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ABSTRACT 

This work is devoted to study the Taylor-Couette flow at the early structuring stages. It is aimed to gain insight 

on the Taylor and Ekman vortices genesis mechanism since the first hints of presence detected at Ta=10-4. 

Simulations are carried out using Ansys Fluent software package. The basic system geometry is characterized 

bya height H= 150mm, ratio of inner to outer cylinder radii η= 0.9, radial gap δ= 0.11 and an aspect ratio 

corresponding to system height reported togap length, Г= H/δ = 15. Ekman and Taylor cells are tackled since 

the Taylor number Ta=10-4 to the first (TVF) and second (WVF) instabilities settlement at Tac1= 43.8 and Tac2= 

54, respectively. It is sought to shed light on the underlying mechanism responsible for flow genesis and to 

identify all the intermediate successive steps from ex-nihilo when the system is at rest up to complete vortices 

formation. The obtained results show that presence of Ekman cells is already perceptible since a Taylor number 

as low as Ta= 10-4. In fact, localized overpressure zones are detected on system inner endcaps surfaces regularly 

distributed according to a π/2 phase lag. These overpressure zones azimuthally propagate to meet and cover the 

entire gap circumference when Ta~10-2 to10-1.  

Keywords: CFD; Taylor-Couette flow; Ekman cells; Fluent software; TVF; WVF. 

NOMENCLATURE 

H height of cylinder TVF Taylor Vortex Flow 

R1 radius of innercylinder WVF Wavy Vortex Flow 

R2 radius of outer cylinder η radius ratio= R1/R2 

Ta Taylor number Ω1 angular velocity of inner cylinder 

Tac1 first instability critical taylor δ gap width = R2-R1 

Tac2 second instability critical taylor Г aspect ratio = H/δ 

CCF Circular Couette Flow ν kinematic viscosity 

 

1. INTRODUCTION 

Rotating flows are thoroughly considered in 

literature devoted to applied sciences. This is 

certainly due to diversity of the fundamental and 

applied aspects with the wealthy involved 

phenomenology exhibited particularly when 

laminar-turbulent transition is considered. 

The Taylor-Couette flow is defined as a fluid 

movement evolving in the annular gap of two 

concentric cylinders with one or both are set in 

rotation or counter-rotation. Several applications are 

relevant to this flow system in industry such as 

turbomachinery, mixing processes, tribology, 

tangential filtration, crystallization, etc. It is also 

used in nuclear reactors tours insulation, heat 

exchangers and in hydrocarbon drilling. Since the 

pioneering work of Couette (1890) and Taylor 

(1923), the rotor-stator configuration is subject to 

tremendous continuous researching studies. 

As pioneers, Stockes (1848) used two concentric 

cylinders to show that rotation of the inner cylinder 

should lead to unstable flow. In (1890), Couette 

inspired the work of Margules (1881) to develop the 

first viscometer. Later, Rayleigh (1916). studied the 

behavior and stability of inviscid rotating flows to 

define the first stability criterion for the case of 

rotating cylinders. In1923, Taylor considered both 

analytically and experimentally the flow evolving 

between two concentric cylinders. The study focused 
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on the vortices appearance when the inner cylinder 

rotating velocity is progressively increased. Coles 

(1965) presented the first experimental investigation 

showing existence of various flow patterns in the 

Taylor-Couette flow. Gollub and Swinney (1975) 

carried out an important experimental study and 

reported the important result that a succession of 

only few instabilities is sufficient to drive the flow 

from stability to chaoticity. In 1979, Fenstermacher 

and Swinney used laser-doppler velocimetry 

technique to study transition to turbulence of a fluid 

contained between concentric cylinders with a 

rotating inner cylinder. Bouabdallah (1980) 

presented an analytical and experimental study for 

various transition regimes from laminar to fully 

developed turbulence. Using chaos theory, he found 

that the critical value of the Taylor number is Tac1= 

41.2. This is adopted as one of the referential studies 

for results validation herein. Czarny et al. (2003) 

investigated the interaction between Ekman 

pumping and the centrifugal instability in Taylor-

Couette flow considering three endwall boundary 

conditions to analyse the nature of these interactions. 

Further Czarny et al. (2004) investigated the 

interaction between the endwall Ekman cells and the 

vortical structures in a finite-length cavity with 

differentially rotating concentric cylinders using 

Direct Numerical Simulations (DNS) with a three-

dimensional spectral method. It is reported that 

thickness and strength of Ekman layers at the 

endwalls match well with those predicted from a 

simple theoretical approach. Ahlers and Cannell 

(1983), Lücke (1985) and Pfister and Rehberg (1981) 

considered a circular Couette flow transition and 

patterns formation of Taylor vortices growing into 

unstable such a flow. It is established that below a 

critical Reynolds number (Re) characterizing 

transition from non-vortical to vortical flow, vortices 

near endwalls, recognized as Ekman vortices, are 

driven by the boundary flow. These endwall vortices 

are responsible in turn on driving adjacent axially 

piled Taylor vortices. At the current stage, all 

researches are carried out using active control of 

Taylor-Couette flow, to delay or advance appearance 

of the first bifurcation and other structures. It is 

essentially noted that axial oscillation of the inner 

cylinder is used as a stabilizing effect on the Taylor 

vortex flow. Ludwieg (1964) considered oscillation 

effect on Taylor vortices onset and attracted potential 

interest on both fundamental and applied aspects. 

Axial oscillation is used as a stabilizing strategy 

leading to retarding triggering of the first instability 

at high Taylor numbers. 

Serre et al. (2008) studied Stability of Taylor-

Couette flow in a finite-length cavity with radial 

through flow. It is concluded that this radial through 

flow alters the stability of the flow system in such a 

way that a stabilizing effect is obtained by radial 

inflow and outflow. A slightly destabilizing effect is 

achieved by weak radial outflow. Goharzadeh and 

Mutabazi (2001) experimentally characterized flow 

intermittency regimes. Czarny et al. (2002) tackled 

spiral and wavy vortex flows in short counter-

rotating Taylor–Couette cell. Denis et al. (2014) 

developed a technique that seems to be able to 

characterize transition mechanism responsible of 

driving Taylor-Couette flow to waviness patterns. 

More recently, Oualli et al. (2013) numerically 

investigated effect of the outer cylinder radial 

oscillation on the laminar-turbulence transition in 

infinite length cylinders. They found that this control 

strategy had a stabilizing effect on the evolving flow 

and the first flow bifurcation is delayed to a Taylor 

number Tac1 = 70 for a deforming amplitude of 15% 

the external cylinder diameter value. Abdelali et al. 

(2019) investigated first instabilities onset delay 

using a controlling strategy based upon a 

combination of inner cylinder cross-section 

oscillation with a free surface effect. Two ranges of 

deformation frequencies are considered, lower 

frequencies, f < 3 Hz to destroy Taylor vortices, and 

higher frequencies, f > 20 Hz to make Ekman cells, 

identified as more resistant, completely 

disappearing. 

In this paper, a numerical study is elaborated on the 

Taylor-Couette flow. The angular velocity is 

progressively increased from a Taylor number Ta= 

10-4 to Tac1= 43.8 (TVF) and Tac2 = 54 (WVF) in 

order to follow the flow structuring mechanism from 

nascent Ekman cells to fully developed Taylor 

regime. The first instability settlement is found at the 

critical Taylor number, Tac1= 43.8 and the second at 

Tac2= 54 corresponding respectively to Taylor 

Vortex Flow (TVF) and Wavy mode. 

2. GOVERNING EQUATIONS 

A viscous fluid confined between two concentric 

cylinders of length H, with inner and outer radii 

respectively, R1 and R2 is considered. The angular 

velocity of the inner cylinder rotation rate is Ω1, 

while the outer as well as the top and bottom 

endwalls are maintained at rest, as shown in Fig.1. 

The flow is governed by three dimensionless 

parameters, namely, the inner to outer radii ratio η= 

R1/R2, the aspect ratio Γ= H/δ corresponding to the 

cylinder height reported to the gap length, and the 

Taylor number defined as: 

𝑇𝑎 =  
Ω1.𝑅1.𝛿1

𝜈√(
𝛿

𝑅1
)

                                                         (1) 

 

Fig. 1. Schematic of the Taylor-Couette flow 

system. 

A numerical simulation of such a flow motion is 

implemented using Navier–Stokes equations based 

upon the classical physical laws of conservation, 

continuity and momentum equations for an 
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incompressible fluid flow written in a cylindrical 

coordinates reference (r, θ, z) as follows: 

 Continuity equation :  

1

𝑟

𝜕

𝜕𝑟
(𝑟. 𝑈) +

1

𝑟

𝜕𝑉

𝜕𝜃
+

𝜕𝑊

𝜕𝑧
= 0                                   (2) 

 Momentum equations : 

𝑟: 
𝐷

𝐷𝑡
𝑈 −

𝑉2

𝑟
= −

1

𝜌

𝜕𝑃

𝜕𝑟
+ 𝑉[(∇2 −

1

𝑟2
) 𝑈                (3) 

−
2

𝑟2

𝜕𝑉

𝜕𝜃
]  

𝜃: 
𝐷

𝐷𝑡
𝑉 + 𝑈

𝑉

𝑟
= −

1

𝜌

1

𝑟

𝜕𝑃

𝜕𝜃

+ 𝑉 [(∇2 −
1

𝑟
) . 𝑉 +

2

𝑟2

𝜕𝑈

𝜕𝜃
] 

                                                                               (4)  

𝑧: 
𝐷

𝐷𝑡
𝑊 = −

1

𝜌

𝜕𝑃

𝜕𝑧
+ 𝑉. ∇2. 𝑊                                (5) 

The symbol (D/Dt) stands for differential operator 

representing total derivative, such as: 

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ 𝑈

𝜕

𝜕𝑟
+

𝑉

𝑟

𝜕

𝜕𝜃
+ 𝑊

𝜕

𝜕𝑧
                                (6) 

Notation =2 stands for Laplacian operator in 

(r,θ,z) coordinates: 

∇2=
𝜕2

𝜕𝑟2
+

1

𝑟

𝜕

𝜕𝑟
+

1

𝑟2

𝜕2

𝜕𝜃2
+

𝜕2

𝜕𝑧2
                                (7) 

(U, V, W) are velocity components and P is the 

pressure. 

3. BOUNDARY CONDITIONS 

In this study, the Taylor-Couette system is 

considered in such a way that the fluid is driven by 

the rotating inner cylinder, while the outer with the 

upper and lower endwalls are maintained fixed. The 

corresponding boundary conditions are thus: 

• r = R1: V = R1Ω1 and U = W = 0    (rotating 

inner cylinder) 

• r = R2: V = 0      and U = W = 0       (fixed 

outer cylinder) 

For the upper and lower endwalls:  Z= 0 and Z= H, 

U = V =W = 0 

4. NUMERICAL PROCEDURE 

Geometry creation and boundary conditions 

definition is done using axisymmetric 3D grids. The 

mesh is generated in structured quadrilateral cells. 

The analysis of the mesh-solution dependency on the 

number of grid cells is presented in Fig. 3, using the 

critical Taylor number matching to the first 

instability appearance versus mesh cells number. 

This grid-refinement study led to adoption of a mesh 

with 1 048 576 cells, distributed in the radial (r), 

azimuthal (θ) and, axial (z) directions respectively. 

 

Fig. 2. Computational domain 

 

 

 

Fig. 3. Effect of the mesh size on the critical 

Taylor number 

 

For numerical calculations the flow is considered 

three-dimensional and Navier–Stokes equations are 

solved in primitive formulation using Fluent 

software code based on the finite volume method 

discretization with a second order model for pressure 

and third order MUSCL scheme for velocity. This 

method is found to be convenient in such a way that 

the flow is considered laminar and can thus be 

computed without resolving turbulent scales. The 

analysis of the solution-mesh dependency on the grid 

is shown in Fig. 3. The critical Taylor number 

corresponding to the first instability settlement is 

depicted versus the mesh cells number varying from 

3.2x104 to 2.94 x106. The critical Taylor number 

(Tac, corresponding to the first instability triggering) 

is found for 1.048 x106 mesh cells. The Implicit 

Pressure with Operator Division (PISO) algorithm is 

used for pressure-velocity coupling. Solution 

convergence is considered when all residuals are less 

than 10-4. The obtained numerical results are 

compared to literature. A maximum deviation of 5.9 

% is found relatively to experiments of Bouabdallah 

(1980) and 3.8% to those of Adnane et al. (2016). 

Qualitative validation of the numerical simulations is 

executed using flow configuration comparison to 

experimental results of Khochmieder (1979) and 

Adnane et al. (2016), Fig.4. 
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Fig. 4. Validation of the first and second instability appearance, TVF, Tac1= 43.8 and WVF, Tac2=54, 

characterized by pressure contours (a) experimental results of Khochmieder (1979), (b) experimental 

results of Adnan et al. (2016) and (c) present numerical study. 

 

Table 1. Taylor number estimation of the first instability appearance. 

𝑁∗ Author 𝛿 𝜂 Tac1 Difference, % 

1 Present work 0.1149 0.8969 43.8 0 

2 Taylor, 

Exp 

0.1366 0.8798 44.35 1.2 

3 Andereck, Exp 0.1326 0.8829 43.69 0.25 

4 Coles, Exp 0.1344 0.8815 42.51 3.03 

 

 

Fig. 5. Quantitative validation of the results by comparing with results of Abcha et al. (2008). 

 

Table.1 presents numerical estimation of the critical 

Taylor number relevant to first instability settlement 

(same non-dimensional numbers δ and η), compared 

to referenced works. Numerical results are in good 

agreement with experiments. Registered deviation is 

in between 0.25 % to 3.03 %. 

Another quantitative validation is made by 

comparing the present work data of radial and axial 

velocities along the axial position to those obtained 

by experiments of Abcha et al. (2008). 

5. RESULTS AND DISCUSSIONS 

5.1 Flow behavior vortices of Ekman 

structuring stages 

The obtained results are presented for all the 

encountered flow regimes since the locally pumping 

Ekman cells, Fig. 6(a), in terms of pressure and 

streamline contours, ranging from low Taylor 

numbers   (Ta=10-4)   corresponding   to   circular  
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Fig. 6. System cross-section view: (a) Ekman 

vortices appearance with a phase shift of (π/2) at 

system endwalls in terms of pointwise pressure 

contours, (b) streamlines in the annulus for Ta = 

10-4. 

 

Fig. 7. System cross-section view: (a) Ekman 

vortices propagation with a phase shift of (π/2) at 

endwalls in terms of pressure contours (upper 

view), (b) Streamlines in the annulus for Ta =10-3 

(front view). 

 

Couette flow configuration (CCF) to first instability 

onset (TVF) at Tac1=43.8. Appearance of Ekman 

cells signature is indicative of flow early transition 

triggering process towards the toroidal flow 

configuration (Taylor vortex flow TVF). The so-

called wavy mode instability (WVF) is reached when 

increasing the Taylor number up to Tac2= 54. 

For this flow configuration (rotating inner cylinder 

with the outer and endwalls at rest), there is 

continuous transition from featureless flow at very 

low Taylor number (from Ta=10-4) to a cellular flow 

induced by upper/lower endwalls and flow 

interaction. In fact, for this configuration the 

centrifugal force is balanced by the pressure gradient 

far from endwalls. Near these, however, the 

imbalance between inertial and viscosity forces 

induces a secondary Ekman pumping flow leading to 

Ekman vortices formation. These vortices signature 

is found to appear as localized pressure regions 

regularly separated with a phase shift of (π/2) for 

both top and bottom endwalls at Ta=10-4 (Fig. 6-(a)). 

In addition, the annulus streamlines reveal that flow 

structuration starts from both endwalls (Ekman cells 

pumping) giving rise to parallel ascendant-

descendant flow meeting at the middle of the gap, 

Fig. 6-(b). When the Taylor number reaches the 

value Ta= 10-3, a propagating process of pressure 

wave train zones initiates azimuthally on the inner 

cylinder surface which becomes totally covered 

when the Taylor number is in the range Ta= 10-2 to 

10-1, Figs. 7(a) and (b). It is worthwhile noting that 

flow structuration in the gap relies on several 

distinguished steps starting from Ekman cells 

appearance at the upper and lower endcaps, induced 

by cylinder lateral wall and endwalls layers 

interaction, followed by recirculating azimuthal 

zones contiguous to the upper and lower nascent 

Ekman cells, Fig. 6(b). These are separated by an 

intermediate ascendant-descendent flow (Fig. 6-(b)). 

 

 

Fig. 8. (a) Complete appearance of the Ekman 

vortices in terms of pressure contours, (b) 

streamlines in the system annulus for Ta = 10-2. 

 

When slightly increasing the inner cylinder rotating 

rate, the pointwise pressure zones evolve by 

azimuthally spreading in an extremely slow 

mechanism to cover the whole gap along top and 

bottom endwalls circumferences at Ta= 10-2, Fig. 8-

(a). In a parallel way, pressure train waves appear 

and propagate as longitudinal pressure iso-contours 

alternating between relatively high and low pressure 

values, (Fig. 8-(a)). These pressure wave trains are 

physically connected with the previously detected 

pointwise pressure zones; Fig. 8-(a). For the Taylor 

number in between Ta= 10-2 to Ta= 10-1, Ekman 

vortices take a circular shape close to the upper and 

lower system endwalls, Figs. 6-(b) and 7-(b), giving 

rise to Taylor vortices development leading to first 

and then second instability settlement. 

 

Fig. 9. System cross-section view: (a) Complete 

appearance of the Ekman vortices in terms of 

pressure contours, (b) streamlines in the annulus 

for Ta = 10-1. 
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5.2 Flow characterization using streamlines 

It is sought here to shed light on the Taylor vortices 

genesis mechanism with description of all the 

intermediate “gestational” processes from 

“embryonic” stage up to complete structures onset. 

The flow characterization using streamlines in the 

(r,z) plane are adopted to visualize this flow 

evolution topology, Fig. 10. When increasing the 

inner cylinder rotation velocity, since the lowest 

reachable Taylor number to the first instability 

settlement, flow structuration in preparation to 

Ekman cells appearance, Ta = 10-4, operates locally 

as previously reported, Figs. (6-7-8-9). Streamlines 

show weak Ekman cells with axial ascendant-

descendent flow along the longitudinal mid-gap 

plane from bottom and top, respectively, to center. 

Axial pressure waves give rise to nascent Ekman 

vortical layers induced by a counterbalance 

between centrifugal force, resulting from inner 

cylinder rotation, and pressure force. With a further 

slight increase in Taylor number, from Ta= 10-2 to 

Ta=5, Ekman vortices evolve to a completely 

circular shape since Ta = 10-2. These Ekman 

vortices are thought to be responsible for the 

upcoming flow structuring process starting at Ta = 

15. Increasing the Taylor number up to Ta = 30 

leads to propagation of Taylor vortices filling all 

the gap width from endwalls to gap center, 

indicative of the first instability settlement at Ta = 

43.8.  

 

Fig. 10. Flow characterization using streamlines 

configuration in (r,z) plan. 

 

 

Fig. 11: Axial, Tangential and radial velocity 

variation in the gap for different Taylor 

numbers. 

 

Figure 11 depicts variation of axial, tangential and 

radial velocities in the gap for different Taylor 

numbers. It is noted that for low Taylor numbers 

(Ta≤10) the flow is laminar and steady based on the 

resulting velocities negligible value. A Ta = 41.33, 

Taylor vortices propagate axially in the whole gap, 

and when Ta becomes equal to 43.8 the first 

instability is settled and notable variations in 

tangential and radial velocities are registered. 

5.2 Flow characterization of the first and 

second instability triggering (TVF, 

WVF): 

Genesis mechanism starts by pressure gradient 

inclusions appearing at four localized regions 

separated by 90° angles. Then, azimuthally 

propagate to meet when Ta~10-2 to 10-1, at this stage 

of the flow, Ekman vortices initiate alternating axial 

pressure bands (an axial pressure wave propagating 

along axial-azimuthal directions ) along the inner 

wall of the outer cylinder. These waves become 

clearly pronounced and schematically visible at Ta= 

0.01, Fig. 12 (b). From Ta=1 the Taylor vortices 

formation mechanism triggers consecutively to the 

Ekman vortices complete formation mechanism 

launched much earlier since Ta= 10-4 to Ta= 10-2. 

The Taylor stationary wave starts then propagating 

in the axial direction from system endwalls to meet 

at the system mid-height at Ta= 43.8. This is 
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achieved on expenses of the successive pressure 

wave trains, which gradually vanish in favor of the 

nascent azimuthal wave. The process stops with 

complete disappearance of the pressure wave trains 

at Ta= 43.8. The cylindrical cavity is then entirely 

filled with piled toroidal vortices corresponding to 

the first instability settlement commonly known as 

the steady Taylor wave (TVF), Fig. 12. 

Fig. 12. Flow regimes from (CCF) to (TVF) 

 

 

Fig. 13. Evolution of the radial velocity in the 

annular space of Ekman vortex and the first 

appeared Taylor cell. 

 

Figure 13 depicts evolution of the radial velocity in 

the annular space for Ekman vortex and the first 

appeared Taylor cell. It is seen that the Ekman cell 

has a radial velocity 40% to 60% larger 

comparatively to the contiguous Taylor cell, as 

reported by Czarny et al. (2003). This is 

quantitatively indicative of the first instability 

settlement. Qualitatively, TVF mode accomplishes 

when the gap volume is entirely filled with 

superposed toroidal vortices along the axial direction 

at Tac1= 43.8. As the inner cylinder rotation velocity 

increases, this flow (TVF) evolves to an unsteady 

configuration commonly reported as wavy mode, 

WVF, Fig. 14. 

 

 

Fig. 14. Wavy mode flow configuration (2nd 

instability WVF). 

 

The axisymmetric Taylor flow becomes then 

unstable resulting in an unsteady flow characterized 

by a wavy motion (azimuthal wave) superimposed 

on Taylor's vortices. The set of these vortices 

undulate in the axial direction with no phase lag 

indicating the second instability settlement 

characterized by unsteady Taylor waves at the 

critical Taylor number value, Tac2 = 54. This is the 

so-called wavy mode where the toroidal vortex 

centerline is driven in a double axial and tangential 

dynamics. 

The flow behavior in terms of velocity components; 

radial, axial and tangential is showed in Figs. 15 and 

16 for the TVF and WVF regimes respectively. An 

analysis of the radial flow topology shows the 

counter-rotating piled Taylor configuration for both 

the TVF and WVF flow regimes. In addition, the 

axial velocity component presents the symmetry of 

TVF regime. The tangential velocity contours show 

the inflow and outflow positions along the gap length 

between the two coaxial cylinders and the boundary 

layer width evolution on the inner and outer 

cylinders. It is also noted that Vr and Vz are similar 

for this flow system, while V clearly highlights 

existence of fluctuations on the rotative wall. 

 

 

Fig. 15. TVF velocity components contours. 
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Fig. 16. WVF velocity components contours. 

 

6. CONCLUSION 

A numerical simulation is carried out and devoted to 

characterizing the mechanism genesis of Ekman and 

Taylor-Couette flow. The study is focused on the 

flow structuring process from the early stages where 

the Ekman vortices generate at the system endcaps. 

It is established that the Ekman cells appear in local 

positions with a phase shift of (π/2) at a Taylor 

number as low as 10-4. For 10-4 ≤Ta≤10-2, the flow 

evolves as ascendant-descendant in presence of 

recirculating regions, a weak increasing in Taylor 

number lead to the subsequent stage in flow 

structuring process (Ekman vortices genesis). These 

vortices signature are already present at Ta = 10-2. 

The pointwise cells spread along the azimuthal 

direction leading to Taylor vortices formation on the 

pressure wave expenses. This constructing 

mechanism is triggered and piloted by intricate 

interacting pressure waves propagating in the axial-

azimuthal plane inducing Ekman then Taylor 

vortices formation. The latter propagate from system 

endcaps to gap center, inducing pressure wave trains 

progressive vanishing. The genesis mechanism ends 

by giving birth to TVF then WVF regimes at Ta= 

43.8 and 54 respectively. 
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