Centrifugal Compressor Instability and the Reverse Propagation Mechanism in Diffusers

Document Type : Regular Article

Authors

1 State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Deyang 618000, China

2 Dongfang Electric Corporation Dongfang Turbine Co., LTD, Deyang 618000, China

3 Harbin Engineering University, College of Power and Thermal Energy, Harbin, 150001, China

10.47176/jafm.18.12.3593

Abstract

At low flow rates, centrifugal compressors often experience aerodynamic instabilities, posing a crucial concern for gas turbine engineers. This study focused on a standard centrifugal compressor and investigated its aerodynamic behavior through numerical simulations in both steady and unsteady full-annulus states. Additionally, it analyzed diffuser stability by evaluating the signals associated with rotating stall. Results indicated that, as the flow rate decreases and the flow shifts downstream in the full-cycle model, the non-uniformity of the Mach number in the circumferential direction near the blockage region increases from 8.13% to 25.52%. Under the design condition, the circumferential non-uniformity rises from 15.18% to 24.12%. When the compressor becomes unstable, the centrifugal impeller exhibits rotational instabilities with a disturbance frequency of 1304.61 Hz, corresponding to 23.95% of the blade passing frequency. The conclusions of this study provide fresh insights into unsteady flow characteristics in centrifugal compressors and offer practical guidelines for enhancing the operational stability of microturbine units.

Keywords

Main Subjects


Day, I. J. (1993). Stall inception in axial flow compressors. Journal of Turbomachinery, 115(1), 1–9. https://doi.org/10.1115/1.2929209
Day, I. J. (2016). Stall, surge, and 75 years of research. Journal of Turbomachinery138(1), 011001. https://doi.org/10.1115/1.4031473
Emmons, H. W., Pearson, C. E., & Grant, H. P. (1955). Compressor surge and stall propagation. Transactions of the American Society of Mechanical Engineers77(4), 455-467. https://doi.org/10.1115/1.4014389
Fujisawa, N., Hara, S., Ohta, Y., & Goto, T. (2014, August). Unsteady behavior of leading-edge vortex and diffuser stall inception in a centrifugal compressor with vaned diffuser. Fluids Engineering Division Summer Meeting (Vol. 46223, p. V01BT10A015). American Society of Mechanical Engineers. https://doi.org/10.1115/FEDSM2014-21242
Ge, H., Chengwu, Y., Shixun, W., Shengfeng, Z., & Xingen, L. (2023). The investigation of mechanisms on pipe diffuser leading edge vortex generation and development in centrifugal compressor. Applied Thermal Engineering, 219, Part B(1), 119606. https://doi.org/10.1016/j.applthermaleng.2022.119606.
Greitzer, E. M., & Moore, F. K. (1986). A theory of post-stall transients in axial compression systems: part II—application. https://doi.org/10.1115/1.3239893
Han, G., Lu, X., Zhao, S., Yang, C., & Zhu, J. (2014). Parametric studies of pipe diffuser on performance of a highly loaded centrifugal compressor. ASME. Journal of Engineering for Gas Turbines and Power, 136(12), 122604. https://doi.org/10.1115/1.4027867
Hu, C. X., Geng, K. H., Zhang, C., & Yang, C. (2021). Study on the impact of blade installation angle on the aerodynamic performance and stall mechanism of centrifugal compressor diffusers. Thermal Energy and Power Engineering. 36(10), 77-84.  https://doi.org/10.16146/j.cnki.rndlgc.2021.10.011
Marconcini, M., Bianchini, A., Checcucci, M., Ferrara, G., Arnone, A., Ferrari, L., & Rubino, D. T. (2016, June). A 3D time-accurate CFD simulation of the flow field inside a vaneless diffuser during rotating stall conditions. Turbo Expo: Power for Land, Sea, and Air (Vol. 49729, p. V02DT42A029). American Society of Mechanical Engineers. https://doi.org/10.1115/GT2016-57604
McDougall, N. M., Cumpsty, N. A., & Hynes, T. P. (1990). Stall inception in axial compressors. https://doi.org/10.1115/1.2927406
McKain, T. F., & Holbrook, G. J. (1997). Coordinates for a high performance 4: 1 pressure ratio centrifugal compressor (No. E-10833). https://ntrs.nasa.gov/api/citations/19970024917/downloads/19970024917
Sheng-ling, W. A. N. G., & Zheng-xian, L. I. U. (2019). Investigation of unsteady characteristics of rotating stall on eckardt centrifugal impeller. Journal of Propulsion Technology, 40(3), 542. http://jpt.tjjsjpt.com/EN/
Skoch, G. J., Prahst, P. S., Wemet, M. P., Wood, J. R., Strazisar, A. J., & Bamba, T. (1997). Laser anemometer measurements of the flow field in a 4:1 pressure ratio centrifugal impeller. Journal of Turbomachinery, 119(3), 412-421. https://doi.org/10.1115/97-GT-342
Spakovszky, Z. S. (2004). Backward traveling rotating stall waves in centrifugal compressors. Journal of Turbomachinery, 126(1), 1-12. https://doi.org/10.1115/1.1643382
Sun, Z., Zheng, X., & Kawakubo, T. (2018). Experimental investigation of instability inducement and mechanism of centrifugal compressors with vaned diffuser. Applied Thermal Engineering, 133, 464–471. https://doi.org/10.1016/j.applthermaleng.2018.01.071
Wang, M. (2020). Numerical research on the flow field in axial compressor under unstable working conditions by using the harmonic balance method, Harbin Engineering University. https://link.cnki.net/doi/10.27060/d.cnki.ghbcu.2020.001738
Xu, L., Liu, Z., Li, X., Zhao, M., Zhao, Y., & Zhou, T. (2023). Dynamic mode characteristics of flow instabilities in a centrifugal compressor impeller. Aerospace Science and Technology, 142, 108707. https://doi.org/10.1016/j.ast.2023.108707
Xue, X., & Wang, T. (2020). Experimental study on inducement and development of flow instabilities in a centrifugal compressor with different diffuser types. Journal of Thermal Science, 29, 435-444. https://doi.org/10.1007/s11630-020-1223-4
Yoon, Y. S., & Song, S. J. (2014). Analysis and measurement of the impact of diffuser width on rotating stall in centrifugal compressors. Journal of mechanical science and technology, 28, 895-905. https://doi.org/10.1007/s12206-013-1157-9
Zhang, H., Yang, C., Wang, W., Yang, C., & Li, Y. (2022). Experimental investigation of the pre-stall and stall evolution in a centrifugal compressor with a volute. Journal of Turbomachinery144(8), 081012. https://doi.org/10.1115/1.4053838
Zhang, L. (2020). Study on Two Stall Modes in Centrifugal Compressor Wide Vaneless Diffuser [D]. North China Electric Power University, https://link.cnki.net/doi/10.27139/d.cnki.ghbdu.2020.000659
Zhang, L., Zheng, Z., Zhang, Q., Zhang, L., & Li, K. (2020). Study of rotating stall in a centrifugal compressor with wide vaneless diffuser. Journal of Thermal Science29, 743-752. https://doi.org/10.1007/s11630-020-1214-5
Zhang, Q. (2021). Induced Mechanism and Energy Loss of Rotating Stall in the Centrifugal Compressor with Vaneless Diffuser [D]. North China Electric Power University (Beijing). https://link.cnki.net/doi/10.27140/d.cnki.ghbbu.2021.000014
Zhang, Q., Chen, R., Zhang, L. & Zhang, L. (2021). Numerical investigation of rotating stall in centrifugal compressor with wide vaneless diffuser. Turbine Technology, 63(1), 1–4+64. https://link.cnki.net/doi/CNKI:SUN:QLJV.0.2021-01-001
Zhang, Y. J., Han. G., Li, Q. K., Zhang, Z. Q., Zhang. Y. F. & Lu, X. G. (2022). Stall Mechanism in an Ultra-High-Pressure-ratio Centrifugal Compressor. Journal of Engineering Thermophysics, 43(02), 309-315. https://link.cnki.net/doi/CNKI:SUN:GCRB.0.2022-02-006
Zheng, Z. (2019). Research on the Mechanism and Criteria for Discrimination of Rotating Stall in Wide and Narrow Vaneless Diffusers of Centrifugal Compressors. North China Electric Power University. https://kns.cnki.net/kcms2/article/abstract?v=ZH6vWTMDPUJem8XhNT13_Y2GSnx0XfvLi5c9n_fZN82NeXXb_o944i4Sc41B4Ou4qXkEYA5hmcBTP_97tcZ_BQgLpxLczjTT306SAbZ2qlW004dU1ND5tSwOPZj_hh47G1nNf5v2Fq8VeAQOFaSBIRsHMaLTC7FBxc83uy7jRgMyJWBp8l2sMyZSexVsKG4k&uniplatform=NZKPT&language=CHS