ-
ence the temperature profiles when Ec = −10.
Further, when Ec = 10 then there is formation
of a peak temperature profile near the stretching
sheet which decreases away from the sheet till it
matches the boundary condition at η = ∞. The
peak value of the temperature decreases with in-
crease in the thermal radiation parameter Nr.

Figure 3 is aimed to shed light on the effect
of the spatial-dependent internal heat genera-
tion/absorpion parameter A∗ on the temperature
distribution in the boundary layer for a fixed
value of B∗ for the case when Ec = −2.0,2.0.
It is observed from this figure that the tempera-
ture distribution in the boundary layer increases
with increase in the values of A∗ due to the fact
that the presence of heat source (A∗ > 0) gen-
erates heat in the boundary layer which causes
the temperature of the fluid to increase and re-
verse effect is seen when (A∗ < 0). The influ-
ence of the temperature-dependent internal heat

Fig. 2. Temperature profiles vs. ηηη for
various values of NNNrrr and EEEccc in assisting

flow.

Fig. 3. Variation of temperature profiles
with ηηη for various values of AAA∗∗∗ and EEEccc in

assisting flow.

Fig. 4. Variation of temperature profiles
with ηηη for various values of BBB∗∗∗ and EEEccc in

assisting flow.

generation (B∗ > 0) or absorption (B∗ < 0) in
the boundary layer on the temperature is similar
to that of spatial-dependent internal heat gener-
ation or absorption is shown in the Fig. 4. Fur-
ther, it is noted from this figure that the tem-
perature decreases with increase in the heat ab-
sorption (sink) (A∗ < 0,B∗ < 0) which is due to
the fact that the thermal boundary layer thick-
ness decreases with increase in the heat absorp-
tion (sink) (B∗ < 0) parameter. Further, it is

2003



D. Pal / JAFM, Vol. 9, No. 4, pp. 1997-2007, 2016.

Table 2 Comparison of results of −−−θθθ
′
(((000))) at the wall with Grubka and Bobba (1985), Ishak

et al. (2009b) and exact solution (Ishak et al., 2007) for AAA∗ === BBB∗ === 000...000
α λ Pr Grubka and Ishak et al. Exact Present

Bobba (1985) (2009b) sol. (Ishak results
et al.,2007)

0 0.0 0.72 0.8086 0.8086 0.808631350 0.80863135
1.0 1.0000 1.0000 1.000000000 1.00000000
3.0 1.9237 1.9237 1.923682594 1.92368256
7.0 − 3.0723 3.072250207 3.07225020
10.0 3.7207 3.7207 3.720673901 3.72067391
100.0 12.294 12.2941 12.29408326 12.29408350

1.0 1.0 1.0873 1.08727815
2.0 1.1423 1.14233928
3.0 1.1853 1.18529031

1 0.0 1.6820 1.68199253
1.0 1.7039 1.70391283
−0.5 10.0 5.5585 5.55850738
0.5 5.5690 5.56899157
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fo=2.0,  A*= - 4.0,  B*= - 0.4 
Nr= 1.0, = 2.0, M= 1.5, Ec= 0.9

f'' (0
)

Pr

 =0.0
 =0.5
 =1.5
 =3.0

Fig. 5. Variation of skin friction coefficient
profiles with PPPrrr for various values of ααα in

assisting flow.

observed that the boundary layer thickness in-
creases as B∗ > 0 increases which results in the
higher value of temperature θ in the thermal
boundary layer. The patterns of the tempera-
ture profiles in the boundary layer do not show
any appreciable change though there is change
in the values of the temperature in the boundary
layer due to increase in the value of A∗ or B∗.

The combined effects of the Prandtl number Pr
and unsteady stretching parameter α on local
skin friction coefficient and Nusselt number are
shown in Figs. 5-6. From Fig. 5, it is observed
that the local skin-friction coefficient f ′′(0) de-
creases with increase in the Prandtl number for

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

fo=2.0,  A*= - 4.0,  B*= - 0.4 
Nr= 1.0, = 2.0, M= 1.5, Ec= 0.9

- 
 '(

0)

Pr

 =0.0
 =0.5
 =1.5
 =3.0

Fig. 6. Variation of Nusselt number profiles
with PPPrrr for various values of ααα in assisting flow.

all the values of α. Further f ′′(0) decreases
with the unsteady stretching parameter α keep-
ing Pr fixed. Fig. 6 represents the behavior of
the Prandtl number on the local Nusselt num-
ber −θ′

(0). It is analyzed that the unsteady
stretching parameter α increases the local Nus-
selt number and similar behavior is seen in the
case of increasing the value of the Prandtl num-
ber. Figs. 7-8, respectively show the variation
of local skin-friction coefficient and local Nus-
selt number against A∗ for different stretching
parameter α. It is seen that increasing the un-
steady stretching parameter α decreases the lo-
cal skin-friction coefficient whereas its effect is
to increase the local Nusselt number for all the
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-4 -3 -2 -1 0 1 2 3 4
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fo=2.0,  Pr= 0.7,  B*= - 0.4 
Nr= 1.0, = 2.0, M= 1.5, Ec= 0.9
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 =0.8
 =1.0
 =1.2

Fig. 7. Variation of skin friction coefficient
profiles with AAA∗∗∗ for various values of ααα in

assisting flow.

Fig. 8. Variation of Nusselt number profiles
with AAA∗∗∗ for various values of ααα in assisting

flow.

values of A∗. Further, it is also seen that the
skin-friction coefficient increases with increas-
ing the value of A∗ whereas opposite effect of
A∗ is seen on the local Nusselt number for all
the values of α. Fig. 9. depicts the variation
of skin-friction coefficient with B∗ for various
values of α. It is noted from this figure that the
local skin-friction coefficient increases with in-
creasing the values of B∗ whereas reverse effect
is seen by increasing the value of α. From Fig.
10. it is observed that the effect of increasing
the value of B∗ is to decrease the value of local
Nusselt number whereas opposite trend is seen
by increasing the values of α.

5. CONCLUSION

The present work deals with studying heat and
mass transfer in the laminar flow of an elec-
trically conducting fluid past an unsteady per-
meable stretching surface in the presence of the
transverse magnetic field and thermal radiation
with non-uniform heat source/ sink. The ef-
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Nr= 1.0, = 2.0, M= 1.5, Ec= 0.9

f'' (0
)

B*

 =0.0
 =0.5
 =0.8
 =1.0
 =1.2

Fig. 9. Skin-friction coefficient profiles with
BBB∗∗∗ for various values of ααα in assisting flow.
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Fig. 10. Nusselt number profiles with BBB∗∗∗ for
various values of ααα in assisting flow.

fects of various physical parameters on the heat
transfer characteristics were examined. Numer-
ical computations show that the present values
of skin friction coefficient and local Nusselt
number are in close agreement with those ob-
tained by previous investigators in the absence
of suction/injection, non-uniform heat genera-
tion/absorption and unsteadiness parameter. In
the light of the present investigation, following
conclusions are drawn:
(i) Viscous dissipation increases the tempera-
ture as it works like a heat source.
(ii) Velocity profiles increases in the assisting
flow whereas reverse effect is observed in the
opposing flow for both the values of Ec=−3,3.
(iii) Increasing the thermal radiation parameter
leads to increase in the value of the temperature
profiles for both the values of Ec =−10, 10.
(iv) Temperature profiles increase with in-
creasing the values of the space-dependent
and temperature-dependent heat source param-
eter whereas reverse effect is seen by in-
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creasing the space-dependent and temperature-
dependent heat sink parameter. (v) Skin-
friction coefficient decreases with increase in
the unsteadiness parameter against Pr,A∗ and
B∗.
(vi) Nusselt number decreases due to in-
crease in the unsteady stretching rate parame-
ter when variations are observed against both
temperature-dependent and space-dependent
heat generation/absorption parameters.
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