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ABSTRACT 

Large amount of sediment deposits in the reservoir area can cause dam break, which not only leads to an 

immeasurable loss to the society, but also the sediments from the reservoir can be transported to generate 

further problems in the downstream catchment. This study aims to investigate the short-to-long term sediment 

transport and channel meandering process under such a situation. A coupled explicit-implicit technique based 

on the Euler-Lagrangian method (ELM) is used to solve the hydrodynamic equations, in which both the small 

and large time steps are used separately for the fluid and sediment marching. The main feature of the model is 

the use of the Characteristic-Based Split (CBS) method for the local time step iteration to correct the ELM 

traced lines. Based on the solved flow field, a standard Total Variation Diminishing (TVD) finite volume 

scheme is applied to solve the sediment transportation equation. The proposed model is first validated by a 

benchmark dambreak water flow experiment to validate the efficiency and accuracy of ELM modelling 

capability. Then an idealized engineering dambreak flow is used to investigate the long-term downstream 

channel meandering process with non-uniform sediment transport. The results showed that both the 

hydrodynamic and morphologic features have been well predicted by the proposed coupled model.  
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1. INTRODUCTION 

The flow and sediment transport after the dambreak 

demonstrate two distinct features: [1] short-distance 

flow effects on the immediate downstream location; 

and [2] long-distance flow influences on the wide 

downstream landscape through morphologic 

process. A qualified numerical model is thus 

required to address both the processes with different 

time steps so as to efficiently predict the long-term 

downstream river meandering process. 

Present studies on such a meandering channel have 

not reached the mature stage, because of the 

complex nature of the morphological changes, and 

the difficulties in the model validation from very 

limited field observations. Besides, it is also quite 

difficult to scale the results of flume experiments to 

natural meandering channels. As a result, the 

relevant studies have been mainly conducted by the 

statistical analysis of historical data and numerical 

simulations, and the latter is becoming more 

popular recently thanks to the rapid development of 

computer technologies. The long-term 

morphological process is commonly described by 

the Shallow Water Equations (SWE) model using 

nonlinear hyperbolic partial differential equations 

(Kocaman and Ozmen-Cagatay, 2015). Capart and 

Young (1998) and Bellos and Hrissanthou (1998) 

studied 1D dambreak flow through a flat bed with 

movable sediment layer by using HLL and 

MacCormack solution scheme. Following Cao et al. 

(2004) and Wu and Wang (2007), it has been found 

that the sediment transport can be represented more 

precisely by the St Venant equations with HLLC-

TVD coupled Godunov upwind scheme. For 

example, Bohorquez and Fernandez-Feria (2008) 

investigated the dambreak flow in an inclined 

channel with suspended sediment using the ROE-

TVD scheme. Zech et al. (2008) investigated the 

dambreak flow scour using LHLL numerical solver 

and their studies showed good agreement between 

the experimental and numerical near-bed sediment 

loads. Besides, practical engineering-scale river 
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meandering processes have also been tentatively 

addressed: Ronco et al. (2009) used 1D model to 

study a 10-year morphological evolution of the 

Zambezi River. Furthermore, to investigate more 

detailed flow information in the cross-section, Yang 

and Jiang (2011) used a 2D Depth-Integrated 

Velocity and Solute Transport (DIVAST) model for 

the Yellow River Delta evolutions from 1992 to 

1995. Even more complex 3D model has also been 

proposed by Kolahdoozan and Falconer (2003) for 

very long-term Humber Estuary morphological 

changes by using an Alternation Direction Implicit 

(ADI) finite difference algorithm. More recently 

good improvements in the SWE solution schemes 

have been reported by Pu et al. (2012; 2014).  

To further improve the prediction of dambreak 

flow from being transient to steady state, and to 

address the long-term morphological evolutions, 

the present study aims to propose a robust 

numerical model based on the Eulerian-

Lagrangian (ELM) method to solve the 

hydrodynamic equations, during which the n+1 

time step is tracked reversely along the 

streamline to the n time step, thus avoiding the 

conventional Euler number restriction imposed 

by the Courant stability criterion. The developed 

ELM method utilizes a coupled explicit-implicit 

numerical scheme with the use of both small and 

large time steps, hence fulfils the cross-scale flow 

computational requirement. In the model 

implementation, water levels and flow fields are 

calculated by the implicit approach and corrected 

explicitly by the Characteristic-Based Split 

(CBS) method at each local time step. After the 

flow field is obtained, the sediment equations are 

then solved by the TVD finite volume method. 

To demonstrate the model performance, both 

short-time flood flow and long-time channel 

meandering process induced by the dambreaks 

are used as the case study.  

This work is motivated by the fact that the 

efficiency of most explicit numerical schemes is 

heavily constrained by the computational time step, 

especially for the complex topographies and 

physical boundaries, although it has the advantages 

of being straightforward in numerical algorithm and 

readily adaptable to GPU acceleration. On the other 

hand, the computational accuracy of implicit 

schemes is generally lower than that of the explicit 

ones, due to the use of significantly larger time step 

and other truncation errors, in spite of their good 

numerical efficiency and stability. For the study of 

long-term river and morphological process, the 

implicit solution method could have more 

promising potentials, as long as its accuracy can be 

built to a suitable level up to the explicit solution. 

Thus the present work aims to merge the merits of 

both and develop a coupled explicit-implicit 

solution scheme for practical engineering purpose.  

2. SHALLOW WATER EQUATIONS 

(SWES) MODEL WITH SEDIMENT 

TRANSPORT 

In this work the SWEs model is used with the 

sediment transport equations to investigate the long-

term river morphological process. Eqs. (1) - (4) 

show the 2D SWEs water-sediment flow model 

(Chen et al., 2015).  
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where   = water surface; t  = time; h  = flow 

depth;  v,uu  are the 2D flow velocities; n  = 

bed roughness; g  = gravitational acceleration; S  = 

sediment suspended load concentration;   = 

sediment settling velocity; *S  = maximum 

suspended load carrying capacity;   = erosion-

deposition coefficient (0.25 for the deposition, 1.0 

for the erosion and 0.5 for the transition); 
bz  = 

movable bed layer thickness;   = bed porosity; 
s  

= density of sediment grain; and )( , bybxb qqq  are 

the horizontal 2D sediment bedload transport (but 

not considered in present study, as we focus on the 

morphological process of plain rivers consisting of 

mainly fine sediment materials). The horizontal 

eddy viscosity coefficient 
HA  in Eqs. (2) and (3) is 

represented as 
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where 
sC  = Horcon coefficient, set 0.1 – 0.2 in this 

study; and A  = node influence area.  

Here we need to note that the sediment transport 

parameters in Eqs. (3) - (4) do not directly affect the 

source term of SWE Eqs. (1) - (2). This is based on 

the assumption that the sediment exchange between 

the water column and erodible bed is not dominant, 

so the flow structure has not been significantly 

modified by the existence of sediment mixture. This 

should be true for many plain rivers located in the 

low-sediment areas.  

3. NUMERICAL APPROACH 

In this proposed work, ELM with a coupled 

explicit-implicit algorithm will be used to 

provide an improved solution capacity of the 

hydrodynamic equations. The solution scheme 

first uses the ELM implicit approach, which 

starts from its n+1 time step along the streamline 

to the n time step in a reverse tracking order. To 

overcome the limitations of the CFL condition in 

a long-term morphological simulation, the θ 

implicit factor is added to the numerical scheme 

to allow for the use of large time steps. For the 

complex and unsteady dambreak flows, the 
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streamlines may not be accurately traceable by 

using the ELM traced lines since they are quite 

different after the transient flow process. To 

improve this tracking, an explicit Characteristic-

based Splitting (CBS) method shall be used 

within each computational iteration to couple 

with the implicit algorithm and thus correct the 

solved water levels and velocity fields, aiming to 

recover the lost detailed flow information. 

Finally, we adopt a standard TVD finite volume 

scheme to solve the sediment transport equations. 

3.1  Implicit Eulerian-Lagrangian Method 

In an ELM computation, the spatially-discretized 

triangular meshes are used. The schematic diagram 

of the present ELM tracking nodes (i.e. by using the 

Moving Least Squares (MLS)), is shown in Fig. 1.  

 

Fig. 1. Schematic illustration of ELM tracking. 

 
As suggested by Zhang et al. (2004), the tracking of 

streamlines contributes to the core computational 

cost of the ELM method, so this efficiency is 

crucial to the modelling of the hydrodynamic 

system. To solve the continuity and momentum 

equations, the finite element method will be used 

after getting *u  from the ELM tracking, with the 

layout of the computational variables as being 

shown in Fig. 2. 

 

 
Fig. 2. Layout of computational nodes and 

variables. 
 

Thus the momentum equation can be written as 

below and solved by the following procedures: 
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When the node i  belongs to the first type of 

boundary conditions, it will not be solved; whereas 

it belongs to the second type of the boundary 

conditions, then   4321 1 tItIII   . In Eq. (6) 

N is the shape function, 
1  is the principle boundary, 

2  is the natural boundary, and 15.0   is the 

explicit-implicit weighting coefficient. So the next 

solution procedures are: [1] use the ELM method to 

calculate the velocity *u  at time n ; [2] solve the 

continuity equation to obtain the water level at time 

1n , 1n ; and [3] substitute it into the momentum 

equation and solve the velocity 1nu . 

3.2  Explicit Galerkin Finite Element 

Method 

The Galerkin-FEM method is well-known for 

solving the self-adjoint problems with good 

consistency (Zienkiewicz and Taylor, 2006). 

Here it will be used with the CBS method to 

explicitly calculate *u  for the continuity and 

momentum equations. When computing the node 

along the characteristic streamline, the 

convective acceleration term is excluded and the 

update of Lagrangian mesh point is carried out to 

solve the fluid convections and diffusions. 

However, this solution method could cause the 

distortion of cells in some 2D and 3D problems. 

After the completion of each single step, it is 

necessary to return to the original grid and insert 

the updated values to these positions, which is 

known as the Galerkin characteristic streamline 

method. In a multi-dimensional domain this can 

be represented as (Zienkiewicz and Taylor, 

2006). 
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where i and j represent the x and y direction 

domains, respectively. For detailed solution 

procedures, refer to Chen et al. (2015). 

To achieve a stable simulation, the computational 

time step should satisfy the following Courant 

criterion:  

u


c

l
Ct em

FL

                                                (8) 

where 
eml  = characteristic element size; ghc   is 

the wave celerity; and 
FLC  = Courant stability 

coefficient.  

3.3  Coupled Explicit-Implicit Method 

In the proposed coupled explicit-implicit solution 

method, the initial flow field is computed by the 

implicit approach and then it is corrected by using 

the explicit algorithm during each time step. A 

schematic illustration of the coupled method is 

shown in Fig. 3. 

  

 
Fig. 3. Schematic illustration of coupled explicit-

implicit computations. 

 
Since the implicit computation is based on the 

streamline tracking, for the complex dambreak 

flows that involve both the transient and steady 

flow regimes, the actual and modelled traced lines 

can be quite different. Hence an explicit iterative 

solver has to be used amid time step 1~ nn  for 

the known flow field nu 、 nh 、 1nu 、 1nh  by 

using the linear interpolation method. This could be 

computationally achieved by using the intermediate 

time m  to obtain mu  and mh . As the nodal 

information around 1~ nn  time step is known, 

the flow field at different nodes can be found 

explicitly within a local time step by using the 

nodal-based CBS explicit algorithm. The coupled 

solution process can also be schematically viewed 

in Fig. 4. 

The CBS method uses the linearized characteristic 

lines as the traced lines, which is similar to the 

linear interpolation scheme used in the Smoothed 

Particle Hydrodynamics (SPH) method. For a 

reasonably small time step between 1~ nn , the 

gradient of the traced and stream lines can be 

considered being identical. Thus the monotonic 

variation within a time step using CBS algorithm 

makes the traced and stream lines have a small 

deviation when the implicit scheme is used. After 

the flow field is found at time 1n  by the implicit 

solution, the explicit method is used at the local 

time step within the correction phase to enhance the 

efficiency of iteration (compared to a fully implicit 

method). Also the benefit of this coupled method is 

that by simply increasing the amount of explicit 

computations, the information lost in the implicit 

computations, i.e. flow field, can be recovered or 

even restored. In terms of 
FLC  number, the implicit 

scheme allows the use of a value 1 ~ 10 for the 

local time step under a weighted average scheme, 

while the explicit scheme only allows for 0.2 ~ 0.4, 

by taking into account the computational efficiency 

and accuracy. In order to maintain the consistency 

of the proposed model in the temporal flow field, 

the explicit iterations shall not advance in time but 

be bounded by the implicit ones. 

 

 

 
Fig. 4. Schematic view of stream/trace lines in a 

coupled computation 
 

3.4   Sediment Transport Computation 

In ELM the tracking is based on a point-to-point 

manner, hence it does not keep the conservation in 

computation. The hydrodynamic model discussed 

above is solved through the simultaneous 

momentum and continuity equations to ensure 

conservations of the momentum flux. In this study, 

a separate model is used to solve the sediment 

transport since the ELM method does not meet the 

requirement on the conservation of sediment flux. 

In this sense, a standard TVD finite volume scheme 

is used to obtain the sediment concentration as 

below: 
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where 
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After the tests, we found that among several 

commonly used slope limiters the Van Leer limiter 

shows the best result with the TVD scheme, as also 

suggested by Hu et al. (2006).  

Key sediment parameters are also needed to solve 

the sediment transport equations. Since the 

sediment bedload transport is not the dominant 

factor in the proposed plain rivers, it is ignored in 

the morphological process and thus only the 

suspended load is considered. The sediment falling 

velocity is determined by using the following 

equation of Zhang (1961): 

d
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where   = kinematic viscosity of water; d = 

sediment size; and 
s  and   = gravity density of 

the sediment grain and water, respectively. The 

suspended sediment carrying capacity of the flow 

can be calculated by  

m
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where k  and m  = empirical sediment 

coefficients, whose values depend on the 

particular river characteristics.  

In order to address the non-uniformity of 

suspended load transport and the bed material 

adjustment arising from the alluvial deformation, 

some modifications of the above equations are 

also provided by Zhang (1998). For example, for 

the non-uniform sediment settling velocity, it has 

the following general form as:  
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where s  =  density ratio between sediment grain 

and clear water. 

Furthermore, the threshold grain size separating the 

bed load and suspended load materials can be 

determined by the so-called suspension index, 

which is represented by   

*u
Rz




                                                           (13) 

where   = 0.41 is the Von Karmon constant; and 

*u  = frictional velocity. From numerous field case 

studies, a general guideline is that Rz  > 4.166 falls 

into the bed load and Rz  < 4.166 falls into the 

suspended load. Meanwhile, the sediment non-

uniformity should also be reflected in the transport 

Eq. (11) as well as the bed deformation Eq. (4), as 

detailed in Liu (2004) and Wu and Wang (2000). 

3.5  Numerical Boundary Conditions  

In terms of the boundary conditions, there are 

basically three types of the boundary as utilized in 

this model. They include: [1] open boundary, which 

is applied in the flow inlet and outlet; [2] land 

boundary, upon which a slip boundary is imposed; 

and [3] moving boundary, which is represented by 

the continuous changes of flow and sediment 

transport. More details on these can be found in 

Chen et al. (2015). 

4. MODEL VALIDATIONS AND 

APPLICATIONS 

In this section, two tests are carried out to validate 

and apply the model to practical engineering 

scenarios. In the first test, a fixed bed shallow 

dambreak flow is used to validate the coupled 

model accuracy and efficiency to reproduce the 

shock flood waves. The second test uses an 

idealized dambreak flow aiming to demonstrate the 

model capability to simulate long-term 

morphological process and sediment transport.  

4.1   Fixed Bed Dambreak Flow Experiment 

This test is based on the fixed bed dambreak flow 

experiment carried out by the CITEEC laboratory 

(Brufau et al., 2004). In the experiment, the flow 

areas were divided into two rectangular pools that 

were bounded by the solid walls and separated by a 

sluice gate. The water detained in the upstream tank 

had a high potential energy, and the downstream 

floodplain provided the outlet flooded area (after 

the dam breaks). A triangular barrier was installed 

on the downstream side of the wall (shown in Fig. 

5). The bed roughness of whole computational 

domain was n  = 0.018 following Brufau et al. 

(2004). The initial water depths on the upstream and 

downstream tanks were 0.5 m and 0.1 m, 

respectively. At the initial time t = 0, the sluice gate 

was opened instantaneously and completely to 

allow the flood water to propagate from the 

upstream to downstream tanks. A schematic layout 

of the experimental condition is shown in Fig. 5 

with six measurement points. 

Following the coupled numerical model 

simulations, the computed water surface and 

velocity field contours of the dambreak flow are 

presented in Fig. 6 (a) and (b), respectively, at four 

different time instants at t = 1, 2, 4 and 8 s. It is 

shown that throughout the time, the bore waves 

propagate to the downstream region and the 

depression waves travel to the upstream tank. The 

triangular barrier changes the downstream flood 

propagation route significantly and a large flow 
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circulation zone is thus generated during the flow 

interactions with the barrier, which is particularly 

clear at t = 2 ~ 8 s.  

 

 
Fig. 5. Schematic layout of dambreak flow test 

(Brufau et al., 2004). 

 

 
 

 
Fig. 6. (a) Computed water surfaces of dambreak 

flow by using coupled explicit-implicit scheme. 

 

 

 
Fig. 6. (b) Computed velocity fields of dambreak 

flow by using coupled explicit-implicit scheme. 

For a comparison with the fully explicit/implicit 

numerical schemes, the simulations are carried out 

again at the same time instants and the 

corresponding flow velocity fields are shown in Fig. 

6 (c) and (d), for the fully explicit and fully implicit 

results, respectively. It shows that both explicit and 

implicit simulations predict almost similar flow 

patterns at time t = 1 ~ 2 s, but obvious differences 

are found at later time t = 4 ~ 8 s. The explicit 

scheme seems to have better capacity to capture the 

shock waves. However, due to the use of dense grids 

near the dambreak mouth, the explicit simulations 

cost more than 10 times of CPU hours than the fully 

implicit ones. In comparison, the coupled 

computations in Fig. 6 (b) used the explicit iterations 

within the implicit cycle thus it recovered some of 
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the lost flow information computed by the fully 

implicit scheme. Besides, since the explicit 

computation was actually carried out within the 

local time step, the coupled numerical scheme only 

increased the computational load by 20%.  

 

 

 

 
Fig. 6. (c) Computed velocity fields of dambreak 

flow by using fully explicit scheme. 

 

 
Fig. 6. (d) Computed velocity fields of dambreak 

flow by using fully implicit scheme. 

To further quantify the accuracy of model 

simulations, the computed water depths at six 

measurement points (shown as S0, S1, S2, and P1, P2, 

P3 in Fig. 5) are presented in Fig. 7. To illustrate the 

robustness of the proposed coupled explicit-implicit 

numerical solution scheme, two additional 

computational results using either a fully explicit or 

fully implicit scheme are also shown for a 

comparison. In the figure, all the model simulations 

are compared with the experimental data of Brufau 

et al. (2004).  
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Fig. 7. Computed and measured water level 

variations of dambreak flow. 

 
It shows that three models give generally 

satisfactory agreement with the measured data at all 

gauging locations. The fully explicit computations 

predicted much larger water level variations than 

the implicit ones, while the coupled computations 

predicted the water levels somewhere between the 

two. However, compared with the fully explicit and 

implicit models, the coupled model has no 

restriction in dealing with either the transient or 

steady flows, which is an important asset for the 

study of cross-scale flow problems in practical 

engineering field. Besides, the coupled model is 

also able to predict highly complex and unsteady 

flood flow propagations and its interactions with the 

triangular obstacle, and the precise location and 

amplitude of the shock waves are well captured. 

The errors could be attributed to the 3D 

experimental flows which were modelled by the 2D 

numerical schemes.  

4.2  Long-Term Channel Meandering 

Process 

After dambreak the downstream river will be 

flooded by the incoming reservoir water and the 

eroded sediment materials, which could create very 

complex morphological scenarios and long-term 

river meandering patterns. Due to the large amount 

of momentum carried by the dambreak flow, the 

flooding waves could cause the failure of river 

dikes and further aggravate the sediment transport. 

When the sediment materials in a river reach a 

certain limit, the flow could diffuse these sediments 

to the downstream floodplain areas and thus 

develop the phenomenon of river channel 

meandering. In this section we will use the 

proposed coupled model to simulate this cross-scale 

flow and alluvial process.   

We consider an originally straight river channel 

with a length of 33.4 km, including a mountainous 

river section of 5 km with a width of 0.7 km and 

longitudinal bed slope of 0.2%. The main plain 

river is located from 5 km to 33.4 km with a 2 km 

wide floodplain and a narrow lead channel of 0.7 

km in width. The floodplain is higher than the lead 

channel by 2 m, and both have a longitudinal bed 

slope of 0.0233%. For the numerical simulations, 

the channel bed roughness is set as n = 0.027 and 

the averaged inflow discharge is 2500 m3/s. The  
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Table 1 Compositions of initial sediment bed layer of downstream channel 
Layer thickness from the top (m) 

Sediment grain diameter (mm) 
Percentage of each sediment composition (%) 

 0.38 0.74 1.69 3.68 7.36 16.94 

1 0.95 0.75 4.5 15.05 44.0 34.75 

5 2.0 3.0 5.0 10.0 30.0 50.0 

10 2.0 3.0 5.0 10.0 20.0 60.0 

 

Table 2 Inflow sediment concentration of each composition 

Sediment diameter (mm) 0.0038 0.0074 0.0169 

Concentration (kg/m3) 3 3 13 

Sediment diameter (mm) 0.0368 0.0736 0.1694 

Concentration (kg/m3) 5 4 2 

 

inflow sediment concentration is assumed to be 45 

kg/m3. The composition of the initial sediment bed 

layer is summarized in Table 1 and the inflow 

sediment concentration for each of the composites 

is shown in Table 2. The sediment mixture is 

assumed to be non-uniform grains. 

Besides, a reservoir is located on the most upstream 

side of the computational domain with an area of 15 

km long and 0.7 km wide. Bed slope from the 

reservoir exit to the river channel is set as 0.6%, 

with the downstream floodplain being increased to 

5 km in width on each side to accommodate the 

faster flow and sediment flushed from the dambreak 

water. A schematic view of the initial topography of 

the computational area is shown in Fig. 8.  

 

 
Fig. 8. Schematic view of initial channel 

topography and reservoir area. 

 
The initial water retained in the reservoir is 80 m in 

depth and the constant water depth in the 

downstream channel is 1.3 m. It is assumed that the 

downstream floodplain is dry at the beginning of 

the dambreak. The initial velocity of all the 

computational domains is set to be zero. The 

following computed results and analyses will be 

discussed in two different time scales, i.e. short 

period just after the dam break and long period up 

to the river meandering, so as to demonstrate the 

model capacity to study cross-scale flows. 

Fig. 9 (a) and (b) show the short period 

propagation of the dambreak flow at time t = 1, 2, 

4 and 8 hours for the water depth and velocity 

field contours. It is shown that dambreak flooding 

is a rapidly transient disastrous process. After one 

hour of the dambreak, one can observe that the 

upper floodplain is quickly filled with about 2.5 m 

deep of water with the flood wave propagation 

being around 1 m/s in velocity. At t = 2 h, the 

separation of downstream and upstream flows is 

obvious as the supply of water from the upstream 

dam area reduced sharply. At later times after t = 4 

h, the flows in the downstream main channel start 

to propagate more quickly and thus separate from 

the rest of flow in the floodplain area. After t = 8 

h, the flows have reached the downstream 

boundary of the floodplain. As we can understand, 

even though the dambreak flow can create 

transient huge disaster due to the bore wave 

propagation in the downstream area, its effect on 

the morphological process is quite limited and this 

is only restricted within the upper section of the 

floodplain (within 8 hours). This is due to the fact 

that the dambreak flow propagates in the whole 

downstream area with the main flow energy being 

diverted. Although serious erosions and 

sedimentations can happen, they are mainly 

concentrated in the local areas near the dam site.  

The above analysis can be further supported by the 

corresponding sediment deposition maps as shown 

in Fig. 10. It implies that only long-term 

morphological process will cause the serious river 

meandering patterns. Nonetheless, the short-term 

simulations just after the dambreak suggest that the 

coupled numerical model is capable of capturing the 

short-term sediment transport in river flows. 

In the intermediate term, the large amount of 

sediment materials from the reservoir area is 

gradually transported to the downstream area. This 

could cause severe local sedimentations at the 

entrance of the plain river, and due to the subsequent 

flow overtopping over the dike crest, the influence 

could reach far downstream regions so the river could 

develop a meandering pattern. The following Fig. 11 

shows the sediment deposition and flow overtopping 

field near the entrance of the plain river after the 

dambreak around time t = 10, 15 and 20 day.  
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Fig. 9. (a) Short-term water level contours after 

dambreak. 

 

 

 

Fig. 9. (b) Short-term velocity field contours 

after dambreak. 

 
 

 

 

 
Fig. 10. Short-term sediment deposition contours 

after dambreak. 
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Fig. 11. Sediment depositions (left) and flow 

velocity fields (right) at entrance of plain river. 

 

 

 

 

 

 

Fig. 12. Long-term downstream sediment 

deposition contours. 
 

Fig. 12 shows the long-term downstream sediment 

deposition process, where the snapshots are taken 

around time t = 3, 6, 9, 12, 15 and 18 months. It is 

shown that as the reservoir sediments enter into the 

downstream river, they start to settle down and 

form alluvial fan at the entrance, whose 

topographic slope is much steeper than that of the 

main river channel. As a result, the newly 

developed braiding channels appear on the top of 

alluvial fan due to the meandering of main flow 

over the sediment deposits. Although the sediment 

deposition process could progress to further 

downstream location in the longer-term, its main 

effect is still concentrated on the upper half of the 

floodplain without extending to the full floodplain 

length. However, the magnitude of the deposition 

increases significantly through the time (i.e. from 3 
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to 15 months). This is demonstrated by the fact that 

around 15-month time the deposition at the upper 

floodplain section has reached about 10 ~ 12 m in 

depth. This long-term sediment simulation has 

once again proved the coupled model’s capability 

due to its adoption of robust explicit-implicit 

numerical solution scheme for the cross-scale 

flows.  

 

 

 

 

 

 

 
Fig. 13. (a) Long-term topographic evolutions of 

downstream meandering river. 

 

 

 

 

 

 
Fig. 13. (b) Long-term velocity fields of 

downstream meandering river. 

 

Finally, the time histories of topographic evolutions 

and velocity fields of the downstream meandering 

river are shown in Fig. 13 (a) and (b), respectively, 

also around time t = 3, 6, 9, 12, 15 and 18 months. 

When the reservoir sediments just get into the plain 

river, the deposition mostly occurs in the main 

channel along a single route. However, as the 

deposition further develops, the appearance of main 

channel gradually phases out due to the decrease in 

the heights between the main channel and the 

floodplain. As a result, certain amount of water 

flows in the lateral direction as the topographic 

gradient there is steeper than the longitudinal 

direction. As this process continues in the longer-

term and propagates to the far downstream region, 
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there could not exist a distinguished main channel 

and sidebank anymore, and the flow routes start to 

go random following the most prevailing bed 

configurations. As a result, the extent of river 

braiding could enlarge which causes further braiding 

in the main channel due to the significant 

modification of hydrodynamic and sediment 

conditions. Besides, the locations of meandering can 

also alternate in different directions of the channel 

arising from the complex and random water-

sediment interactions.  

 

 
 

 
Fig. 14. (a) Topography of very long-term (4 

years) alluvial process and river meandering. 

 

 
 

 
Fig. 14. (b) Velocity field of very long-term (3 

years) alluvial process and river meandering. 

Further evolutions of the topography and velocity 

field are provided in Fig. 14 (a) and (b), for the very 

long-term alluvial process and river meandering 

over several years in the time scale. 

5. CONCLUSIONS   

A coupled explicit-implicit numerical scheme has 

been proposed to simulate the cross-scale flow 

problems that involve short (transient) and long 

(steady state) time simulations. The numerical 

model was constructed by using a coupled FEM-

FVM method to simulate the hydrodynamics and 

sediment transport. Reported laboratory dambreak 

flow experiments were used to validate the 

proposed flow model. The coupled simulations 

were also compared with the fully explicit and 

implicit numerical results. Then the model was used 

to study the long-term river morphological 

processes induced by an idealized dambreak, and it 

shows a good representation of both the short and 

long term river meandering patterns, which is due to 

the robustness of the coupled explicit and implicit 

schemes.    

Future research work will be needed to 

quantitatively validate the long-term 

sediment/morphological simulations based on either 

the laboratory experiments or field observations. 

Besides, more critical evaluations of the relevant 

sediment transport equations and sediment 

parameters should be carried out. 
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