Amoura, A., Khelladi, S., Smaili, A., & Hamlaoui, M. N. (2022). Toward a Numerical Modeling of Aeroacoustics Noise Induced by Wind Turbine Farm Using Linearized Euler Equations.
International Conference on Advanced Renewable Energy Systems, (pp. 95–103).
https://doi.org/10.1007/978-981-99-2777-7_11
Amoura, A., Khelladi, S., Smaili, A., & Hamlaoui, M. N. (2025). Validation of a Hybrid Approach for Wind Turbine Noise Prediction Using the Linearized Euler Equations. In
Technological and Innovative Progress in Renewable Energy Systems: Proceedings of the 2024 International Renewable Energy Days (IREN Days' 2024). (pp. 97–100). Springer.
https://doi.org/10.1007/978-3-031-71926-4_16
Boorsma, K.; Schepers, J. G. (2014). New MEXICO experiment: Preliminary overview with initial validation. ECN.
Brentner, K. S., & Farassat, F. (1998). Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces.
AIAA Journal, 36, 1379–1386.
https://doi.org/10.2514/2.558.
Broatch, A., Navarro, R., Garcı́a-Tı́scar, J., & Ramı́rez, F. N. (2024). Evaluation of different FW-H surfaces and modal decomposition techniques for the acoustic analysis of UAV propellers through detached eddy simulations.
Aerospace Science and Technology, 146, 108956.
https://doi.org/10.1016/j.ast.2024.108956
Cao, J. F., Zhu, W. J., Shen, W. Z., Sørensen, J. N., & Sun, Z. Y. (2020). Optimizing wind energy conversion efficiency with respect to noise: A study on multi-criteria wind farm layout design.
Renewable Energy, 159, 468–485.
https://doi.org/10.1016/j.renene.2020.05.084
Choi, N. J. (2013). Numerical study on the horizontal axis turbines arrangement in a wind farm: Effect of separation distance on the turbine aerodynamic power output.
Journal of Wind Engineering and Industrial Aerodynamics, 117, 11-17.
https://doi.org/10.1016/j.jweia.2013.04.005
Colas, J., Emmanuelli, A., Dragna, D., Blanc-Benon, P., Cotté, B., & Stevens, R. (2023, June). Exploring the effect of wind farm flow on wind turbine noise propagation through numerical simulations.
Epikhin, A. (2021). Validation of the developed open source library for far-field noise prediction.
Proceedings of the 27th International Congress on Sound and Vibration, Denver, Colorado. https://doi.org/10.5281/zenodo.5906668
Epikhin, A., Evdokimov, I., Kraposhin, M., Kalugin, M., & Strijhak, S. (2015). Development of a dynamic library for computational aeroacoustics applications using the OpenFOAM open source package.
Procedia Computer Science, 66, 150–157.
https://doi.org/10.1016/j.procs.2015.11.018
Farassat, F. (2007). Derivation of Formulations 1 and 1A of Farassat. Tech. rep.
Glauert, H. (1963). Aerodynamic Theory: A General Review of Progress, volume IV, chapter Division L, Airplane Propellers. Aerodynamic Theory: A General Review of Progress, volume IV, chapter Division L, Airplane Propellers. Dover Publications, Inc., New York, NY.
Hamlaoui, M. N., Bouhelal, A., Smaili, A., & Fellouah, H. (2024a). An Engineering Approach to Improve Performance Predictions for Wind Turbine Applications: Comparison with Full Navier-Stokes Model and Experimental Measurements.
Journal of Applied Fluid Mechanics, 17, 1379–1397.
https://doi.org/10.47176/jafm.17.7.2404
Hamlaoui, M. N., Bouhelal, A., Smaili, A., Khelladi, S., & Fellouah, H. (2024b). An inverse CFD actuator disk method for aerodynamic design and performance optimization of Horizontal Axis Wind Turbine blades.
Energy Conversion and Management, 316, 118818.
https://doi.org/https://doi.org/10.1016/j.enconman.2024.118818
Hamlaoui, M. N., Smaili, A., & Fellouah, H. (2021a). Improved stall delay model for hawt performance predictions using 3d navier-stokes solver and actuator disk method.
Journal of Applied Fluid Mechanics, 15, 37–50.
https://doi.org/10.47176/jafm.15.01.32651
Hamlaoui, M. N., Smaili, A., & Fellouah, H. (2021b). New Stall Delay Approach for HAWT Performance Predictions using a CFD Hybrid Method. In
AIAA Scitech 2021 Forum. https://doi.org/10.2514/6.2021-0951
Hamlaoui, M. N., Smaili, A., Dobrev, I., Pereira, M., Fellouah, H., & Khelladi, S. (2022). Numerical and experimental investigations of HAWT near wake predictions using Particle Image Velocimetry and Actuator Disk Method.
Energy, 238, 121660.
https://doi.org/https://doi.org/10.1016/j.energy.2021.121660
International standard IEC/TC 88.61400-11 Ed.2. (2012). Wind turbines - Part 11: Acoustic noise measurement techniques. Wind turbines - Part 11: Acoustic noise measurement techniques, 2. International Electrotechnical Commission/ Technical Committee.
International Standard ISO 3744. (2010). Acoustics-Determination of sound power levels and sound energy levels of noise sources using sound pressure - Engineering methods for an essentially free field over a reflecting plane. Acoustics-Determination of sound power levels and sound energy levels of noise sources using sound pressure - Engineering methods for an essentially free field over a reflecting plane. International Organization for Standardization.
International Standard ISO 9613-2. (1996). Acoustics-Attenuation of sound during propagation outdoors - Part 2: General method of calculation. Acoustics-Attenuation of sound during propagation outdoors - Part 2: General method of calculation. International Organization for Standardization.
International Standard ISO-1996-1. (2016). Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures. Acoustics — Description, measurement and assessment of environmental noise — Part 1: Basic quantities and assessment procedures. International Organization for Standardization.
Khelladi, S., Nogueira, X., Bakir, F., & Colominas, I. (2011). Toward a higher order unsteady finite volume solver based on reproducing kernel methods.
Computer Methods in Applied Mechanics and Engineering, 200, 2348–2362.
https://doi.org/10.1016/j.cma.2011.04.001
Kwong, W. Y., Zhang, P. Y., Romero, D., Moran, J., Morgenroth, M., & Amon, C. (2012). Wind farm layout optimization considering energy generation and noise propagation.
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference,
45028, pp. 323–332.
https://doi.org/10.1115/DETC2012-71478
Legendre, C., DeBrye, B., Detandt, Y., Talbot, A., Poulos, A., & Raskin, M. (2018). Broadband Noise Prediction of Stochastic Sources Based on the Linearized Euler Equations. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 258, pp. 3217–3228.
Luo, K. H., & Lai, H. (2006). A hybrid LES-acoustic analogy method for computational aeroacoustics. In Direct and Large-Eddy Simulation VI (pp. 537–544). Springer.
Masson, C., Smaïli, A., & Leclerc, C. (2001, October). Aerodynamic analysis of HAWTs operating in unsteady conditions.
Wind Energy, 4, 1-22.
https://doi.org/10.1002/we.43
Mittal, A. (2010). Optimization of the layout of large wind farms using a genetic algorithm. Master's thesis, Case Western Reserve University.
Nyborg, C. M., Fischer, A., Réthoré, P.-E., & Feng, J. (2023). Optimization of wind farm operation with a noise constraint.
Wind Energy Science, 8, 255–276.
https://doi.org/10.5194/wes-8-255-2023
Rahmani, R., Khairuddin, A., Cherati, S. M., & Pesaran, H. M. (2010). A novel method for optimal placing wind turbines in a wind farm using particle swarm optimization (PSO). 2010 Conference Proceedings IPEC, (pp. 134–139).
Robin, X., & Legendre, C. (2002). Aeroacoustic simulation of multiple wind turbine source interactions. 7th International Conference on Wind Turbine Noise Rotterdam. update, 2002.
Schepers, J. G., Boorsma, K., Cho, T., Gomez-Iradi, S., Schaffarczyk, P., Jeromin, A., Lutz, T., Meister, K., Stoevesandt, B., Schreck, S., & others. (2012). Final report of IEA task 29, Mexnet (phase 1): analysis of Mexico wind tunnel measurements.
Shen, W. Z., Mikkelsen, R., Sørensen, J. N., & Bak, C. (2005). Tip loss corrections for wind turbine computations.
Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology, 8, 457–475.
https://doi.org/10.1002/we.153
Sorkhabi, S. Y., Romero, D. A., Yan, G. K., Gu, M. D., Moran, J., Morgenroth, M., & Amon, C. H. (2016). The impact of land use constraints in multi-objective energy-noise wind farm layout optimization.
Renewable Energy, 85, 359–370.
https://doi.org/10.1016/j.renene.2015.06.026
Wang, Z.-K., Djambazov, G., Lai, C.-H., & Pericleous, K. (2007). Numerical simulation of flow-induced cavity noise in self-sustained oscillations.
Computing and Visualization in Science, 10, 123–134.
https://doi.org/10.1007/s00791-006-0039-4
Wimshurst, A., & Willden, R. H. (2017). Analysis of a tip correction factor for horizontal axis turbines.
Wind Energy, 20, 1515–1528.
https://doi.org/10.1002/we.2106
Yang, T., Chen, X., Zhao, Q., & Zhao, G. (2022). Numerical study on the noise propagation characteristics of rotor in non-uniform downwash flowfield Based on Linearized Euler Equations.
International Journal of Aeroacoustics, 21, 731–765.
https://doi.org/10.1177/1475472X221136883
Zergane, S., Smaili, A., & Masson, C. (2018). Optimization of wind turbine placement in a wind farm using a new pseudo-random number generation method.
Renewable Energy, 125, 166–171.
https://doi.org/10.1177/1475472X221136883