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ABSTRACT 

This paper is devoted to the second-order closure for compressible turbulent flows with special attention paid 

to modeling the pressure-strain correlation appearing in the Reynolds stress equation. This term appears as the 

main one responsible for the changes of the turbulence structures that arise from structural compressibility 

effects. The structure of the gradient Mach number is similar to that of turbulence, therefore this parameter 

may be appropriate to study the changes in turbulence structures that arise from structural compressibility 

effects. Thus, the incompressible model (LRR) of the pressure-strain correlation and its corrected form by 

using the turbulent Mach number, fail to correctly evaluate the compressibility effects at high shear flow. An 

extension of the widely used incompressible model (LRR) on compressible homogeneous shear flow is the 

major aim of the present work. From this extension the standard coefficients Ci became a function of the 

compressibility parameters (the turbulent Mach number and the gradient Mach number). Application of the 

model on compressible homogeneous shear flow by considering various initial conditions shows reasonable 

agreement with the DNS results of Sarkar. The ability of the models to predict the equilibrium states for the 

flow in cases A1 and A4 from DNS results of Sarkar is examined, the results appear to be very encouraging. 

Thus, both parameters Mt and Mg should be used to model significant structural compressibility effects at 

high-speed shear flow.   

Keywords: Compressible; Turbulence; Pressure-strain; Model of turbulence; Shear flow.  

NOMENCLATURE 

bij Reynolds stress anisotropy 

c speed of sound  

Mt turbulent Mach number  

Mg gradient Mach number  

P pressure 

R specific gas constant 

T time 

T temperature 

 

 

Ui velocity in the direction, xi 

 

εs solenoidal part of the dissipation 

δij Kronecker delta 

( )’ Reynolds fluctuation 

( ),i  spatial gradient 

Φij pressure-strain correlation  

γ specific heat ratio   

 
 

1. INTRODUCTION 

Compressible turbulence modeling is an essential 

element for calculations of many problems of 

practical engineering interest, such us 

combustion, environment and aerodynamics. The 

compressibility phenomena have been 

extensively studied and numerical simulation of 

compressible turbulent flows using compressible 

turbulence models have been performed by many 

authors. Previous studies carried out in the last 30 

years have conjectured that compressibility effect 

was linked with dilatational dissipation and 

pressure–dilatation correlation, as it is 

represented by the models of Zeman (1990), 

Sarkar (1991) and others. During the last thirty 

years, many theoretical and experimental works 

have been developed primarily to understand and 

predict the behavior of turbulent flows. In fact, 

the models which developed turbulence gave full 

satisfaction in simple configurations for the 

homogeneous flows.  

In this context, many studies, Sarkar and 

Lakshmanan (1991), Bradshaw (1977), H. 
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Marzougui et al. (2005) Carlos A. Gomez (2013), 

Hechmi et al. (2008) of the compressible shear flow 

which show the changes of the turbulence structures 

are principally due to the structural compressibility 

effects which significantly affect the pressure-strain 

correlation. Thus, the pressure-strain correlation 

appears as the main factor for the changes in the 

magnitude of the Reynolds stress anisotropies. The 

extension of the standard models to compressible 

flows represents a research topic of great scientific 

and industrial interest. 

A major challenge related to this extension is to 

take into account the compressibility effects in the 

classical scheme closure of turbulence. 

It is well concluded that the Favre Reynolds stress 

closure using the standard models of the pressure-

strain correlation with the addition of the 

compressible dissipation and pressure-dilatation 

correlation models failed to predict high 

compressible flows (Speziale et al. (1995), Sarkar 

(1995) and Hamba (1999) also performed DNS 

results of compressible homogeneous shear flow 

and reached similar conclusions concerning the 

roles of dilatational terms. 

The consequent effects on the pressure-strain 

correlation may cause significant changes on 

turbulence structures. According to the DNS results 

of Sarkar (1995), there is a reduction in the 

magnitude of the Reynolds shear stress anisotropy 

and an increase in the magnitude of the normal 

stress anisotropy. As a consequence, the pressure 

strain modeling seems to be an important issue in 

the second order closures for the compressible 

turbulent flows.     

A method of including compressibility effects in the 

pressure strain correlation is the subject of the 

present study. The LRR model developed by 

Launder-Reece and Rodi (1975) has shown a great 

success in simulating a variety of incompressible 

complex turbulent flows. Thus, a compressible 

correction for the LRR model is the major aim of 

this study. In the present work, the correction 

concerns essentially the Ci coefficients which 

became in a compressible situation a function of the 

turbulent Mach number and the gradient Mach 

number.  

In the present study, we concentrate on evaluating 

the models of the pressure-strain correlation in the 

homogeneous shear flow. 

2. GOVERNING EQUATIONS 

The General equations governing the motion of a 

compressible fluid are the Navier-Stokes equations. 

They can be written as follows for mass, 

momentum and energy conservation: 

∂ρ

∂t
+

∂(ρui)

∂xi
= 0                                                       (1) 

 ∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
=

∂σij

∂xj
                                            (2) 

∂(ρe)

∂t
+

∂(ρeuj)

∂xj
=

∂

∂xj
σijui −

∂

∂xj
(kT,j)                     (3) 

Here ρ is the density, u is the velocity, p is the 

pressure, e is the internal energy, T is the 

temperature, μ is the viscosity, k is the thermal 

conductivity and Cv is specific heat at constant 

volume. Where: 

σij = −pδij + τij                                                           (4) 

e = CvT                                                                 (5) 

τij = 2μSij                                                              (6) 

Sij = (ui,j + uj,i)/2                                               (7) 

For an ideal gas, the relation between pressure, 

density and temperature can be written as follows:  

p=ρRT                                                                   (8) 

3. BASIC EQUATIONS OF THE 

FAVRE SECOND-ORDER 

CLOSURE IN COMPRESSIBLE 

FLOWS 

For compressible homogeneous shear flow, the 

mean  

gradient velocity is given by: 

Ũi,j = Sδi1δj2 = {
S , if (i, j) = (1,2)
0 , i ≠ 1, j ≠ 2

                    (9) 

Where S is the constant mean shear rate. These 

considerations lead to: 

Ũk,k = 0, ρ̅ = constante                                     (10) 

The Favre equations for conservation of mass, 

momentum and energy are: 

 ∂

∂t
ρ +

∂

∂xi
(ρŨi) = 0                                             (11)  

∂

∂t
(ρŨi) +

∂

∂xj
(ρŨiŨj) +

∂

∂xj
ρui

"uj
" =

∂

∂xj
[τ̃ij + τij

"̅ −

p̅δij]                                                                     (12) 

∂

∂t
(ρ C̅vT ̃) +

∂

∂xi
(ρ C̅vT̃ Ũi) = −p

∂

∂xi
Ũi −

p 
∂

∂xi
ui

′′ − p′ ∂

∂xi
ui

"̅̅ ̅̅ ̅̅ ̅̅ ̅
+ Φ +

∂

∂xi
k

∂

∂xi
T

̅̅ ̅̅ ̅̅ ̅̅
−

 
∂

∂xi
(ρ̅Cvui

"T"̃)                                                      (13)    

Where  :      

τ̃ij = 2μ̅S̃ij −
2

3
μ̅Ũk,kδij                                        (14) 

S̃ij = (Ũi,j + Ũj,i)/2                                             (15) 

τij
" = 2μ̅si,j

" −
2

3
μ̅uk,k

" δij                                       (16) 

Φ̅ = τijui,j̅̅ ̅̅ ̅̅                                                            (17)       

Classically, the second-order closure requires a 

transport equation of the turbulent dissipation rate. 

The new concept of dissipation in compressible 

turbulence was proposed by Sarkar et al. (1995), 

Zeman (1991) and Ristorcelli (1997) and can be 

written as follows 

εij =
2

3
εδij                                                          (18) 
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Where for homogeneous turbulence ρ̅εs = μωiωi
′̅̅ ̅̅ ̅̅ ̅̅ , 

ωi
′is the fluctuating vorticity and ρ̅εc =

4

3
μ(ui,i

′ )
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 

represent the solenoidal and compressible parts of 𝜀 

respectively. Sarkar et al. (1990) have mentioned 

that for moderate Mach numbers, εs is insensitive to 

the compressibility changes. For εs, model transport 

equation, similar to what it was obtained in the 

incompressible case. Such a model equation is 

written in (1985), namely: 

ρ̅
dεs

dt
= −Cε1ρ̅

εs

k
ui

"uj
"̃ Ũi,j + p′ui,i

′̅̅ ̅̅ ̅̅ − Cε2ρ̅
εs

2

k
        (19) 

Where Cε1 and Cε2 are respectively the model 

constants Cε1=1.44 and Cε2=1.83 

𝜀𝑐 is generally taken to be proportional to 𝜀𝑠through 

the following equation algebraic equation: 

εc = f(Mt)εs                                                        (20) 

As it is suggested in model (1991), one can write 

f(Mt)=0.5Mt
2 

f (Mt) is a function of the turbulent Mach number 

The Reynolds stress is solutions of the transport 

equation:  

ρ̅
d

dt
(ui

"uj
"̃ ) = Pij + Φij

∗ +
2

3
p′d′̅̅ ̅̅ ̅δij −

2

3
ρ̅εδij        (21)   

Where P the turbulent kinetic energy production: 

Pij = −ρ̅ui
"uj

"̃ Ũi,j                                                  (22) 

Φij
∗ = p′ (

∂ui
"

∂xj
+

∂uj
"

∂xi
)

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
−

2

3
p′d′̅̅ ̅̅ ̅δij                          (23) 

The turbulent kinetic energy equation is 

ρ̅
dk

dt
= −ρ̅ui

"uj
"̃ Ũi,j + p′d′̅̅ ̅̅ ̅ − ρ̅ε                            (24) 

The turbulent Mach number is described in (1985) 

by the transport equation as follows  

dMt

dt
= Mt

P

2k
+

Mt

2ρ̅k
[1 +

1

2
γ(γ − 1)Mt

2] (p′d′̅̅ ̅̅ ̅ − ρ̅ε)  

(25) 

4. MODEL OF TURBULENCE  

It is generally accepted that the term of the 

pressure-dilatation plays an important role in the 

modeling of turbulent compressible flows and 

behavior analysis of the turbulence. Indeed, this 

term which appears in the equation of turbulent 

kinetic energy seems to have important effects on 

the evolution of turbulence. Such effect is 

manifested by a reduction in the turbulent kinetic 

energy when the turbulent Mach number increases. 

In this context, the results of the numerical 

simulation developed by Sarkar et al. 

(1991,1992,1995) and Blaisdell et al. (1991) have 

already shown that the pressure-dilatation 

correlation is an important indicator for the 

compressibility. 

In this part, we will choose a number of models 

from literature that are well-known and that express 

the pressure-dilatation.  

Model of Sarkar(1992) 

The algebraic form of the model developed by 

Sarkar et al. (1992) and expressing the pressure-

dilatation correlation is as follows: 

p′d′̅̅ ̅̅ ̅ = −α2PMt + α3ρ̅εsMt
2                                   (26) 

α2 = 0.15 

α3 = 0.2 

Model of Zeman(1990) 

 p′d′̅̅ ̅̅ ̅ = −
1

2

D

Dt
(

p′2̅̅ ̅̅̅

γp̅
) = (γp̅)−1 [

p′2̅̅ ̅̅̅−pe
2

τ
+

(
5−3γ

12
) p′2̅̅ ̅̅ U̅k,k]                                                    (27) 

Where τ is the acoustic time scale, 

τ =
k

ε
Mt                                                                     (28) 

pe
2 = 2ρ̅2kγRT̃ (

Mt
2+Mt

4

1+Mt
2+Mt

4)                                     (29) 

Model of F. Hamba(1999) 

p′d′̅̅ ̅̅ ̅ = −(1 − Cpd3
χp) [Cpd1Mt

2 D

Dt
(ρ̅k) +

Cpd2
γρ̅Mt

2kŨi,i]                                                   (30) 

Where 

χp = (
p′2̅̅ ̅̅̅

2ρ̅2C2k
)                                                      (31) 

When Cpdi, (i = 1,3) are numerical constants 

Model of El Baz and Launder (1996) 

p′d′̅̅ ̅̅ ̅ = −F (P −
2

3
kUk,k) , F = 1.5Mt

2                 (32) 

Model of Ristorcelli (1997) 

p′d′̅̅ ̅̅ ̅ =
C1Mt

2

C2+C1Mt
2 (RijŨi,j − εs)                               (33) 

We note that there are other models using 

different compressibility parameters as the 

density variance, for example those developed by 

Taulbee et al. (1991), Hamba (1999), Simone et 

al. (1997), Hanafi (2013), and Bogdanoff et al. 

(1983) . 

For compressible homogeneous shear flow, the 

DNS results of Sarkar (1995) show the change in 

the magnitude of the components of Reynolds 

stress anisotropy tensor and the growth rate of 

turbulent kinetic energy. Thus, the 

compressibility has a significant effect on the 

pressure fields and in consequence on its 

correlations such as the pressure-strain, the 

pressure-dilatation. The work of Sarkar (1991) 

recommends to use the gradient Mach number 

with the turbulent Mach number in order to 

predict the correct behavior of compressible 

turbulence. This is the point on which the present 

work is centered. At first, we have examined 

some basic assumptions which were used in 

constructing turbulence models. For compressible 

homogeneous shear flow, the growth rate of the 

turbulent kinetic energy is given by the following 

equation. 
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^ =
1

SK

dK

dt
=

P − ε + p′d′̅̅ ̅̅ ̅

SK

= −2b12 −
εs

Sk
+

p′d′̅̅ ̅̅ ̅

ρ̅
− εc

Sk
 

    (34) 

Vreman et al. (1996) performed DNS results for 

compressible mixing layers. From which, they 

deducted that the diagonal rapid part of the 

pressure-strain correlation are approximately 

proportional to the growth rate. Pantano and Sarkar 

(2003) used DNS results to study the 

compressibility effects in the high-speed turbulent 

shear layer. They showed that the components of 

the pressure-strain correlation and the pressure 

variance normalized by its incompressible 

counterparts decrease similarly. 

Φij

(Φij)
I ~

√p′2̅̅ ̅̅̅

√p′2̅̅ ̅̅̅I
                                                          (35) 

The hypothesis about an approximate 

proportionality between 
Φij

(Φij)
I  , 

√p′2̅̅ ̅̅̅

ρ̅K
/(

√p′2̅̅ ̅̅̅

ρ̅K
)

I

and 

^
^I⁄  can be supported as in H.Marzougui and 

al.(2005) and we can write. 

Φij

sk

(
Φij

SK
)

I ~
^

^I
~

√p′2̅̅ ̅̅ ̅

ρ̅K

(
√p′2̅̅ ̅̅ ̅

ρ̅K
)

I                                               (36)  

Now, we consider the equation 

Φij

sk

(
Φij

SK
)

I =
^

^I                                                            (37) 

It comes 

Φij

(Φij)
I =

dK

dt

dKI

dt

                                                          (38)  

The turbulent kinetic energy K and KI   satisfied the 

transport equations 

dK

dt
= P − εs − εc + p′d′̅̅ ̅̅ ̅                                     (39) 

dKI

dt
= PI − εs                                                       (40) 

 

From the two last equations, the time derivative 

ratio in RHS of Eq. (38) can be written as 

dK

dt

dKI

dt

= [

P

εs
−1

PI

εs
−1

] (1 −

εc
εs

P

εs
−1

) (1 +
p′d′̅̅ ̅̅ ̅̅

P−ε
)                    (41) 

The DNS results of Sarkar(1995) show that the 

relative dissipation εs P⁄ is less affected by 

compressibility and it shows a similar equilibrium 

value as its incompressible counterpart εs PI⁄ . Thus, 

the term between the square brackets in (41) can be 

approximated by 1 and we can obtain  

dK

dt

dKI

dt

= (1 − β
εc

εs
) (1 +

p′d′̅̅ ̅̅ ̅̅

P−ε
)                                 (42) 

β = (
1

P

εs
−1

)                                                          (43) 

Where, β is a numerical constant can be determined 

by the equilibrium value of εs⁄PI .From eqs.(38,42), 

we have    

p′d′̅̅ ̅̅ ̅ = [

Φij

Φij
I −1+β

εc
εs

1−β
εc
εs

] (P − ε)                                   (44) 

Pantano and Sarkar (1991) use two scales to express 

Φij Φij
I⁄ by a function of the turbulent Mach number 

and gradient Mach number. 

Φij

Φij
I = 1 − f(Mt, Mg)                                            (45) 

Where f(Mt, Mg)is a function model of turbulent 

Mach number and gradient Mach number. 

f(Mt, Mg) = Mt
2 (

b−e
[−(αMg−β)

2
]

1+bMt
2 )                         (46) 

p′d′̅̅ ̅̅ ̅ = −f(Mt, Mg)P + αMt
2εs                            (47) 

α=0.9, β=0, b= 4.2 

The present work deals with the problem of 

modeling of the pressure-dilatation, for this reason 

we choose a number of models from literature that 

are well-known. 

Launder Reece and Rodi(1975) 

The models established in compressible turbulent 

flows are deduced by a simple extension of their 

incompressible counterparts. This extension 

concerned only one incompressible model, it is due 

to Launder, Reece and Rodi (1975), this model is 

written in the following form: 

Φij
∗ =   −C1ρ̅εsbij + C2ρ̅k (S̃ij −

1

3
S̃kkδij) +

C3ρ̅k (bipS̃jp + bjpS̃ip −
2

3
bpqS̃pqδij) +

C4ρ̅k(bipΩ̃jp + bjpΩ̃ip)                                        (48) 

Where C1, C2, C3 and  C4 are constants that take on 

the values of: C1=3,  C2 =0.8 et  C3=1.75 et C4=1.31   

S̃ij =
1

2
(ũi,j + ũj,i)                                                (49) 

Ω̃ij =
1

2
(ũi,j − ũj,i)                                              (50) 

bij =
1

2k
ui

"uj
"̃ −

1

3
δij                                             (51) 

Model of Adumitroaie et al. (1999) 

Adumitroaie et al. (1999) assumed that 

incompressible modeling approach of the pressure-

strain correlation can be used to develop turbulent 

models taking into account compressibility effects. 

Considering a none zero divergence for the velocity 

fluctuation called the compressibility continuity 

constraint and using different models for the 

pressure dilatation which is proportional to the trace 

of the pressure strain, their model for the linear part 
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of this term is written as:  

Φij
∗   =  −C1ρ̅εsbij + ρ̅k (

4

5
+

2

5
d1) (S̃ij −

1

3
S̃llδij) +

2ρ̅k(1 − C3 + 2d2) [bikS̃jk + bjkS̃ik −
2

3
bmlS̃mlδij] − (1 − C4 − 2d2)ρ̅k (bikΩ̃jk +

bjkΩ̃ik −
4

3
d2S̃kkbij)                                            (52) 

Where:  C3 = C3
I + 0.3Mt ; 

C4 = C4
I − 0.3Mt 

Present Model 

p′d′̅̅ ̅̅ ̅ = −f(Mt, Mg)P + αMt
2εs                            (53) 

Where ;  C3 = C3
I + Mt

2 (
b−e

[−(αMg−β)
2

]

1+bMt
2 ) 

               C4 = C4
I − Mt

2 (
b−e

[−(αMg−β)
2

]

1+bMt
2 ) 

In Eqs. (52) and (53), the coefficients C3
I  and C4

I  are 

those of the incompressible LRR model 

C3
I = 1.75 

C4
I = 1.31 

5. RESULTS AND DISCUSSION 

The transport Eqs. (19), (21), (24) and (25) on 

which the second order closure for compressible 

homogeneous shear flow is based, are solved using 

the fourth-order accurate Runge-Kutta numerical 

scheme. 

The ability of the proposed model to predict the 

anisotropy of compressible homogeneous turbulent 

shear flow will be now considered. The model 

predictions will be compared with DNS results 

conducted by Sarkar (1995) for cases A1 and A4. 

These cases correspond to different initial 

conditions for which the initial values of the 

gradient Mach number Mg change by changing the 

initial values of Sk/ε and taking Mt constant as it is 

listed in Table1. 

Figures (1, 2), (3, 4) and (5, 6) show the non-

dimensional time (St) variation of the Reynolds 

stress anisotropies b11, b22, and b12. From these 

figures, it is clear that at low-Mg values, Figs. (1, 3 

and 5), the Adumitroaie et al. (1999) model is in 

agreement with DNS data but at high-Mg values 

Figs. (2, 4, 6), the proposed model appears to be 

able to predict correctly the significant decrease in 

the normalized turbulent production term −2b12 and 

the increase in the streamwise term b11, as well as 

the transverse b22 Reynolds stresses anisotropies 

with increasing the gradient Mach number. Results 

obtained with Adumitroiae et al.’s model (1999) 

disagree with DNS data, especially at high-Mg 

values in case A4, this model is still unable to 

predict the changes in the magnitude of the 

Reynolds stress anisotropy when the 

compressibility is higher. 

 

Table 1 Initial condition for the DNS results of 

Sakar (1995) in compressible homogeneous shear 

flow 

Case Mt Mg Sk/ε 

A1 0.4 0.22 1.6 

A2 0.4 0.44 3.6 

A3 0.4 0.66 5.4 

A4 0.4 1.32 10.8 

 

 
Fig. 1. Time evolution of the Reynolds-stress 

anisotropy b11 in case A1. 

 

 
Fig. 2. Time evolution of the Reynolds-stress   

anisotropy b11 in case A4. 

 

 
Fig. 3. Time evolution of the Reynolds-stress b22 

in case A1. 
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Fig. 4. Time evolution of the Reynolds-stress b22 

in case A4. 
 

 
Fig. 5. Time evolution of the Reynolds-stress 

anisotropy -2b12 in case A1. 

 

 
Fig. 6. Time evolution of the Reynolds-stress 

anisotropy -2b12 in case A4. 

 

 
Fig. 7. Time evolution of the pressure-strain 

correlation Φ11 in case A1. 

From all the figures, the incompressible Launder, 

Reece and Rodi model (1975) is unable to predict 

the dramatic changes in the magnitude of the 

Reynolds stress anisotropy that arise from 

compressibility, while the present Model provides 

an acceptable performance in reproducing the DNS 

results in cases A4. This model explains the 

importance of the evolving of Mg with the 

commonly used the parameter Mt in modeling the 

high compressible turbulent flow. 

 

 
Fig. 8. Time evolution of the pressure-strain 

correlation Φ11 in case A4. 

 

 
Fig. 9. Time evolution of the pressure-strain 

correlation Φ12 in case A1. 

 

 
Fig. 10. Time evolution of the pressure-strain 

correlation Φ12 in case A4. 

 
Figs. ((7, 8); (9, 10) and (11, 12)) present the 

behavior of the pressure-strain correlation. As can 
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be seen in these figures, the present model yields 

acceptable results that are in good qualitative 

agreement with the DNS data, especially at high 

gradient Mach number (case A4) . 

Figs. (13, 14) present the behavior of the 

normalized dissipation εs/Sk, (εs/Sk=-2b12 εsP) for 

cases A1 and A4 . It can be seen that there is a 

decrease in εs/Sk when Mg increases, since the 

compressibility effects cause the significant 

reduction in the Reynolds turbulent shear stress b12 

from numerical simulation cases A1 and A4 of the 

previous DNS results. It is clear that the proposed 

model is in accordance with the DNS results. 

 

 
Fig. 11. Time evolution of the pressure-strain 

correlation Φ22 in case A1. 

 

 
Fig. 12. Time evolution of the pressure-strain 

correlation Φ22 in case A4. 

 

 
Fig. 13. Time evolution of the turbulent 

dissipation rate: εs/Sk in cases A1. 

 
Fig. 14. Time evolution of the turbulent 

dissipation rate: εs/Sk in cases A4. 

 

 

Fig. 15. Time evolution of the pressure-dilatation 

correlation 𝐩𝐝 =
(−𝐩′𝐝′̅̅ ̅̅ ̅̅ ̅̅ �̅�+𝛆𝐜⁄ )

𝐒𝐤
 in case A1. 

 

 
Fig. 16. Time evolution of the pressure-dilatation 

correlation 𝐩𝐝 =
(−𝐩′𝐝′̅̅ ̅̅ ̅̅ ̅̅ �̅�+𝛆𝐜⁄ )

𝐒𝐤
 in case A4. 

 
Figs. (15, 16) present the behavior of the 

dilatational terms in cases A1 and A4.It will be 

shown that these terms are much smaller to explain 

the compressibility effect on the turbulence. Using 

Eq. (34. One can notice that the compressibility 

effect of decreased growth rate of turbulent kinetic 

energy is due to a decrease of the normalized 

production term. It will be shown from cases A1, 

A2, A3 and A4that the asymptotic values of turbulent 

parameters are highly dependent on the initial 

conditions when Mg is changed. This shows that the 
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gradient Mach number is an important parameter 

that describes the level of stabilizing effect of 

compressibility.   

Our model is actually designed to study cases of 

high- compressibility and to the limit moderate 

compressibility. Whereas, the case A1 correspond 

to a low-compressibility, it is clear that even the 

incompressible models can describe the evolution 

of the pressure-dilatation term such as is shown in 

Fig. 15. 

Generally the modeling of the pressure-strain 

correlation is calibrated for a large time relatively to 

equilibrium conditions, therefore, all the models 

cannot predict accurately these terms for enough 

small time.   

6. CONCLUSION 

In this study, the compressible models are used to 

describe the evolution of the turbulence and the 

performances of these models which are 

compared to the results of numerical simulation 

of Sarkar (1995). The standard model for the 

pressure-strain correlation of L. R. R. yields poor 

predictions for compressible homogeneous shear 

flow. It is clear that this model is unable to 

predict the effect of compressibility, while the 

predictions of the compressible models using the 

turbulent Mach number yield encouraging result. 

The present model is an extension of the LRR 

model involving the gradient Mach number Mg 

with the commonly used Mt appears to be able to 

predict accurately the structural compressibility 

effects. Therefore, the gradient Mach number Mg 

is concluded to be an important parameter in 

addition to Mt in the modeling of the pressure-

strain correlation for high compressible 

homogeneous turbulence. 
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