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ABSTRACT 

The mass flow rate of the fuel-air mixture can vary due to the geometry and 

dimensions of the valve seat and orifice plate at the tip of the port fuel injector. 

This study aims to reduce the standard deviation of the mass flow rate by 

optimizing four design parameters of the valve seat defined at the top (CHA1 – 

the angle between the valve seat and the bore wall and CHH1– its horizontal 

distance) and the bottom (CHA2 – the angle of the chamfer from the bottom of 

the valve seat and CHV2 – its vertical distance) of the edge breaks to guarantee 

a constant mass flow rate during its operation. The sensitivity analysis is 

implemented with the CFD simulation to generate the Design of Experiment 

(DOE) using ANSYS CFX and optiSLang. This created the correlation between 

design parameters and the averaged mass flow rate. The results indicate that 

CHA2 was the most impacting parameter on the mass flow rate. The Robust 

Design Optimization (RDO) is performed based on the Metamodel of Optimal 

Prognosis (MOP). Furthermore, the optimization loop processes the correlation 

function obtained from MOP using the Evolutionary Algorithms (EA) 

optimization method by keeping the standard deviation and the tolerance of the 

design parameters constant. In conclusion, the implemented EA optimization 

can reduce the standard deviation of the mass flow rate by approximate 51% and 

the new nominal designs at the valve seat edge breaks are obtained. 
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1. INTRODUCTION 

The transportation technology has been significantly 

improved since the last century in terms of increasing 

engine efficiency and better output performance of the 

combustion engines (Yago, 1983; Reitz, 2013; Kalghatgi, 

2015). To date, the majority of the automobile industries 

in the market use Internal Combustion (IC) engines as the 

main power supply (Smil, 2005). The first IC engine was 

successfully designed as a four-stroke engine by Otto in 

1876 and the continuous development of the IC engine has 

been sustained since then (Raţiu, 2003; Smil, 2005). 

Within the worldwide automotive industry, the two most 

widely used injection systems in IC engines are Gasoline 

Direct Injection (GDI) system (Robert, 2022) and Port 

Fuel Injection (PFI) system, also called the manifold 

injection system (Golzari et al., 2016). The significant 

differences between GDI and PFI are the location of the 

injector and the operating pressure (Robert, 2022). Indeed, 

the GDI injector is directly installed inside the combustion 

chamber, therefore, GDI injector requires a higher 

operating pressure compared to that of PFI injector 

locating in the intake manifold (Robert, 2022). For PFI 

system, the injected fuel flow was obstructed by a nozzle 

structure creating a pressure drop and the fluidic fuel 

turned into micro droplets with increasing total surface 

area (Schmidt et al., 1999). This atomization enhanced the 

mixing process of the fuel and the air in the intake 

manifold resulting in a better quality of exhaust with less 

emission as a result of complete combustion (Yang et al., 

1993). 

In the production development aspect, several 

prototypes of intake and exhaust parts including 

combustion chamber and injectors need to be designed, 

created, and tested in various experiments and under 

different working conditions consuming a large laboratory 

time and effort leading to unnecessary delay in the 

development and production processes. In addition, 

experimental measurement techniques are limited for such  
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Nomenclature 

P pressure  ABBREVIATION 

𝑆𝑆𝐸
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  sum of the squared prediction errors  ALHS Advanced Latin Hypercube Sampling 

𝑆𝑆𝑇 the equivalent of the total variation  CFD Computational Fluid Dynamics 

U, V, W velocity in Cartesian's coordinate  CHA1 angle between the vertical bore wall and 

the valve seat wall 

x, y, z direction in Cartesian's coordinate  CHA2 angle of the bottom chamfer from the 

bottom of the valve seat 

GREEK LETTER  CHH1 horizontal distance between the valve seat 

wall and the bore wall, μm 

𝛼𝑙 volume fraction of the liquid phase 

of a mixture 

 CHV2 vertical distance of the bottom chamfer 

from the bottom of the valve seat, μm 

𝜇 dynamic viscosity of mixture phase   CoP Coefficient of Prognosis 

𝜇𝑒𝑓𝑓 effective viscosity  DOE Design of Experiment 

𝜇𝑙 dynamic viscosity of liquid phase,   EA Evolutionary Algorithm 

𝜇𝑡 turbulent dynamic viscosity  GDI Gasoline Direct Injection 

𝜇𝑣 dynamic viscosity of vapor phase  HPC High Performance Computing 

𝜌 density of mixture phase  IC Internal Combustion 

𝜌𝑙 density of liquid phase  MassFlow

Avg 

averaged mass flow rate 

𝜌𝑣 density of vapor phase  MassFlowr

ateStddev 

standard deviation of the averaged mass 

flow rate 

SUBSCRIPT AND SUPERSCRIPT   MOP 

E error of the prediction value  OVAT One Variable at A Time 

l liquid phase  RDO Robust Design Optimization 

Prediction prediction value  Re Reynolds number 

T total variation  SI Spark Ignition 

t turbulent  y1
+ first layer mesh height adjacent to the 

wall 

v vapor phase    

 
a complex geometry of spark ignition (SI) system 

composed of various components resulting in immense 

difficulty in obtaining a comprehensive information in 

flow physics, in most cases nearly impossible (Alam et al., 

2020).  Thanks to fully-developed computational 

software, such prototype models can be designed and 

created in a simulation software within hours to represent 

their actual models being tested under various test 

conditions and its measurement data could be precisely 

chosen from the simulation domain for further analysis 

and optimization (Relich, 2016). 

The conventional method used to determine the most 

suitable design was the One Variable at A Time (OVAT) 

method (Czitrom, 1999). This OVAT method calculates 

only one parameter while holding other parameters 

constant (Bora et al., 2022). Indeed, the input parameters 

having less impact on the output responses will be 

automatically ignored by the OVAT method (Czitrom, 

1999; Bora et al., 2022). Hence, the evaluation of the 

outputs obtained from the OVAT method could lead up to 

uncertainty and often incorrect results for the further 

optimization process (Czitrom, 1999). To overcome this 

problem, the Design of Experiment (DOE) was introduced 

in which even the less impacting parameters are also taken 

into account (Antony, 2023). This DOE analysis was 

implemented in this study to find the impact of each design 

parameter on the averaged mass flow rate of the fuel-air 

two-phase mixture in some initial design cases and in the 

further optimization process. 

2. BACKGROUND 

On the one hand, several numerical researches on PFI 

system with their experimental model validation mainly 

focuses on (i) the design improvement of one or more 

components in PFI system to enhance engine performance 

and/or functionality requirements (Cecere et al., 2023; 

Rashid et al., 2024), (ii) the 3D computational simulation 

of the intake port with combustion chamber and/or exhaust 

port as a whole under specific conditions and various key 

performance parameters to improve the performance and 

efficiency (Pan et al., 2014; Baratta et al., 2021; Sahoo & 

Srivastava, 2023; Bellis et al., 2024), (iii) using CFD 

simulation for a specific purposes, i.e., to compare 

performance and emission characteristics in spark 

ignitions (Bhaduri & Mallikarjuna, 2023; Gammaidoni et 

al., 2024; Singh et al., 2024 ) or to only investigate spray 

characteristic in IC engines (Zoumpourlos et al., 2023), 

and (iv) CFD simulation exclusively for PFI injector part 

to investigate a simplified plume spray model using AVL 

FIRE CFD software (Anekwanna & Juntasaro, 2018). 

Therefore, only few studies using CFD simulation for PFI 

injector are, to some degrees, relevant to this present 

research paper and its scope of the investigation. On the 

other hand, several researches on GDI injector 

demonstrate greater relevance to this present parametric 

study and DOE analysis of PFI injector valve seat 

(Hellmann et al., 2017; 2018; Biçer & Yurtkuran, 2020). 
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Hellmann et al. (2017) studied a high-pressure 

Gasoline Direct Injection (GDI) injector with four design 

parameters. Their CFD simulation indicated that the 

optimal atomization of the fuel can be achieved by 

increasing the turbulent kinetic energy owing to low spray 

hole conicity, smaller opening spray hole angle, and the 

larger spray hole length. More recently, Hellmann et al. 

(2018) also predicted the nozzle flow and the spray 

characteristics with the different geometry parameters of 

the GDI injector valve seat using the CFD-workflow 

coupling transient Eulerian nozzle flow with transient 

Euler-Lagrange spray simulations and experimentally 

validated their CFD simulation using the two-hole 

injectors with predetermined design parameters. 

Moreover, their DOE analysis with 700 of the 3D-CFD 

designs were evaluated (Hellmann et al., 2018). 

In 2020, Biçer and Yurtkuran studied the flow inside 

a GDI Injector and parameterized the pressure of the 

system and a few geometric design parameters such as 

pitch circle diameter (CD), angle of the nozzle (I-angle), 

and conicity for different physical fuel types to investigate 

the impact on spray angle and cavitation formation using 

CFD simulation and DOE analysis (Biçer & Yurtkuran, 

2020). The result showed that the pitch circle diameter 

affected the spray angle significantly and the angle of the 

nozzle influenced the wall-wetting condition while fuel 

type was the most influential parameter for the cavitation 

inception (Biçer & Yurtkuran, 2020). 

Previous parametric studies and DOE analysis 

focused mainly on investigating the injector tip with a 

round shape located in the GDI while the investigation of 

the valve seat in PFI injector has not been much studied 

yet. (Hellmann et al., 2017; 2018; Biçer & Yurtkuran, 

2020). This present study investigates various geometries 

of the valve seat defined by four main design parameters 

in the PFI injector using CFD simulation, DOE analysis, 

and a robust design optimization process. The investigated 

actual PFI injector has been researched in Robert Bosch 

Automotive Technologies (Thailand) Co., Ltd. facility and 

it needs to be improved, developed, and optimized. This 

parametric study is applied to the valve seat model at its 

top and bottom edges. The four design parameters 

considered are (i) the angle between the valve seat and the 

bore wall at the top edge break, CHA1 and (ii) its 

horizontal distance, CHH1 as well as (iii) the angle of the 

bottom chamfer from the bottom of the valve seat, CHA2 

and (iv) its vertical distance, CHV2. Here, the CFD 

simulation is performed using ANSYS CFX 2022R2 and 

the Design of Experiment (DOE) analysis method is 

implemented for this parametric study. Furthermore, the 

sensitivity analysis method is used to explore the impact 

of each parameter on the averaged mass flow rate obtained 

from CFD simulation results. Finally, the robust design 

optimization process using ANSYS optiSLang analyzes 

all the designs and selects the best design with the 

minimum standard deviation of the averaged mass flow 

rate of the fuel-air two-phase mixture. These optimal 

design parameters obtained from CFD simulation and 

ANSYS optiSLang may well be further investigated for 

the production of the actual valve seat in this given 

working condition. 

3. NUMERICAL METHODOLOGY 

3.1 Governing Equations 

In this study, the governing equations of the two-

phase flow of a fuel-air mixture are considered. The 

Reynolds-Averaged Navier-Stokes (RANS) equations are 

coupled with the turbulence two-equation eddy viscosity 

model (Giancarlo, 2009). In addition, the two-phase 

mixture with the homogeneous equilibrium model is used 

under the assumption of the completely mixed liquid and 

vapor phases, such that, the velocity, pressure, and 

temperature are equal in both phases (Clerc, 2000).  

The 3D continuity equation of a steady two-phase mixture 

flow can be written in a differential form as (Yusuf et al., 

2020), 

𝜕(𝜌𝑈𝑗)

𝜕𝑥𝑗

= 0. (1) 

Similarly, the 3D momentum equation of a steady two-

phase mixture flow can be written in a differential form as 

(Serra, 2023), 

𝜕(𝜌𝑈𝑖𝑈𝑗)

𝜕𝑥𝑗

= −
𝜕𝑃

𝜕𝑥𝑖

+
𝜕

𝜕𝑥𝑗

[𝜇𝑒𝑓𝑓 (
𝜕𝑈𝑖

𝜕𝑥𝑗

)], (2) 

𝜇𝑒𝑓𝑓 = 𝜇 + 𝜇𝑡 , (3) 

where 𝜌 is the previously defined two-phase mixture 

density in Eq. (1) and 𝜇𝑒𝑓𝑓 is the effective viscosity. Here, 

𝜇𝑡 is the turbulent viscosity defined in accordance with the 

selected turbulence model (Serra, 2023).  Moreover, P is 

the thermodynamic pressure, 𝑈𝑖 refers to the velocity 

components (U, V, W), and 𝑥𝑖 denotes the Cartesian 

coordinates (x,y,z). 

3.2 Two-Phase Mixture Properties 

The density 𝜌 and viscosity 𝜇 of the mixture of the 

steady two-phase flow are calculated in the phase change 

based on the volume fraction of the liquid phase 𝛼𝑙, 

(Nouri-Borujerdi & Kebriaee, 2012) 

𝜌 = (1 − 𝛼𝑙)𝜌𝑣 + 𝛼𝑙𝜌𝑙      (4) 

𝜇 = (1 − 𝛼𝑙)𝜇𝑣 + 𝛼𝑙𝜇𝑙    (5) 

where 𝜌𝑣, 𝜌𝑙, 𝜇𝑣, and 𝜇𝑙 are the density and the dynamic 

viscosity of the vapor and liquid phases, respectively. 

3.3 Turbulence Modeling 

Considering the fluid flow direction in the orifice 

plate with the circular redirection passage, the fluid flow 

is expected to create a swirl. This swirl, in turn, increases 

some degree of turbulence and the complexity of the fluid 

flow. Therefore, the near-wall fluid flow region needs to 

be carefully investigated. Besides, the flow inside the 

valve seat and orifice plate channel also requires a 

thorough examination due to the wall curvature design of 

the orifice plate affecting the averaged mass flow rate.  

Several well-established turbulence models were built 

into CFD simulation software for various applications and 

purposes (Giancarlo, 2009). Each turbulence model has its 

advantages and disadvantages depending on factors such 
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as Reynolds number, wall treatment, and flow behavior 

(Clerc, 2000; Giancarlo, 2009; Yusuf et al., 2020). The 

most well-known turbulence model is the two-equation 

eddy viscosity model and it requires two transport 

equations (Menter, 1994; Bredberg, 2001). Furthermore, 

the commonly used two-equation turbulence models are k-

ɛ and k-ω models (Giancarlo, 2009). On the one hand, the 

k-ɛ turbulence model is suitable for the free shear flow 

with a high Reynolds number while it cannot accurately 

capture the physics of the near-wall flow (Mohammadi & 

Pironneau, 1993). On the other hand, the k-ω turbulence 

model is more suitable for the near-wall region and the 

separation zone of the fluid flow with a low Reynolds 

number (Mohammadi & Pironneau, 1993; Wilcox, 2008).  

 To overcome these limitations, Menter et al. (2020) 

developed a new turbulence model called the Generalized 

k-ω (GEKO) turbulence model. The GEKO model shows 

high adaptability of following the flow behavior by 

changing the six free parameters without impacting the flat 

plate boundary layer flow. The GEKO model equations 

are showed in Appendix I. 

3.4 Parametric Study 

One of the most commonly used strategies for the 

design exploration, especially for nonlinear and stochastic 

systems, is metamodeling (Booker et al., 1999). In a 

metamodeling or surrogate model, the surrogate function 

of the output response is represented by the model input, 

for instance, Polynomial regression and Kriging (Most & 

Will, 2008). However, a vast number of samplings are 

required in multi-dimensional problems leading to the 

challenges in the sampling generation process (Most & 

Will, 2011). The Metamodel of Optimal Prognosis (MOP) 

was developed by Dynardo in 2008 to improve the optimal 

filter configurations generally lacking in the previous 

metamodels (Most & Will, 2010).  

In this parametric study, the DOE approach and the 

MOP are implemented to identify the impact of the design 

parameters on the averaged mass flow rate. In general, the 

Coefficient of Prognosis (CoP) is used to determine the 

correlations between each input parameter and the output 

response (Most & Will, 2008). In this study, CoP is 

implemented to indicate the influence of the four design 

parameters as the inputs on the averaged mass flow rate as 

the output. Then, the parameter that correlates the most 

with the output is considered as the highest impact on the 

response (Most & Will, 2008). The prognosis of the 

forecast quality needs to be evaluated by using a test data 

set (Mohammadi & Pironneau, 1993).  The relation 

between the metamodel assessment and the real test data 

can be expressed as (Most & Will, 2008), 

CoP =  100 × (1 −
𝑆𝑆𝐸

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑆𝑆𝑇
)               (6) 

where 𝑆𝑆𝐸
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 and 𝑆𝑆𝑇 are the sum of squared 

prediction errors and the equivalent of the total variation, 

respectively. 

3.5 Single-Objective Optimization 

 In a general optimization process, a single scalar 

value of an objective function formulation is typically 

defined as (Ansys, 2022), 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) → 𝑚𝑖𝑛                           (7) 

where 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) is the function of the design 

variables 𝑥𝑘. The design variables could possibly be 

continuous with the lower and upper bounds or 

discontinuous with various discrete values (Ansys, 2022). 

One of the most popular and widely used single-objective 

optimization methods since past two decades is 

Evolutionary Algorithm (EA) population-based method 

due to its ability in solving complex problems in 

optimization process (Vikhar, 2016; Ansys, 2022). The 

Evolutionary Algorithm (EA) is the stochastic search 

inspired by the nature behavior of selection (Holland, 

1992). This algorithm was created by Holland (1992) with 

the curiosity regarding work of nature adaptation, 

mutation, and selection to an environment (Holland, 1992; 

Bäck & Schwefel, 1993; Vikhar, 2016). In this study, the 

single-objective optimization with Evolutionary 

Algorithm (EA) was implemented into ANSYS optiSLang 

to evaluate the set of design parameters with the minimal 

standard deviation in averaged mass flow rate. 

4. GEOMETRY AND COMPUTATIONAL DOMAIN 

4.1 Geometry of the Valve Seat and Orifice Plate 

Figure 1(a) shows a full 3D conical-shaped valve seat 

located at the top of the multi-hole orifice plate consisting 

of four outlet holes investigated in this study. This CFD 

was precisely created in consistent with an actual valve 

seat and orifice plate models and their corresponding 

geometry and application. First, the orifice plate model 

was obtained by 3D scanning of an actual production 

sample produced by stamping method. Then, the valve 

seat model was created according to the prototype 

drawings. In addition, the definitions and the ranges of the 

four design parameters shown in Table 2 were licensed by 

Robert Bosch Automotive Technologies (Thailand) Co., 

Ltd. Furthermore, both valve seat and orifice plate 

domains are combined and defined as one domain of 

interest. However, the tremendous size of this full 3D 

simulation domain leads to high computational cost and 

power requirements. Taking advantage of the symmetrical 

conditions, the full model is divided into four identical 

sub-domains and only one-fourth of the full 3D model is 

used in the CFD simulation as shown in Fig. 1(b). Here, 

Fig. 1(c) indicates the locations of the four design 

parameters, namely CHA1, CHH1, CHA2, and CHV2 at 

the valve seat domain of simulation with their 

corresponding range values listed in Table 1. 

4.2 Boundary Conditions 

Figure 1(d) presents the named selections of each 

boundary condition in the simulation domain specified 

according to the Port Fuel Injection (PFI) actual working 

conditions by Robert Bosch Automotive Technologies 

(Thailand) Co,. Ltd. The boundary conditions are 

specified as follows: 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 1 (a) Complete 3D full model of the valve seat and orifice plate, (b) Its one-fourth model, (c) The locations of 

the four design parameters CHA1, CHH1, CHA2, and CHV2 with their corresponding possible ranges listed in 

Table 2, and (d) The boundary conditions of the valve seat and orifice plate: inlet, outlet, wall, and symmetry 

condition 

 
Table 1 Definition and simulation ranges of the four design parameters, CHA1, CHH1, CHA2, and CHV2 

Parameter Definition 
Minimum 

value 

Maximum 

value 

CHA1 The angle between the vertical bore wall and the valve seat wall 5° 58° 

CHH1 The horizontal distance between the valve seat wall and the bore wall 10 μm 200 μm 

CHA2 The angle of the bottom chamfer from the bottom of the valve seat 5° 85° 

CHV2 The vertical distance of the bottom chamfer from the bottom of the valve seat 5 μm 120 μm 

 

Table 2 Fluid properties of air and n-Heptane. (Sagdeev et al., 2013; Ghasemi et al., 2017) 

Fluid Density (kg/m3) Dynamic viscosity (kg/m·s) 

Air (25 °C) (Ghasemi et al., 2017) 1.185 1.831 x 10-5 

n-Heptane (Sagdeev et al., 2013) 684.0 4.172 x 10-4 

 

• Inlet condition: Inlet pressure (Pin) constant at 4 

bar 

• Outlet condition: Outlet pressure (Pback) constant 

at 1 bar 

• Side wall conditions: Symmetrical planes 

• Walls of valve seat and orifice plate: Stationary 

walls with no-slip conditions.  

 Note that this CFD model is modeled under the 

assumption of an adiabatic system, therefore, the heat 

transfer that may arise from entropy of mixing and/or drag 

friction or the heat transfer from or to the surrounding was 

not considered. 

The steady state CFD simulation runs 3500 iterations 

for each design of the total of forty-nine designs and the 

arithmetic average of the mass flow rate is calculated using 

the data of the last 1000 iterations as the result converges 

and reaches steady state condition. The convergence 

criteria were set up using relative residuals within the limit 

of 1.0x10-5 for all equations (continuity, x-momentum, y-

momentum, z-momentum, k-equation, and ω-equation). 

The High-Performance Computing (HPC) is utilized to 

carry out the CFD simulation with forty-two processor 

cores in parallel for each case.  

In an actual working scenario of PFI, the n-Heptane 

specified as a primary fluid and air as a secondary fluid are  
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Fig. 2 The plots of 𝑦1
+ maximum, mass flow rate (kg/h), and simulation runtime (h) as functions of the number of 

elements for nine cases in mesh-independent study 

 

homogeneously mixed (Hinckel et al., 2008; Forte et al., 

2012; Wang et al., 2016; Maio et al., 2022). The densities 

and viscosities of n-Heptane and air at 25°C are shown in 

Table 2. 

5. MESH INDEPENDENT STUDY 

The mesh-independent study was initially conducted 

to ensure the reliable simulation results regardless of the 

size and the number of mesh. Figure 2 shows the nine 

cases of mesh-independent investigation with various first 

inflation layer heights y+ and the associated number of 

mesh elements compared in terms of the averaged mass 

flow rate and the maximum value of the first y+, denoted 

as y1
+, adjacent to the wall. The x-axis indicates the 

number of elements and the y-axis indicates the y1
+ 

maximum value, the averaged mass flow rate, and the 

CFD simulation runtime. The growth rate is using 10 % 

with all cases. The results from Mesh 1 to Mesh 4 reveal 

the significant variation of the averaged mass flow rate 

depending on the number of the mesh elements. The 

averaged mass flow rates become fairly constant from 

Mesh 5 to Mesh 9. However, the maximum y1
+ needs also 

to be considered in addition to the mass flow rate. 

According to the k-ω turbulence model family, the near-

wall region within the viscous sublayer requires precise 

investigation. Indeed, the y1
+ maximum value should be 

less than 1 for properly capturing the near-wall fluid 

behavior (Salim & Cheong, 2009). The maximum value of 

the y1
+ starts becoming less than 1 in Mesh 8, therefore, 

Mesh 8 shown in Fig. 2 is selected for further simulation. 

Here, Mesh 9 is also suitable for the simulation, however, 

Mesh 9 contains about 1.3 million more elements (≈16% 

more mesh elements) compared to Mesh 8 resulting also 

in about 0.8 h longer simulation runtime for each case (see 

Table 3). The selected mesh is shown in Fig. 3.  The mesh 

quality is shown in Table 4 which is considered the criteria 

according to the ANSYS CFX. 

6. RESULT AND DISCUSSION 

6.1 CFD Simulation Results 

All forty-nine designs with varying dimensions of 

valve seat top and bottom edges are simulated using 

ANSYS CFX powered by HPC. Figure 4 presents 3 

representative results showing that the flow experiences 

the first variation in geometry at the top edge of the valve 

seat defined by CHA1 and CHH1. At this top edge, the 

flow tends to detach from the tilting wall due to the fact 

that the vectors in velocity gradient cannot follow the 

abrupt geometry change of the wall plane and the flow 

then reattaches to the vertical wall again before 

experiencing another variation at the bottom edge of the 

valve seat. The bottom edge geometry defined by CHA2 

and CHV2 also induces the flow to separate from the wall 

leading to the thicker near-wall separation zone. To  

clearly illustrate and assess these separation zones, three  
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(a) (b) 

Fig. 3 Zoomed-in view of computational mesh structure and mesh distribution for Mesh 8 after the mesh-

independent study: (a) The cut-through side view of the valve seat and orifice plate and (b) A cut-through side 

view at the swirl chamber of the orifice plate 

 

Table 3 Mesh independent investigation of the number of elements and the first inflation layer height comparing 

with 𝒚𝟏
+ maximum, averaged mass flow rate (kg/h), and the CFD simulation runtime

Case 
First inflation 

layer height (µm) 

Number of 

elements 
y1

+ maximum 
Averaged mass 

flow rate (kg/h) 

CFD simulation 

runtime (h) 

Mesh 1 9.00 3,278,851 24.69 4.682 2.19 

Mesh 2 8.00 3,715,208 22.41 4.695 2.17 

Mesh 3 5.00 3,992,371 15.10 4.652 2.48 

Mesh 4 1.00 6,124,668 3.75 4.458 3.35 

Mesh 5 0.80 6,454,086 2.94 4.682 3.50 

Mesh 6 0.70 6,661,062 2.57 4.695 4.16 

Mesh 7 0.50 7,088,047 2.20 4.652 4.29 

Mesh 8 0.20 8,197,041 0.92 4.458 4.51 

Mesh 9 0.18 9,526,846 0.73 4.458 5.29 

 
Table 4 Mesh quality for selected Mesh (Mesh 8) 

 Orthogonal Quality Skewness Aspect Ratio 

Min 0.10050 0.00000 1.15780 

Max 0.99928 0.89995 53.16400 

Average 0.77932 0.21882 4.60670 

 

Table 5 Geometry comparison between the three representative design points 20, 17, and 28 in term of the 

averaged mass flow rate (MassFlowAvg) 

Design Point CHA1 (°) CHH1 (μm) CHA2 (°) CHV2 (μm) MassFlowAvg (kg/h) 

20 44.49 24.25 84.60 46.98 4.393 

17 25.02 162.95 66.20 60.78 4.416 

28 56.68 187.65 53.40 97.58 4.433 

 

representative cases from all forty-nine cases with 

significant differences among them were selected to 

explain the flow behavior. 

 Figure 4 shows the three cases of the Design Points (a) 

20, (b) 17, and (c) 28 with varying four design parameters 

at the top and bottom edges listed in Table 5. All three 

cases exhibit the separation zone around the top edge of 

the valve seat caused by the sharp edge indicated by the 

large value of CHA1. In Design Point 17 with the smallest 

CHA1 and the least sharpened edge, the fluid flow is 

smoother, hence, smaller separation zone compared to one 

of the Design Point 20. Then, the flow can reattach itself 

onto the surface further down along the streamline due to 

turbulence overcoming adverse pressure gradient. In 

addition, at the bottom edge variation defined by CHA2 

and CHV2, the flow also reveals the effect of the drastic 

geometry change resulting in significant differences in the 

separation zone thickness among the three cases. Design 

Point 20 [Fig. 4(a)] contains the smallest vertical distance 

CHV2 = 46.98 μm and the largest bottom chamfer edge 

angle CHA2 = 84.60° characterizing a short perpendicular 

wall connecting to the orifice plate. This nearly 

perpendicular wall forces the fluid to flow around the 

sharp edge resulting in a large separation zone. The 

reduction in the bottom chamfer edge angle to a smaller 

value of CHA2 = 66.20° in Design Point 17 [Fig. 4(b)] 

leads to a smoother transition in geometry and in fluid  
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(a) Design Point 20 (CHA1 = 44.49°, CHH1 = 24.25 μm, CHA2 = 84.60°, and CHV2 = 46.98 μm) 

 

 

(b) Design Point 17 (CHA1 = 25.02°, CHH1 = 162.95 μm, CHA2 = 66.20°, and CHV2 = 60.78 μm) 

(c) Design Point 28 (CHA1 = 56.68°, CHH1 = 187.65 μm, CHA2 = 53.40°, and CHV2 = 97.58 μm) 

 

Fig. 4 Velocity contours of the two-phase mixture fluid flow in the YZ plane in the middle sub-figures and in the 

XZ plane in the right sub-figures of the Design Points (a) 20, (b) 17, and (c) 28 according to their geometry in 

Table 5 

 

flow behavior compared to Design Point 20, hence, the 

reduction of the separation zone thickness. Moreover, 

Design Point 28 [Fig. 4(c)] with the smallest bottom 

chamfer edge angle CHA2 = 53.40° in combination with 

the largest vertical distance CHV2 = 97.58 μm diminishes 

the separation zone substantially. 

 Figure 4 also shows the effective fluid flow areas in 

three cross-section XZ planes for y = 550 μm, 610 μm, and 

670 μm insides the orifice plate channel as consequences 

of the separation zone caused by the flow coming from the 

valve seat bottom edge. For Design Point 20 [Fig. 4(a)], 

the largest separation zone impedes the fluid flow and the 

effective flow area is reduced, hence, the smallest 

averaged mass flow rate as presented in Table 5. In other 

words, the reduction in the separation zone thickness 

increases the effective flow area, and thus, the highest 

averaged mass flow rate as demonstrated by Design Point 

28. 

 In this present study, however, the standard deviation 

of the averaged mass flow rate is a more important aspect 

than the flow rate value itself. The reason is that a 

numerical and actual model should operate with high 

reliability and produce a constant mass flow rate of the 

fuel-air mixture with the least standard deviation. Hence, 

the stability of mass flow rate becomes the first priority 

and maintaining its minimal standard deviation that may 

arise from design tolerance in the production and from 

changes in working conditions is a more significant 

consideration. Therefore, all initial CFD simulation results 

are subjected to further sensitivity analysis and the robust 

design optimization. 

6.2 Sensitivity Analysis 

First, the quality of the metamodel needs to be 

evaluated for its reliability and the trustworthiness of the 

results. In ANSYS optiSLang, the quality of the 

metamodel can be described and evaluated using 

Coefficients of Prognosis (CoP) given in Eq. 18. Figure 5 

shows the CoP of MOP from all forty-nine designs. Here, 

the CoP = 81% indicates a good prediction quality in   
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Fig. 5 Coefficients of Prognosis (CoP) indicating the impact of four input design parameters, CHA1, CHH1, 

CHA2, and CHV2 on the averaged mass flow rate (MassFlowAvg) 

 

Fig. 6 The 3D surface function of the averaged mass flow rate (in kg/h) as a function of a design parameter pair 

(a) CHA1 (in °) and CHA2 (in °) and (b) CHH1 (in µm) and CHA2 (in °) 

 

consistent with the previous studies (Most & Will, 2008; 

Ptchelintsev et al., 2010). In addition, the most significant 

design parameter is CHA2 with CoP = 51% while CHA1, 

CHH1, and CHV2 are of inferior importance indicated by 

CoP = 15% for CHA1, CoP = 13% for CHH1, and CoP = 

7% for CHV2. The MOP also confirms that changing in 

CHA2 largely affect the separation flow behavior and the 

effective flow area leading to the varying mass flow rate. 

Furthermore, the CFD simulation results of all forty-

nine designs were evaluated and the averaged mass flow 

rate of each design was plotted against a pair of design 

parameters, CHA1 and CHA2 in Fig. 6(a) and CHH1 and 

CHA2 in Fig. 6(b). The 3D surface plots in Fig. 6(a) and 

6(b) show regression approximation of all forty-nine data 

points with the CoP = 81%. The color on the surface plots 

indicates the value of the averaged mass flow rate with red 

representing highest value while blue indicating the 

smallest value of the averaged mass flow rate. The 

tendency on the surface plot in Fig. 6(a) shows that the 

designs with high mass flow rate density populate where 

CHA1 is large and CHA2 is small. Figure 6(b) also 

represents the trend of the high mass flow rate being 

denser when CHA2 is small, however, it did not show a 

clear trend of CHH1 impacting the averaged mass flow 

rate unlike that of the design parameter CHA1 in Fig. 6(a) 

as the CoP of CHH1 shows less impact compared to 

CHA1 as previously shown in Fig. 5. Additionally, 3D 

surface functions of Figs. 6(a) and 6(b) and their 

corresponding specific function expressions for each fitted 

surface as an approximation obtained by using MATLAB 

are shown in Appendix II. 

6.3 Robust Design Optimization 

 Figure 7 shows the workflow diagram of Robust 

Design Optimization (RDO) in ANSYS optiSLang. First, 

the tolerance and the standard deviation of the four design 

parameters extracted from the measured data shown in 

Table 6 are sent to the optimization process as initial 

values of the nominal design. In general, the optimization   

concept is to shift the nominal value of all design 

parameters to obtain the minimum possible standard 

deviation of the mass flow rate by keeping the tolerance 

and the standard deviation of the design parameters 

constant. In this study, one hundred samplings are created 

randomly by varying four design parameters within a 

robustness evaluation loop using the Advanced Latin 

Hypercube Sampling (ALHS) method corresponding to  

 
(a) 

 
(b) 
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Fig. 7 Schematic diagram of the Robust Design Optimization (RDO) in ANSYS optiSLang consisting of 

Metamodel of Optimal Prognosis (MOP) and the optimization unit composed of a Robustness Evaluation and 

Calculator module 

 

Table 6 Design parameter within their acceptable ranges, tolerances, and the standard deviations of the design 

parameters according to the drawings of CHA1, CHH1, CHA2, and CHV2 

Parameter Minimum value Maximum value 
Mean 

value 

Tolerance of the 

design parameters 

Standard deviation 

of the design 

parameters 

CHA1 (°) 39.7 43.3 41.5 ±3.68 1.83 

CHH1 (μm) 52.7 131.0 94.4 ±36.6 17.9 

CHA2 (°) 20.0 70.0 45.0 ±20.0 6.67 

CHV2 (μm) 20.0 100.0 60.0 ±20.0 6.67 

 

the previous MOP within its lower and upper bounds of 

the measured data listed in Table 6. Once the one hundred 

samplings were generated, the calculator module 

calculates the mean value and the standard deviation of the 

averaged mass flow rate. These two values are sent to the 

optimization loop as the first nominal design. After the 

first nominal design is optimized, the new nominal design 

parameters are obtained and this new nominal design and 

its associated new set of design parameters are sent to the 

robustness loop again. The optimization process repeats 

itself in iterations until the minimum standard deviation of 

the averaged mass flow rate is obtained. In this 

investigation, the population-based Evolutionary 

Algorithms (EA) is used for the optimization process. This 

EA optimization process runs up to in a total of 500 

iterations to ensure that the optimized design is achieved 

and converged. 

Figure 8 shows the history line of the standard 

deviation of the averaged mass flow rate 

(MassFlowRateStddev) in an EA optimization process. 

The green dots represent all design points in the EA 

optimization process while the blue line indicates the 

convergence line of the EA optimization process detecting 

some minimal values of the standard deviation becoming 

smaller. From the first to about the fiftieth iteration, the 

optimized design in progress does not yet converge and 

shows a high standard deviation of the averaged mass flow 

rate. Subsequently, the standard deviation of the mass flow 

rate steadily reduces in the successive iterations along the 

convergence line. Eventually, the minimum standard 

deviation of the averaged mass flow rate is found in the 

Design #301 out of 500 designs. Further down the EA 

optimization process from Design #301, the optimizer 

tries to reach the even lower value of the standard 

deviation of the mass flow rate, but the rest of the 

generated designs does not lead to any change of the 

fitness function, therefore, the optimizer concludes the 

Design 301 as the best design with the minimum standard 

deviation of the averaged mass flow rate. 

Figure 9 shows the 3D plots of the standard deviation 

of the averaged mass flow rate (MassFlowRateStddev) 

versus design parameters of (a) CHH1 and CHA1 and (b) 

CHV2 and CHA2. The low-population area within the 3D 

plot indicates the initial phase of the EA optimization 

process as some nominal designs have not been yet 

optimized. By contrast, the high density of the design 

point population in a specific area translates to the 

optimized value of the standard deviation as each design 

point moves closer to the target value step by step. 

Eventually, the minimum standard deviation of the 

averaged mass flow rate is found in Design #301 with its 

design parameters. 

Figure 10(a) depicts the standard deviation of the 

averaged mass flow rate in the so-called Best Design #301 

before and after the EA optimization process. The result 

shows that the standard deviation of the optimized design 

can be reduced from the initial design by approximate 51% 

from 1.98 x 10-3 to 9.14 x 10-4. Each design parameter was 

also optimized and the new design parameters are obtained 

in Fig. 10(b) with CHA1 = 39.7°, CHH1 = 88.1 μm, CHA2 

= 28.8°, and CHV2 = 28.6 μm. is found in Design #301  
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Fig. 8 Sequential history line (in gray) of the standard deviation of the averaged mass flow rate as a function of 

the 100 randomly generated design points fulfilling the geometric constraints (green dot) in each optimization 

step for 500 steps in including the convergence line (in blue) detecting successive decreasing in the standard 

deviation of the averaged mass flow rate 

 

  
(a) (b) 

Fig. 9 The 3D surface function of the standard deviation of the averaged mass flow rate (in kg/h) as a function of 

a design parameter pair (a) CHH1 (in µm) and CHA1 (in °) at the top edge as well as (b) CHV2 (in µm) and 

CHA2 (in °) at the bottom edge. The so-called Best Design #301 found in the optimization process in Fig. 8 also 

marked as the minimum value corresponding to the four optimized design parameters 

 

 
(a) 

 
(b) 

Fig. 9 (a) Mass flow rate distributions of the initial design with nominal design parameters and the optimized 

design and (b) The value of each design parameter of the robust design (the Best Design #301) after the EA 

optimization process 
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with its design parameters. Furthermore, 3D surface 

function of Figs. 9(a) and 9(b) and their corresponding 

specific function expressions are also shown in Appendix 

II. 

7. CONCLUSION 

This parametric study on the valve seat and the orifice 

plate in Port Fuel Injection (PFI) injector investigates four 

design parameters at the top and bottom edges of the valve 

seat. The forty-nine designs were generated based on the 

Design of Experiment (DOE) analysis. First, each of these 

forty-nine designs was simulated using ANSYS CFX with 

imposed boundary conditions of 4 bar inlet pressure at the 

top of the valve seat and 1 bar outlet pressure at the flow 

outlet of the orifice plate. In addition, to study the 

turbulent flow of the two-phase, fuel-air mixture generated 

by PFI injector, the Reynolds-Averaged Navier-Stokes 

(RANS) equations coupled with the Generalized k-ω 

(GEKO) turbulence model were used for calculation. 

Furthermore, a mesh independent study was conducted to 

ensure the accuracy of the simulation results and the 

optimal mesh regarding its size, number of elements, and 

the first layer mesh height adjacent to the wall was 

successfully identified. Second, the simulation results of 

all forty-nine designs show some degree of separation 

zone occurring around the top edge as well as the bottom 

edge of the valve seat depending mainly on the geometry 

defined by the four design parameters, namely (i) CHA1, 

the angle between the vertical bore wall and the valve seat 

wall, (ii) CHH1, the horizontal distance between the valve 

seat wall and the bore wall at the top edge, (iii) CHA2, the 

angle of the bottom chamfer from the bottom of the valve 

seat, and (iv) CHV2, the vertical distance of the bottom 

chamfer from the bottom of the valve seat. Three 

representative cases out of forty-nine designs with 

distinctive wall geometry were studied and compared in 

term of the averaged mass flow rate. At the top edge of the 

valve seat, the smaller value of CHA1 indicates the lesser 

sharp top edge leading to a smoother fluid flow with 

smaller separation zone. At the bottom edge of the valve 

seat, the smallest CHV2 combined with the largest CHA2 

characterizes the sharpest bottom edge resulting in the 

largest separation zone. Overall, large separation zone 

obstructs the fluid flow and reduces the averaged mass 

flow rate. According to Coefficient of Prognosis (CoP) 

using Metamodel of Optimal Prognosis (MOP), the design 

parameter CHA2 shows the highest impact on the 

averaged mass flow rate. Finally, for the stability 

consideration in actual application requiring constant mass 

flow rate, the minimal standard deviation of the mass flow 

rate is desirable. The Robust Design Optimization (RDO) 

in ANSYS optiSLang using Evolutionary Algorithm (EA) 

optimization process investigates one hundred design 

samples randomly generated by Advanced Latin 

Hypercube Samplings (ALHS) and identifies the so-called 

best model with the least standard deviation of the 

averaged mass flow rate. 
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APPENDIX I: GEKO TURBULENCE MODEL  

The GEKO turbulence model of steady flow can be 

expressed as follows (Menter et al., 2019), 

𝜕(𝜌𝑈𝑗𝑘)

𝜕𝑥𝑗

= 𝑃𝑘 − 𝐶𝜇𝜌𝑘𝜔 +
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥𝑗

] , (8) 

and 

 

 

Table 7 Definition and the range of six free 

parameters for GEKO turbulence model including 

their default value (Menter et al., 2019) 

Parameter Definition Range Default 

CSEP 

Optimize the 

separation 

prediction for 

boundary layer 

[0.7,2.5] 1.75 

CNW 

Optimize the wall 

shear stress and 

wall heat transfer 

rates in non-

equilibrium flows 

[-

2.0,2.0] 
0.50 

CMIX 

Optimize the 

mixing spreading 

rates in free shear 

flows 

[0.0,1.0] CMIXCOR 

CJET 

Optimize the 

spreading rates of 

jet flows 

[0.0,1.0] 0.90 

CCORNER 

Optimize the 

secondary flows in 

corners 

[0.0,1.5] 1.00 

CCURV 
Optimize the 

curvature correction 
[0.0,1.5] 1.00 

 

𝜕(𝜌𝑈𝑗𝜔)

𝜕𝑥𝑗

= 𝐶𝜔1𝐹1

𝜔

𝑘
𝑃𝑘 − 𝐶𝜔2𝐹2𝜌𝜔2 + 𝜌𝐹3𝐶𝐷 

+
𝜕

𝜕𝑥𝑗

[(𝜇 +
𝜇𝑡

𝜎𝜔

)
𝜕𝜔

𝜕𝑥𝑗

], 
(9) 

with  

𝜇𝑡 = 𝜌𝑣𝑡 = 𝜌
𝑘

max (𝜔,
𝑆

𝐶𝑅𝑒𝑎𝑙𝑖𝑧𝑒
)

, 
(10) 

𝑃𝑘 = 𝜏𝑖𝑗

𝜕𝑈𝑖

𝜕𝑥𝑗

 , (11) 

𝜏𝑖𝑗
𝐸𝑉 = −𝜌𝑢𝑖

′𝑢𝑗
′ = 2𝜇𝑡𝑆𝑖𝑗 −

2

3
𝜌𝑘𝛿𝑖𝑗  , (12) 

𝐶𝐷 =
2

𝜎𝜔

1

𝜔

𝜕𝑘

𝜕𝑥𝑗

𝜕𝜔

𝜕𝑥𝑗

 , (13) 

𝜏𝑖𝑗 = 𝜏𝑖𝑗
𝐸𝑉 −

𝐶𝐶𝑂𝑅𝑁𝐸𝑅
1.2𝜇𝑡

𝑚𝑎𝑥(0.3𝜔√0.5(𝑆2+Ω2))
(𝑆𝑖𝑘Ω𝑘𝑗 −

Ω𝑖𝑘𝑆𝑘𝑗),  

(14) 

with 

𝑆𝑖𝑗 = (
𝜕𝑈𝑖

𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖

) ,  Ω𝑖𝑗 =
1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑗

−
𝜕𝑈𝑗

𝜕𝑥𝑖

) (15,16) 

where 

𝑆 = √2𝑆𝑖𝑗𝑆𝑖𝑗 , Ω = √2Ω𝑖𝑗Ω𝑖𝑗. (17,18) 

The GEKO turbulence model provides the six free 

parameters listed in Table 7 for adjusting the flow 

according to their applications without negatively 

impacting the model (Yusuf et al., 2020). The CMIXCOR as  
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(a) 

 
(b) 

Fig. 11 Approximated expression functions of (a) 

CHA1 (°) and CHA2 (°) vs. MassFlowAvg (kg/h) (b) 

CHH1 (μm) and CHA2 (°) vs. MassFlowAvg (kg/h) 

 

the default value for CMIX in Table 7 can be expressed as 

(Menter et al., 2019, 2020), 

𝐶𝑀𝐼𝑋𝐶𝑂𝑅 = 0.35𝑠𝑖𝑔𝑛(𝐶𝑆𝐸𝑃 −

1)√(|𝐶𝑆𝐸𝑃 − 1|).  
(19) 

Note that the default GEKO model using all six defaults 

for their free parameters performs closely to the Shear  

Stress Transport (SST) turbulence model (Menter et al., 

2019). 

APPENDIX II: SURFACE FUNCTION EXPRESSION  

 Figure 11 graphically show the fitted 3D surfaces of 

the all 49 averaged mass flow rate data points as an 

approximation obtained by using MATLAB. Here, the 

MassFlowAvg (in kg/h) is a 3D surface function of CHA1 

(°) and CHA2 (°) in Fig. 11(a) as well as of CHH1 (μm) 

 

(a) 

 
(b) 

Fig. 12 Approximated function expression of (a) 

CHH1 (μm) and CHA2 (°) vs. MassFlowRateStddev 

(kg/h) (b) CHV2 (μm) and CHA2 (°) vs. 

MassFlowRateStddev (kg/h) 

 

and CHA2 (°) in Fig.11(b), with the expressions, as 

follows: 

MassFlowAvg ≈ 4.39 − 6.60 × 10−5CHA1
+ 1.20 × 10−3CHA2
+ 9 × 10−6CHA12

− 6 × 10−6CHA1 ∙ CHA2
− 1.2 × 10−5CHA22 

 

(19) 

MassFlowAvg ≈ 4.41 − 1.58 × 10−5CHH1
+ 1.10 × 10−3CHA2
+ 2 × 10−6CHH12

− 2 × 10−6CHH1 ∙ CHA2
− 1.3 × 10−5CHA22 

(20) 
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Similarly, Figs. 12(a) and 12(b) graphically illustrate the 

fitted 3D surfaces of the the standard deviation of the 

averaged mass flow rate, MassFlowRateStddev (in kg/h) 

as a 3D surface function of CHA2 (°) and CHH1 (μm) as 

well as of CHV2 (μm) and CHA2 (°), respectively, with 

the expressions, as follows: 

 

Table 8 Range of the 4 design parameters used for 

samples in experiment and simulation 

 Parameter Lower 

bound 

Upper 

bound 

Upper edges 

(for all cases) 

CHA1 (°) 37.00 45.00 

CHH1 (μm) 51.74 131.00 

Original range 

(Nominal) 

CHA2 (°) 50.85 75.55 

CHV2 (μm) 38.48 65.58 

Small bottom 

edge 

CHA2 (°) 37.23 64.40 

CHV2 (μm) 14.00 48.00 

Large bottom 

edge 

CHA2 (°) 51.03 57.33 

CHV2 (μm) 59.00 92.00 

 

MassFlowRateStddev
≈ 0.01 − 1.71 × 10−4CHH1
− 1.41 × 10−4CHA2
+ 1 × 10−6CHH12

+ 2 × 10−6CHA22 

(21) 

MassFlowRateStddev
≈ 2.67 × 10−3

+ 3.1 × 10−5CHV2
− 1.47 × 10−4CHA2
− 1 × 10−6CHV2 ∙ CHA2
+ 3 × 10−6CHA22 

(22) 

The specific function expressions for each fitted surface as 

an approximation obtained by using MATLAB are shown 

on top of each 3D surface in red. 

APPENDIX III: VALIDATION  

The available experimental data were brought into 

consideration to qualitatively validate the simulation 

results. The experimental data were obtained by varying 

the bottom edge defined by the two design parameters, 

namely CHV2 and CHA2. The 353 valve seats for each of 

the following 3 cases with the different ranges of CHV2 

and CHA2 were designed, produced, and tested: 

Case 1: Original range (Nominal)  

Case 2: Small bottom edge - limiting CHV2 and CHA2 

values to be smaller compared to the original range. 

Case 3: Large bottom edge - Increasing CHV2 and CHA2 

values to be larger than those of the original range. 

 Due to production limitation, the upper edge defined 

by the two design parameters, namely CHA1 and CHH1, 

was kept in the same range for all 3 cases. The range of 

each case is shown in the Table 8. 

 For each experimental case, all the 353 valve  

seat samples were produced according to the prescribed  

 

 

Fig. 13 Standard deviation distribution of the 

dimensionless mass flow rate in 3 distinctive cases 

with normal bottom edge, small bottom edge, and 

large bottom edge for experimental measurement and 

simulation 

 

dimension listed in the table above and their mass flow 

rate values were measured. Similarly, their 100 numerical 

counterparts for each case were randomly generated 

according to the same values of lower and upper bounds 

listed in the table above and their mass flow rate values 

were extracted from the simulation. Note also that some 

discrepancies between the experimental testing conditions 

and the simulations may occur, for instance, the tested 

medium, the uncertainty of the exact geometry from the 

production line, the error from the measurement. These 

unavoidable factors could potentially lead to the deviation 

of the actual mass flow rate measured. Therefore, the most 

suitable approach to statistically compare the tendency of 

the mass flow rate is to arrange both measured and 

simulated mass flow rates into a dimensionless value, i.e., 

the ratio of the mass flow rate to its averaged mass flow 

rate (mean value), which are plotted in the Fig. 13. 

 Figure 13 shows a statistically similar tendency with 

the highest standard deviation being found in the original 

range case for both experiment and simulation. An 

improvement with smaller standard deviation is shown in 

case of the small bottom edge compared to the original 

range case. The case of large bottom edge exhibits the best 

flow behavior in terms of maintaining the lowest standard 

deviation of the mass flow rate. The experimental cases 

verify a qualitative validation of the valve seat simulation 

cases with four design parameters in terms of the mass 

flow rate or, more specifically, the standard deviation of 

the mass flow rate, as previously explained in Fig. 9. 


