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ABSTRACT 

This paper presents the numerical multi-objective optimization of staggered tube 

banks in cross-flow using neural networks and genetic algorithm. The objective 

is to determine the optimal dimensionless transverse and longitudinal pitches 

that establish a proper compromise between heat transfer enhancement and 

pressure drop minimization across a wide range of inlet Reynolds numbers 

(1,000–50,000). Tube banks simulations are performed for randomly selected 

pairs of design points to generate data on Nusselt number and friction factor. 

This dataset is used to train neural networks, which predict heat transfer and 

pressure drop characteristics as functions of dimensionless pitches. Appropriate 

objective functions are defined using trained neural networks and integrated into 
Genetic Algorithm to efficiently identify Pareto-optimal solutions. Results 

indicate that Reynolds number has a negligible effect on the Pareto front, as the 

optimal trade-offs between heat transfer and pressure drop remain consistent 

across different flow regimes. The best point on the Pareto front, defined as the 

solution with the minimum distance to the utopia point, exhibits dimensionless 

longitudinal and transverse pitches of approximately 0.90 and 1.30, respectively, 

regardless of the Reynolds number. Additionally, the study confirms that 

compact tube banks with dimensionless longitudinal pitches smaller than 1.0, 

often excluded in experimental and numerical studies, can be successfully 

simulated and optimized using the proposed framework. The findings provide 

practical guidelines for designing high-efficiency staggered tube banks and 

demonstrate a computationally efficient approach to optimize heat exchanger 

configurations without relying on empirical correlations.  
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1. INTRODUCTION 

Cross-flow staggered tube banks are widely used in 

air conditioning systems, boilers, and electrical devices, 

where optimizing their thermal performance can 

significantly enhance system efficiency and reduce energy 

consumption. Due to their industrial relevance, numerous 

experimental and numerical studies have investigated their 

heat transfer and pressure drop characteristics to improve 

performance. Early empirical correlations, such as those 
proposed by Žukauskas (1972), provided fundamental 

insights into Nusselt number (Nu) variations and pressure 

drop coefficients over a wide range of Reynolds (Re) and 

Prandtl numbers. Subsequent experimental research, 

including Aiba et al. (1982), further explored the impact 

of Re number and dimensionless pitches on local Nu 

number and pressure drop coefficients. However, while 

these studies established foundational knowledge, they 

relied on empirical correlations that may lack accuracy for 

diverse geometric configurations and flow conditions. 

The advent of computational methods enabled more 

detailed investigations into tube bank performance. 

Wilson and Bassiouny (2000) employed the finite volume 

method to numerically investigate heat transfer and 

pressure drop characteristics for one and two rows of tubes 

in the turbulent flow regime. Kim (2013) employed 
periodic and symmetric boundary conditions to investigate 

the effect of longitudinal pitch on the heat transfer in the 

in-line tube banks. His sensitivity analysis identified 𝑘 −
𝜔 𝑆𝑆𝑇 as the most accurate two-equation turbulent model  
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for predicting heat transfer in in-line tube banks under 

symmetric and periodic boundary conditions. Later, Shah 

et al. (2013) employed the same methodology to 

investigate the pressure drop characteristics of staggered 
tube banks. Mohanty et al. (2018) performed a 2-D 

numerical study on in-line and staggered tube banks with 

three columns and five rows of tubes to determine heat 

transfer and pressure drop coefficients for forced 

convective heat transfer across different inlet Re numbers 

and dimensionless pitch values. Their study covered Re 

numbers ranging from 100 to 2,000 and dimensionless 

pitch values between 1.25 and 1.85, considering both 

elliptical and circular tubes. Abed and Afgan (2017) 

considered square and non-square configurations for in-

line tube banks and numerically studied the effect of 

normalized pitches on heat transfer and flow 
characteristics, employing unsteady Re-averaged Navier-

Stokes (URANS) turbulence models. Naik and Tiwari 

(2021a, b) analyzed fluid flow and heat transfer 

characteristics for circular tube banks with vortex 

generators using 3D numerical modeling in both in-line 

and staggered arrangements. Since heat transfer 

characteristics strongly depend on vortex generator 

placement, they varied the rectangular winglet pair 

positions relative to the tube centers to find the optimal 

configuration for maximizing heat transfer while 

minimizing pressure drop. Their study identified Δx = 2 
and Δy = ±1.25 as the optimal vortex generator positions 

relative to the tube centers. In both studies, they 

subsequently, investigated the effect of attack angles of 

these rectangular winglet pairs on heat transfer 

characteristics, focusing on the best position identified in 

their previous research. Their study covered an inlet Re 

number range of 2,000 to 10,000 and attack angles from 

15° to 60°. Li et al. (2019) conducted a 5-parameter 

numerical study to analyze heat transfer in twisted oval 

tube banks, utilizing symmetric and periodic boundary 

conditions with Re numbers ranging from 500 to 23,000. 

Bejan (1995) demonstrated that optimum tube pitches 

exist to maximize heat transfer in tube banks under a 
fixed-volume constraint. Bejan et al. (1995) and Stanescu 

et al. (1996) extended this concept, optimizing these 

pitches for free and forced convective heat transfer, 

respectively, by varying the tube number density within a 

specified volume. 

Matos et al. (2001, 2004a, b) performed experimental 

and numerical optimization of staggered tube banks with 

non-finned and finned elliptical and circular tubes in 

laminar flow using the finite element method. They 

employed the finite element discretization method for 2-D 

and 3-D numerical optimization, and determined the 

optimum tube pitches, elliptic tube eccentricity, and fin 
pitch that maximize heat transfer. Mainardes et al. (2007) 

later extended this work to the turbulent flow regime. 

However, since pressure drop was not considered in these 

studies, Mainardes et al. (2013) performed an optimization 

study to minimize pumping power for a finite number of 

tubes in the turbulent flow regime. 

Many of the previously discussed studies focused on 

single-objective optimization, optimizing either heat 

transfer or pressure drop without considering their trade-

off. Khan et al. (2007) utilized entropy minimization and 

previous analytical/experimental correlations to optimize 
in-line and staggered arrangements. Geb et al. (2013) 

combined volume-averaging theory and genetic 

algorithms to perform a 10-parameter optimization, using 

effectiveness as the objective function. Yilmaz and 

Yilmaz (2015) optimized tube number and pitches based 

on pressure drop and effectiveness, but they defined a 

fixed relationship between longitudinal and transverse 

pitches, limiting the design flexibility. Sahamifar et al. 

NOMENCLATURE 

A cross-sectional area  𝑆𝑇  dimensionless transverse pitch 

𝑐𝑝 specific heat capacity   𝑇 temperature  

𝐷 tube diameter   u velocity component along x-axis  

𝑓 friction factor  v velocity component along y-axis  

G goodness factor  𝑉 velocity  

ℎ convection coefficient   Greek symbols 

𝑘 thermal conductivity of the fluid  𝜌 density  

∆𝑃 
pressure drop along the computational 

periodic domain  

 
𝜇 dynamic viscosity  

∆𝑃 
average pressure drop along the computational 
periodic domain  

 
𝜁 pressure drop coefficient 

∆𝑇𝑖 
inlet fluid and tubes wall temperature 

difference 

 
𝜃 periodic dimensionless temperature 

∆𝑇𝑙𝑚 log-mean temperature difference  Subscript and Superscript 

∆𝑇𝑜 
outlet fluid and tubes wall temperature 

difference 

 
i inlet  

�̇� inlet mass flow rate   L longitudinal 

𝑁𝑢 Nu number  o outlet 

𝑃𝐿  longitudinal pitch   t total  

𝑃𝑇  transverse pitch   T transverse 

𝑄 heat transfer rate  w wall  

𝑅𝑒 Re number  opt optimum  

𝑆𝐿 dimensionless longitudinal pitch  ~ dimensionless parameter 
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(2019) used a generalized pattern search algorithm 

(GPSA) to numerically optimize staggered tube banks. 

They directly simulated a wide range of longitudinal and 

transverse pitches using symmetric and periodic boundary 

conditions. Rawa et al. (2021) numerically studied exergy 

and energy characteristics in twisted tube banks, 

introducing a novel arrangement and performing a multi-

objective optimization on longitudinal and transverse 
pitches, Re number, and twist angle. Ge et al. (2021) 

performed a multi-objective shape optimization 

considering five tube shapes, treating 25 polar radii as 

design variables. It should be noted that Rawa et al. (2021) 

optimized only their proposed arrangement, while Ge et al. 

(2021) did not consider tube pitches as design variables.  

All the studies mentioned above have performed a 

single-objective optimization on tube banks. Moreover, 

these studies, with the exception of the work carried out 

by Sahamifar et al. (2019), have used empirical 

correlations for Nu number and friction factor as the 

objective functions. It must be noted that empirical 
correlations could not accurately predict Nu number and 

friction factor in a wide range of Raynolds numbers and 

geometric parameters (Bacellar et al., 2016; Gu et al., 

2017). This study employs CFD simulations through 

coupling MATLAB and ANSYS-Fluent to obtain Nu 

number and friction factor across a wide range of Re 

numbers (1,000–50,000), eliminating the inaccuracies 

associated with empirical correlations. It integrates ANNs 

as surrogate models and a multi-objective genetic 

algorithm (MOGA) to optimize tube pitches, significantly 

reducing computational costs. 

Additionally, this study introduces a computational 

approach to simulate and optimize compact tube banks 

with dimensionless longitudinal pitches ≤ 1.0, a range that 

is rarely considered in prior research due to simulation 

constraints (Aiba et al., 1982; Yilmaz and Yilmaz, 2015; 

Gu et al., 2017; Rawa et al., 2021). In addition to obtaining 

the values of the objective functions using sub-scale CFD 

calculations, periodic and symmetric boundary conditions 

are utilized here, to preclude considering the entire domain 

of the tube bank, which reduces simulation time and 

computational cost significantly. As a result, a wide range 

of tube pitches could be simulated.  

The novelty of this study lies in developing a CFD-

based, data-driven framework for multi-objective 

optimization of staggered tube banks in turbulent cross-

flow. Unlike prior works that relied on empirical 

correlations or single-objective formulations, this research 

simultaneously optimizes heat transfer and pressure drop 

using surrogate models trained on CFD data and evaluated 

via a MOGA. Additionally, it enables accurate modeling 

and optimization of compact tube banks with small 

dimensionless longitudinal pitches, which are rarely 

explored in prior studies due to simulation limitations. 
This study offers a generalized solution as the results 

demonstrate that the Pareto fronts and optimal 

configurations are largely invariant across a wide range of 

flow conditions. 

This work sets a foundation for scalable, ML-driven 

optimization of thermal systems under realistic spatial and 

performance constraints. The findings of this study can be  

 

Fig. 1 Staggered tube banks 

 

directly applied to real-world systems, particularly in the 

design of compact and energy-efficient heat exchangers, 

regardless of size. Staggered tube banks are widely 

utilized in industrial heat exchangers due to their ability to 

enhance heat transfer. By identifying Pareto-optimal 

configurations, this study provides insights that can help 

engineers design more compact and efficient heat 

exchangers, reducing both energy consumption and 

operational costs. Additionally, as the analysis and the 

optimization framework presented are scale-free, the 
outcome of the current paper can be easily generalized and 

integrated into HVAC systems and refrigeration systems 

design, power plants, and industrial applications to 

enhance their heat exchangers performance under various 

operating conditions and spatial limitations. 

2. FLOW SIMULATION, NEURAL NETWORK 

TRAINING METHODOLOGY, AND 

OPTIMIZATION PROCESS 

The problem domain with staggered tube banks is 

presented in Fig. 1, schematically. PL, PT, and D represent 

longitudinal pitch, transverse pitch, and tubes diameter, 

respectively.  

Changing the longitudinal and transverse pitches 

significantly affects the fluid flow regime between the 

tubes. Since heat transfer and pressure drop characteristics 

are strongly dependent on the flow regime, variations in 
these pitches directly influence both characteristics. In this 

study, the dimensionless longitudinal and transverse 

pitches are treated as design variables in the optimization 

process. The Nu number and friction factor are considered 

as representative measures of heat transfer and pressure 

drop, respectively. Therefore, the variation of these 

characteristics with respect to the dimensionless pitches 

must first be determined. Based on this analysis, 

appropriate objective functions can be defined, and the 

optimization can then be carried out to identify the optimal 

trade-offs between heat transfer and pressure drop for each 
Re number. The details of this process are fully described 

in the following sections. 

2.1 Parameters and Data Reduction 

To determine the optimal compromises between the 

pressure drop and heat transfer characteristics with respect 

to the inlet Re number, it is appropriate to use the inlet 
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velocity as a reference parameter. The inlet Re number is 

defined as 

Re i
i

V D


=  (1) 

where 𝜌, 𝜇, and 𝐷 are the density, viscosity of the fluid, 

and tubes diameter, respectively. Eq. (1) can be solved for 

the inlet velocity if the inlet Re number is known.  

By knowing the inlet velocity, Vi, the inlet mass flow 

rate is calculated using 

i im V A=  (2) 

where 𝐴𝑖 is the inlet cross-sectional area which can be 

approximated as PT/2. The pressure drop (∆𝑃) along the 

periodic computational domain is obtained by solving the 

continuity and momentum equations using the CFD 

package. The friction factor is then calculated based on the 
pressure drop across the periodic computational domain 

using 

21

2

i

t
i

AP
f

A
V


=

 

(3) 

where 𝐴𝑡 is the total heat transfer surface, which, in the 

case of a two-dimensional simulation, is equal to 𝜋𝐷. 

Using CFD results, the total heat transfer rate is 

computed as 

( )0p iQ mc T T= −  (4) 

where 𝑇𝑖, 𝑇𝑜 are inlet and outlet bulk temperatures, and 𝐶𝑝 

is the specific heat capacity. 𝑇𝑜 is an unknown parameter 

that can be calculated using dimensionless periodic 

temperature (𝜃), at the outlet, which is defined by the 

following equation and is obtained as a CFD simulation 

result 

w o o
o

w i i

T T T

T T T


− 
= =

− 

. 
(5) 

In Eq. (5), 𝑇𝑤 is the temperature of the wall of the tubes, 

which is assumed to be constant at 400 𝐾 for the 

simulation. After calculating the total heat transfer rate, 

the convection coefficient can be determined using 

t lm

Q
h

A T
=



 
(6) 

where ∆𝑇𝑙𝑚 is the log-mean temperature difference 

defined as 

ln

i o
lm

i

o

T T
T

T

T

 −
 =

 
 
 

 

(7) 

The Nu number can be computed using the 

convection coefficient as 

hD
Nu

k
=  (8) 

where 𝑘 is the thermal conductivity of air. Objective 

functions are defined using the computed heat transfer and 

pressure drop characteristics to perform the optimization 

and determine the optimal trade-offs between these two 

competing objectives. According to Webb and Kim 

(2004), the most appropriate metric for evaluating the heat 

exchangers is the goodness factor (G).  

1 1

3 3

;

Re Pr

J Nu
G and J

f

= =  

Thus, the first objective function (OF1), related to 

normalized pressure drop, is defined as 

31

opt

f
OF

f
=

 
(9) 

while the second objective function (OF2), associated with 

normalized heat transfer, is expressed as 

2

optNu
OF

Nu
=  (10) 

In these definitions, 𝑓𝑜𝑝𝑡  and 𝑁𝑢𝑜𝑝𝑡 are the reference 

(optimal) values obtained from the single-objective 

optimization study by Sahamifar et al. (2019). 

Normalization of the objective functions results in making 

them comparable and gaining a better insight toward their 

optimal values in different Re numbers. 

The study by Sahamifar et al. (2019) showed that by 

using dimensionless longitudinal and transverse pitches of 

𝑆𝐿 ≅ 1 and 𝑆𝑇 ≅ 1.3 as design variables, the goodness 

factor is maximized across all considered Re numbers. The 

dimensionless pitches are defined as 

L
L

P
S

D
= and T

T

P
S

D
=  (111) 

The optimal dimensionless pitches obtained from 

single-objective optimization are used in the current study 

to calculate the optimal values of the friction factor and Nu 

number, using the numerical model, for all three 

considered Re numbers. The recalculated optimal values 
are presented in Table 1. These values are then used to 

normalize the heat transfer and pressure drop 

characteristics, and to define the objective functions 

accordingly. The objective functions defined in Equations 

(9) and (10) offer the advantage of having output values 

on the same order of magnitude, which enhances the 

stability and effectiveness of the multi-objective 

optimization process. 

 

2.2 Geometry, Mesh, Boundary Conditions 

Empirical correlations are derived by interpolating 
and extrapolating large sets of experimental data, which 

can introduce significant errors. Moreover, none of the 

existing correlations account for dimensionless transverse 

 

Table 1 Single-objective optimization results 

(Sahamifar et al., 2019); Same values for Re number 

are considered in the current study 

Re number 𝑁𝑢𝑜𝑝𝑡 𝑓𝑜𝑝𝑡  

1,000 57.11 5.35 

15,000 272.92 1.39 

50,000 616.32 0.78 
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Fig. 2 Computational domain of tube banks 

 

and longitudinal pitches smaller than 1.25, as 

experimental data for such small pitches are not available. 

Considering this and given that the optimal point for 
single-objective optimization was found at very small 

pitch values (Sahamifar et al., 2019), CFD simulation 

becomes essential. Therefore, despite the existence of 

empirical correlations, detailed simulation is required to 

accurately capture the behavior at these compact 

configurations and to ensure that the neural network is 

trained on reliable, comprehensive data. 

In the studies conducted by Kim (2013) and 

Sahamifar et al. (2019), periodic and symmetric boundary 

conditions were employed to significantly reduce 

simulation time and computational cost. Such assumptions 
for the boundary conditions are particularly suitable for 

modeling industrial-scale heat exchangers that contain 

more than 100 rows of tubes, where the influence of the 

first few tube rows on the overall performance is 

negligible. Since the accuracy of using these boundary 

conditions has been validated in the mentioned studies, 

they are adopted in the present work as well. 

Although different tube arrangements in the 

computational domain shown in Fig. 1 can be considered 

with described boundary conditions, the specific 

configuration shown in Fig. 2 is used here. This 

arrangement, also employed by Sahamifar et al. (2019), 
enables the simulation of dimensionless longitudinal 

pitches smaller than 1, which are often excluded in 

experimental and numerical research due to modeling 

limitations. In this setup, symmetric boundary conditions 

are applied to the top and bottom boundaries, while 

periodic boundary conditions are applied to the left and 

right boundaries. The detailed boundary conditions 

applied are listed in Table 2. 

To accurately predict flow characteristics in 

numerical simulations, careful mesh generation is 

essential, particularly near the tube walls where boundary 
layers develop. To properly resolve the boundary layer, 

the mesh must satisfy the constraint 𝑦+ < 1, while there 

are no strict constraints on mesh resolution in other 

regions of the computational domain, aside from ensuring 

that mesh size remains appropriate for resolving global 

flow features. An unstructured triangular mesh is used 

throughout the computational domain, except in the 

 

Table 2 Boundary conditions considered for the 

model 

Boundary Boundary Condition Type 

Pipe Wall 

𝑢 = 0* 

𝑣 = 0** 

𝑇 = 𝑇𝑤 = 𝑐𝑜𝑛𝑠𝑡. 
Control volume’s 

upper and lower 

Boundaries 
(Symmetric) 

𝑣 = 0 

𝑇𝑤 = 0 

𝑄 = 0 

Control volume’s 

left and right 

boundaries 

(Periodic) 

𝑢(𝑥, 𝑦) = 𝑢(𝑥 + 𝑆𝐿 , 𝑦) 

𝑝(𝑥, 𝑦) = 𝑝(𝑥 + 𝑆𝐿 , 𝑦) + ∆𝑝𝑡
̅̅ ̅̅̅ 

𝜃 =
𝑇(𝑥, 𝑦) − 𝑇𝑤

𝑇𝑖 − 𝑇𝑤

 

𝑇𝑖 =
∫ 𝑇(𝜌�⃗�𝑑𝐴⃗⃗⃗⃗⃗⃗ )

𝐴

∫ (𝜌�⃗�𝑑𝐴⃗⃗⃗⃗⃗⃗ )
𝐴

 

* Velocity component along x-axis 

** Velocity component along y-axis 

 

 

Fig. 3 Mesh used, shown for half of the computational 

domain 

 

boundary layer region, where a more refined mesh is 

required. To meet the 𝑦+ < 1 requirement, the boundary 

layer mesh is initially generated under critical conditions 

and then applied to other cases (Hoseinzadeh et al., 2020). 

According to the sensitivity analysis performed by 

Sahamifar et al. (2019), reducing the transverse pitch 

increases 𝑦+ and vice versa, while changes in longitudinal 

pitch have a negligible effect on 𝑦+. Based on their 

findings, the boundary layer mesh in this study is designed 

for the minimum longitudinal and transverse pitches and 

then reused for other pitch combinations in the 

optimization process. An example of the meshing scheme 

used in the computational domain is shown in Fig. 3. 

After generating the boundary layer mesh for the 

critical pitch configuration, a mesh independence study 

was conducted to ensure that the CFD results are not 
sensitive to mesh size (Hoseinzadeh & Heyns, 2020; 

Nazarieh et al., 2023). This analysis was performed for the 

minimum and maximum inlet Re numbers (1,000 and  
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(a) 

 
(b) 

Fig. 4 Mesh independency results for the inlet Re 

number equal to 1000 and the worst case in design 

space (𝑺𝑳 = 𝟏. 𝟕𝟓; 𝑺𝑻 = 𝟏. 𝟏), for a) first objective 

function, b) second objective function 

 

Table 3 Design variables and their range 

Design variables Minimum Maximum 

SL 0.9 4 

ST 1.1 4 

 

50,000). The mesh independence study was carried out for 

𝑆𝐿 = 1.75, 𝑆𝑇 = 1.1, and the results are shown in Figs 4 

and 5. The results indicated that for mesh counts greater 

than 6,248 and 12,334, at Re numbers of 1,000 and 50,000 
respectively, the variations in friction factor and Nu 

number were less than 1%. Based on these findings and 

given that the 𝑦+ < 1 constraint is also satisfied, this 

meshing scheme was applied to all simulations involving 

dimensionless pitch values within the range specified in 

Table 3. 

The lower bounds of the design variables were 

selected as 0.9 for longitudinal pitch and 1.1 for transverse 

pitch, since tube banks with dimensionless pitches below 

these values cannot be simulated as tubes will collide. 

It is evident that satisfying the 𝑦+ < 1 constraint for 

each pair of pitches using customized meshes would 

minimize the total mesh count for that specific case. 

However, implementing this approach is practically  

 

(a) 

 

(b) 

Fig. 5 Mesh independency results for the inlet Re 

number equal to 50,000 and the worst case in design 

space (𝑺𝑳 = 𝟏. 𝟕𝟓; 𝑺𝑻 = 𝟏. 𝟏) for a) first objective 

function, b) second objective function 

 

infeasible, as a large number of simulations are required to 

generate sufficient data for training the neural networks. 

To obtain the heat transfer and pressure drop 

characteristics, the discretized forms of the continuity, 

momentum, and energy equations were solved using the 

second-order upwind scheme within ANSYS-Fluent. 

In this study, air at an inlet temperature of 288.15 K 

is used as the working fluid. Since the Mach number of the 

inlet flow is below the critical threshold, the flow is 

assumed to be incompressible. The thermophysical 

properties of the inlet fluid are provided in Table 4.  
 

Table 4 Thermophysical properties of inlet fluid 

Thermophysical properties Air 

Inlet bulk temperature, 𝑇𝑖  (𝐾) 288.15 

Density, 𝜌 (
𝑘𝑔

𝑚3) 1.2167 

Specific heat capacity, 𝑐𝑝 (
𝐽

𝑘𝑔 𝐾
) 1006.763 

Viscosity, 𝜇 (
𝑘𝑔

𝑚 𝑠
) 

1.78675×
10−5 

Thermal conductivity, 𝑘 (
𝑊

𝑚 𝐾
) 0.025352 
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Fig. 6 Comparison of heat transfer characteristics 

resulting of the numerical simulation with 

experimental study (Zukauskaus, 1972) for air with 

Prandtl number = 0.71 and 𝑺𝑳 = 𝑺𝑻 = 𝟏. 𝟓  

 

Based on Kim (2013), Kariman, et al. (2023), and 

Sahamifar et al. (2019), 𝑘 − 𝜔 𝑆𝑆𝑇 model is employed as 
flow conditions of the problem investigated in the current 

study are similar to those. For the sake of simplification, it 

is assumed that the tube length is much greater than the 

diameter; therefore, all governing equations are solved in 

two dimensions (2-D). The SIMPLE algorithm is used to 

couple velocity and pressure fields. 

According to the sensitivity analysis conducted by 

Sahamifar et al. (2019), setting the convergence criterion 

for the energy equation below 10−7 does not significantly 

influence the results. Based on this finding, the 

convergence criteria were set to 10−6 for the residuals of 

all equations except the energy equation, for which a more 

stringent criterion of 10−7 was applied. 

2.3 Model Validation 

As mentioned previously, the inlet velocity is 

considered the reference velocity in this study. The 

variation of the Nu number with Re number is commonly 

used to validate numerical models, as shown in studies by 

Deng et al. (2024) and Karali et al. (2025). In this work, 

validation is performed for various maximum Re numbers 

using dimensionless pitches of 𝑆𝐿 = 𝑆𝑇 = 1.5. The results 

of this validation are compared with the experimental data 
of Zukauskas (1972), one of the most widely cited studies 

in the literature. 

Figure 6 shows that the heat transfer characteristics 

predicted by the numerical model follow a trend similar to 

the experimental data. As seen in the figure, for Re 

numbers below 40,000, the deviation between the 

numerically computed Nu number and the experimental 

values is negligible. This deviation increases when the Re 

number ranges from 65,000 to 150,000. However, for Re 

numbers between 150,000 and 200,000, the deviation 

decreases again, which corresponds to a change in the 
correlation coefficients proposed by Zukauskas (1972). It 

must be noted that empirical correlations do not 

necessarily predict the pressure drop for all Re numbers 

accurately (Bacellar et al., 2016; Gu et al., 2017). 

Potential sources of error in the CFD simulation 

include two-dimensional (2D) modeling of the flow, 

particularly in the turbulent regime, meshing efficiency 

across different geometric configurations and Re numbers, 

and the application of periodic boundary conditions. 

Among all these cases, only the use of periodic boundary 
conditions for small row counts could introduce noticeable 

deviations from the actual performance as real-world 

configurations with finite tube banks may exhibit inlet and 

outlet effects that are not captured in a fully periodic 

domain. However, since the optimization trends are 

determined by the relative performance of different 

configurations, rather than absolute performance values, 

these potential errors do not significantly alter the optimal 

tube bank design. The low-fidelity meshing and 2D 

modeling choices have been verified to have a minimal 

impact on the accuracy of the Pareto-optimal solutions. 

At this step, neural networks are employed to develop 
surrogate models for predicting heat transfer and pressure 

drop characteristics based on the dimensionless pitches, 

which serve as the design variables. These surrogate 

models significantly simplify the optimization process by 

eliminating the need for repeated CFD simulations. The 

following section briefly outlines the procedure used to 

construct and apply these models in the optimization 

framework. 

2.4 Neural Network Model 

A neural network consists of multiple layers, each 

containing a set of neurons. The first and last layers are 
referred to as the input and output layers, respectively. 

Between them are one or more hidden layers, which 

contain several neurons and are responsible for processing 

the input data. Each neuron in the input layer receives one 

of the design variables. These inputs are then processed 

through the hidden layers, and the neurons in the output 

layer produce the predicted value for the target output. 

All neurons in the network are fully connected, 

meaning there is communication between every neuron in 

one layer and each neuron in the next layer. Data is passed 

forward by multiplying the outputs of neurons in one layer 
by a matrix of values known as weights. The result is an 

array, to which another array, called the bias, is added. 

Each layer in the network has its own weight matrix and 

bias vector, which are adjusted during the training process. 

The training phase involves finding the optimal values of 

these weights and biases so that the network can accurately 

map inputs to the desired outputs. 

After completing the described computations, the 

resulting array of values is passed through an activation 

function. This function determines whether a neuron 

should be activated based on the input it receives. 

Activated neurons pass their outputs to the next layer, 
continuing the process. This mechanism of transferring 

data from the input layer to the output layer is known as 

forward propagation. 

In each training iteration, the predicted output from 

forward propagation is compared with the actual target  
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Fig. 7 Architecture of neural networks used 

 

value, and the difference (error) is computed. This error is 

then used to calculate the mean squared error (MSE), 

which quantifies the overall prediction accuracy of the 

network (Fausett, 2006). 

In the next step, the computed differences between the 

predicted and actual values are propagated back to the 

input layer through a backpropagation process. This step 

adjusts the weight matrices and bias arrays across the 
network to reduce errors and improve prediction accuracy. 

These forward and backward passes are repeated 

iteratively until the network reaches the desired level of 

accuracy in predicting the output values. 

To further improve training efficiency and 

generalization, Bayesian regularization is applied. 

Networks using this technique tend to be more robust, and 

the method can significantly reduce—or even eliminate—

the need for a separate validation dataset (Burden and 

Winkler, 2008). Therefore, Bayesian regularization-

backpropagation is used in this study to regularize the 

networks and minimize training error. 

Two separate neural networks—one for predicting the 

Nu number and the other for the friction factor—are 

trained for each Re number. Each network consists of two 

hidden layers. If the number of hidden layers or neurons is 

insufficient, the network will fail to capture the 

complexity of the input–output relationship. Conversely, 

using more neurons or layers than necessary can lead to 

overfitting, where the network performs well on training 

data but poorly on unseen cases. Thus, the minimum 

network size that ensures the required accuracy is 

employed. According to Fausett (2006), a neural network 
with two hidden layers can approximate any regression 

function to any desired level of accuracy, and as shown in 

Section 3.2, the architectures used in this study achieve the 

required accuracy effectively. 

The neural networks are trained to replace 

computationally expensive CFD simulations during the 

optimization process. CFD solutions require significant 

computational time to converge, whereas a trained neural 

network can predict results nearly instantaneously. The 

architecture used for the networks is illustrated in Fi. 7. 

The input layer includes two neurons, one for the 
dimensionless longitudinal pitch and the other for the 

dimensionless transverse pitch. The output layer predicts  

Table 5 Features of neural networks used for Nu 

Parameter 
No. 

neurons 

Activation 

function 

Prim. hidden layer 72 tanh 

Secon. hidden layer 36 tanh 

Output layer 1 linear 

 

Table 6 Features of neural networks used for f 

Parameter No. neurons 
Activation 

function 

Prim. hidden layer 80 tanh 

Secon. hidden layer 40 tanh 

Output layer 1 linear 

 

either the Nu number or the friction factor. Various 

activation functions were tested for the hidden layers, and 

the best-performing functions were selected for each case. 

The characteristics of the trained neural networks for the 

two objective functions are summarized in Tables 5 and 6. 

Once the neural networks are trained, the multi-

objective optimization can be performed. A MOGA is 

used for this purpose. The details and features of the 

algorithm are described in the next section. 

2.5 Genetic Algorithm 

In engineering applications, the goal is typically to 

find the global optimum; however, deterministic search 

methods can sometimes become trapped in local optima. 

In such cases, stochastic optimization methods are 

preferred. In this study, a genetic algorithm (GA) is 
employed to perform multi-objective optimization and 

determine the optimal trade-offs between the friction 

factor and the Nu number. The genetic algorithm is 

selected due to its accuracy, efficiency, and stochastic 

nature that make it well-suited for multi-objective 

optimization problems, particularly those involving ML 

models. 

 The genetic algorithm simulates the principles of 

biological evolution, such as selection, crossover, and 

mutation, allowing more promising (i.e., "fitter") 

individuals to dominate over weaker ones. To simulate 
this evolutionary process, the objective function values for 

each individual in the population must be evaluated. 

However, because direct evaluation using CFD 

simulations is time-consuming, the surrogate models 

(neural networks) trained in the previous section are used 

to predict objective function values, thereby significantly 

reducing computational cost.  

The optimization process using the genetic algorithm 

proceeds as follows: First, an initial population of 2,000 

individuals is randomly generated. A relatively large 

population size is chosen to ensure that the obtained 

optimal solutions are robust and not sensitive to the 
population size. Next, the objective functions are 

evaluated for each individual. Then, this population will 

identify the fittest individuals using the tournament 

method (Fang & Li, 2010) to parent next-generation 

individuals. The crossover fraction determines the number 

of offspring created through recombination of parent  
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Table 7 Specifications of the utilized multi-objective 

genetic algorithm 

Specifications Value 

Population size 2000 

Tournament size 2 

Crossover fraction 0.8 

Migration fraction 0.2 

Migration interval 20 

Function tolerance 1e-4 

Constraint tolerance 1e-3 

Pareto front population 

fraction 
0.35 

 

individuals. The remaining individuals are generated 

through mutation, which introduces small random changes 

using a random number generator. Additionally, a 

migration operator is applied to further enhance the 

population. The population is divided into subpopulations, 
and the worst-performing subpopulation is periodically 

replaced with the best-performing one, based on a 

predefined migration interval. 

 The optimization process is terminated based on one 

or more of the following criteria: the maximum number of 

generations, time limit, fitness threshold, constraint 

tolerance, or function tolerance. The specific parameters 

and settings used for the genetic algorithm in this study are 

summarized in Table 7.  

The process of CFD simulation, ML, and 

optimization are illustrated in Figures 8 and 9. In this 
study, 300 simulations are performed for each Re number, 

resulting in a total of 900 simulations which are used to 

train the neural networks. Due to the large number of 

required simulations, it was not feasible to manually create 

the geometry, generate the mesh, and set up ANSYS 

Fluent cases for every pair of design variables. Therefore, 

the entire simulation and data collection workflow was 

automated by coupling MATLAB with ANSYS Fluent. 

3.  RESULTS AND DISCUSSIONS 

In the following sections, the variation of heat transfer 

and pressure drop characteristics with respect to the 

dimensionless pitches is first presented. This is followed 

by the results of neural network training and the multi-

objective optimization process. 

3.1 Simulation Results 

For each Re number considered in this study, 300 

random combinations of dimensionless longitudinal and 

transverse pitches, uniformly distributed throughout the 

design space, were simulated. The resulting variations in 

the friction factor and Nu number with respect to these 

dimensionless pitches are shown in Figs 10 and 11. 

The pressure is highest at the stagnation point. It 

decreases while the velocity increases as the flow moves 

along the surface of the cylinder. This behavior is 

influenced by the development of the boundary layer. As 

the boundary layer grows, flow separation occurs. This 

leads to the formation of vortices behind the cylinder, 

which enhance heat transfer. 

 
(a) 

 
(b) 

Fig. 8 Process of CFD simulation and ML for each Re 

number, a) Dataset creation process diagram, b) 

Neural network training process diagram 
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Fig. 9 Process of optimization 

 

The transition from a laminar to a turbulent boundary 

layer increases turbulence, promoting better mixing and 

higher heat transfer. However, the turbulent boundary 

layer also results in increased drag and alters the pressure 

distribution, especially in the wake region. These effects 

significantly influence both heat transfer and pressure 

drop along the cylinder. 

As illustrated in Figures 10 and 11, the overall trend 

of variation in these characteristics with respect to the 

dimensionless pitches is not significantly influenced by 

the Re number. However, it is observed that the Nusselt 

number increases and the friction factor decreases as the 

Re number increases. Additionally, both the Nu number 

and friction factor increase as the dimensionless pitches 

decrease, and vice versa. These observations confirm that 

the dimensionless longitudinal and transverse pitches have 

a significant impact on the thermal and hydraulic 

performance of the tube banks. Thus, they play a critical 
role in the design optimization process and must be 

carefully considered as key design variables. 

3.2 Neural Network’s Training Results 

After simulating the tube bank, the results for each Re 

number are randomly divided into three datasets: the 

training dataset, the test dataset, and the validation dataset. 

These datasets contain 68%, 17%, and 15% of the total 

data, respectively. In total, 85% of the data (training + test) 

for each Re number is used to train and test the neural 

networks developed for predicting the friction factor and  

 
 

 
(b) 

 
(c) 

Fig. 10 Variation of Nu number with dimensionless 

pitches for each Re number, a) Re = 1000, b) Re = 

15000, and c) Re = 50000  

 

the Nu number. To ensure the accuracy and optimality of 

the neural networks, it is essential to perform 

hyperparameter tuning on unseen data (Mashhadi et al., 

2024). This tuning process is carried out using the test 
dataset, which contains 17% of the data. Following this, 

the generalization capability and prediction accuracy of  
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(a) 

 
(b) 

 
(c) 

Fig. 11 Variation of friction factor (f) with 

dimensionless pitches for each Re number, a) Re = 

1000, b) Re = 15000, and c) Re = 50000 

 

the trained networks are evaluated by calculating the 

coefficient of determination (R2) using data in the 

validation dataset. 

As shown in Figs 12 and 13, the trained neural 

networks exhibit excellent accuracy. The ML results 

shown in these figures represent the predicted values  

 
(a) 

 
(b) 

 
(c) 

Fig. 12 Validation of neural network of Nu number, 

against CFD results for each Re number a) Re = 1000, 

b) Re = 15000, and c) Re = 50000 

 

obtained from the trained networks. Furthermore, these 

figures help eliminate concerns of overfitting, as the 

validation dataset was not involved in the training process. 

During the training of neural networks, it is essential 

to monitor learning curves, which are updated after each 

training iteration. These curves compare the prediction 

error for both the training and test datasets. Since the 

weights and biases are optimized using the training 

dataset, the training error curve typically shows  

a monotonic decrease. However, if the test error curve 

R2 = 0.9972 

R
2
 = 0.9982 

R
2
 = 0.9989 
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Fig. 13 Validation of neural network of friction factor 

against CFD results for each Re number a) Re = 1000, 

b) Re = 15000, and c) Re = 50000 

 

training and test error curves widens, this is an indication 
of overfitting, and the training process should be 

terminated.  

The learning curves for predicting the friction factor 

and Nu number at each Re number are presented in Figs 

14 and 15. At this stage, the trained neural networks can 

accurately predict the Nu number and friction factor based 

on the dimensionless pitches for the considered Re 

numbers with significantly reduced computation time and 

cost compared to full CFD simulations. 

 

Fig. 14 Learning graphs of Nu number’s neural 

network for each Re number, showing mean squared 

error versus the number of epochs for a) Re = 1000, b) 

Re = 15000, and c) Re = 50000 

 

3.3 Optimization Results 

Optimizing a system considering only one design 

variable often results in changes in other design variables, 

which cause efficiency reduction. Moreover, the effect of 

the optimization will be reduced or eliminated. Therefore, 

a trade-off must be established between competing design 

objectives. For this reason, multi-objective optimization 

methods have gained increasing attention over the  

past two decades. The aim of this study is to identify the  

R
2
 = 0.9940 

(a) 

R
2
 = 0.9918 

(b) 

R
2
 = 0.9939 

(c) 

(a) 

(b) 

(c) 
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Fig. 15 Learning graphs of friction factor’s neural 

network for each Re number showing mean squared 

error versus the number of epochs for a) Re = 1000, 

b) Re = 15000, and c) Re = 50000 

 

optimal compromise between heat transfer and pressure 

drop by varying the dimensionless pitches between the 

tubes, within the range of Re numbers specified in Table 

1. In other words, the goal is to configure the tube bank 

such that the fluid experiences minimal pressure drop 

while achieving maximum heat transfer during flow 

through the system.  

Pareto fronts obtained through the optimization of the 

objective functions are shown in Fig. 16. As illustrated,  

 
Fig. 16 Pareto fronts resulting from optimization of 

objective functions for each Re number 

 

 
Fig. 17 Nu number versus pressure drop for each Re  

 

the Re number has only a slight effect on the Pareto fronts, 

and the curves are very close to one another. It can also be 
concluded from this figure that there are certain 

normalized Nu numbers and friction factors, located below 

the normalized Pareto fronts, that cannot be achieved at 

any Re number. In other words, the tube bank efficiency 

has an upper bound that cannot be exceeded. 

To better visualize the effect of Re on the trade-off 

between heat transfer and pressure drop, the normalized 

characteristics are transformed into unnormalized 

characteristics, yielding a new curve for each Re number. 

These curves, which show the variation of Nu number 

versus pressure drop, are presented in Fig. 17. As 

expected, with increasing Re, the Pareto frontier includes 
points with higher Nu numbers and lower friction factors. 

For each Re, there exists a point referred to as the utopia 

point, theoretical and ideal, where the Nu number is 

maximized, and the friction factor is minimized, 

simultaneously corresponding to the minimum values of 

both objective functions. This point lies below the Pareto 

frontier, meaning it is unattainable in practice. 

The Pareto curve is known as a tradeoff curve. None 

of the points on the Pareto front are preferred to other 

points. The best point is the point that provides a balance 

or optimal compromise between different objective 
functions. Ideally, it is a single selected point with the 

closest distance to the eutopia point, which results in the  

a 

b 

c 
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Table 8 Comparison of best point specification of present work with single-objective optimization 

 (Sahamifar et al., 2019) 

Re 
Present work Single-objective optimization 

𝑆𝐿 𝑆𝑇  𝑂𝐹1 𝑂𝐹2 𝑆𝐿 𝑆𝑇  

1000 0.90 1.31 0.82 1.26 0.94 1.22 

15,000 0.90 1.33 0.97 1.01 0.98 1.27 

50,0000 0.90 1.47 0.96 1.00 1.03 1.35 

 

 

Fig. 18 Utopia and best point for Re number equal to 

15,000 

 

best possible solution. Selecting the best point is 

particularly effective when the Pareto front is convex 

(Belegundu & Chandrupatla, 2019). 

As an example, the utopia point and the best point for 

Re = 15,000 are illustrated in Fig. 18. After comparing the 

dimensionless pitches corresponding to the best points for 
all Re numbers, it is observed that Re has no influence on 

the optimal pitch values. The dimensionless pitches and 

corresponding objective function outputs for the best point 

at each Re number are summarized in Table 8.  

According to Table 8, the dimensionless pitches 

resulting from best point of the multi-objective 

optimization are close to those resulting from the single-

objective optimization. OF1 and OF2 represent the values 

of the two considered objective functions. Since these 

functions are defined using the heat transfer and pressure 

drop characteristics derived from the single-objective 

optimization results, the values of OF1 and OF2 for the 

single-objective case are equal to 1. 

Finally, to validate the obtained Pareto fronts, fifty 

points from the Pareto frontier corresponding to Re = 

15,000 were selected and used as the initial generation for 

the MOGA. The algorithm then performed one 

optimization iteration for these points using the CFD 

package directly, instead of relying on the neural network. 

The accuracy of the surrogate model was approved as the 

results showed no difference between the Pareto fronts 

obtained from the neural network model and those from 

the CFD-based evaluation. 

Contours of temperature, pressure, and velocity for 

the best point on the Pareto frontier at Re = 15,000 are 

presented in Fig. 19. The temperature contour illustrates  

 

Fig. 19 Contours of dimensionless temperature, 

pressure, and velocity of the best point on the Pareto 

frontier for Re = 15,000 (𝑺𝑳 ≅ 𝟎. 𝟗;  𝑺𝑻 ≅ 𝟏. 𝟑𝟕) 

 

that the fluid temperature increases as it flows through the 

tube bank. Additionally, the velocity contour indicates that 

the numerical model successfully captures vorticity and 
flow separation regions. By comparing the velocity and 

pressure contours, it can be observed that velocity 

increases in regions where pressure decreases, as expected 

based on fundamental fluid dynamics principles.  

4. CONCLUSION 

A numerical multi-objective optimization was carried 

out to identify optimal trade-offs between heat transfer and 

pressure drop characteristics for staggered tube banks 

operating in the turbulent flow regime. The influence of 
the inlet Re number on these trade-offs was also 

investigated. Unlike previous studies that relied on 

empirical correlations for estimating heat transfer and 

friction factor, this study defined two independent 

objective functions, enabling a more accurate and flexible 

optimization process. As highlighted by Bacellar et al. 

(2016) and Gu et al. (2017), empirical models often fail to 

capture heat transfer and pressure loss behavior accurately 

over a wide range of Re numbers and geometric 
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configurations. Optimization has been performed by 

simulating the heat transfer and flow for three Re numbers 

and some randomly generated design variables. To 

prevent simulation of the entire domain of the tube bank 

and reduce convergence time and computational cost, 

periodic and symmetric boundary conditions have been 

employed. Afterwards, the relations between these 

characteristics and dimensionless pitches have been 
modeled using the neural network, which served as 

surrogate models to eliminate the need to use empirical 

correlations and CFD. Optimized equilibriums between 

considered characteristics were extracted using multi-

objective genetic algorithm. The results show that Pareto 

fronts achieved from optimization of defined objective 

functions are extremely close, and the inlet Re number has 

no significant effect on these curves. The best points on 

Pareto fronts also have approximately the same 

dimensionless pitches (𝑆𝐿 ≅ 0.9; 𝑆𝑇 ≅ 1.37).  

The proposed framework can be extended to other 
geometries, such as inline tube banks, finned tubes, and 

novel cross-flow heat exchanger designs, to optimize their 

performance for various industrial applications, regardless 

of the size and the inlet Re number. Additionally, applying 

this methodology to different working fluids may offer 

further insights into flow and heat transfer characteristics. 

The model also holds potential for adaptation to 

multiphase flow applications, including boiling, 

condensation, high-temperature/high-pressure 

environments, and variable inlet conditions. 
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