ANSYS, Inc. (2021), ANSYS Fluent Theory Guide. ANSYS Inc., Canonsburg.
Baskakov, A. P., Dolgov, V. N., & Goldabin, Yu. M. (1990). Aerodynamics and heat transfer in cyclones with particle-laden gas flow. Experimental Thermal and Fluid Sciences, 3(6), 597–602.
https://doi.org/10.1016/0894-1777(90)90076-J.
Boset, L. D., Debele, Z. A., & Koroso, A. W. (2025). Pressure drop due to cyclone separator in positive dilute phase pneumatic Teff grain conveyor.
Journal of Applied Fluid Mechanics, 18(2), 317–331.
https://doi.org/10.47176/jafm.18.2.2964.
Brar, L. S., & Wasilewski, M. (2023). Investigating the effects of temperature on the performance of novel cyclone separators using large-eddy simulation.
Powder Technology, 416, 118213.
https://doi.org/10.1016/j.powtec.2023.118213.
Chakravarthy, S. R., & Sundararajan, T. (2005). Computational fluid dynamics analysis of the flow field in cyclone separators.
International Journal of Computational Fluid Dynamics, 19(6), 421–431.
https://doi.org/10.1080/10618560500129270
Dias, D. R., De Oliveira Silva, D., & Vieira, L. G. M. (2024). Influence of geometric and operational variables on indirect evaporative cooling using cyclone as heat exchanger. Applied Thermal Engineering, 257(Part A1), 124298.
https://doi.org/10.1016/j.applthermaleng.2024.124298
Dirgo, J., & Leith, D. (1985). Cyclone collection efficiency: Comparison of experimental results with theoretical predictions. Aerosol Science and Technology, 4(4), 401–415. doi:10.1080/02786828508959066
Elsayed, K., & Lacor, C. (2010). Optimization of the cyclone separator geometry for minimum pressure drop using mathematical models and CFD simulations.
Chemical Engineering Science, 65(21), 6048–6058.
https://doi.org/10.1016/j.ces.2010.08.042
Frimpong, A. J., Tan, G., Zhang, Y., Ye, J., Agyeman, P. K., Kyei, S. K., & Olayode, I. O. (2023). Experimental investigation supported by artificial neural networks (ANNs) for predicting the heating performance of a cyclone separator coupled with induction heating coil.
Process Safety and Environmental Protection, 180, 451–474.
https://doi.org/10.1016/j.psep.2023.10.012
Hadley, T. D., Pan, Y., Lim, K.-S., & Orellana, J. (2015). Engineering design of direct contact counter current moving bed heat exchangers.
International Journal of Mineral Processing, 142, 91–100.
https://doi.org/10.1016/j.minpro.2015.04.018.
Ijaz, M., Farhan, M., Farooq, M., Moeenuddin, G., Nawaz, S., Soudagar, M. E., Saqib, H. M., & Ali, Q. (2021). Numerical investigation of particle characteristics on cyclone performance for a sustainable environment.
Particulate Science and Technology, 39, 495–503.
https://doi.org/10.1080/02726351.2020.1768610.
Illyas, S. M., Muthu Manokar, A., & Kabeel, A. E. (2023). Experimental and computational study on effect of vanes on heat transfer and flow structure of swirling impinging jet.
Journal of Applied Fluid Mechanics, 16(2), 205–221.
https://doi.org/10.47176/jafm.16.02.1296
Jain, A., Mohanty, B., Pitchumani, B., & Rajan, K. S. (2006). Studies on gas-solid heat transfer in cyclone heat exchanger.
Journal of Heat Transfer, 128, 761–768.
https://doi.org/10.1115/1.2217748.
Kashani, E., Mohebbi, A., & Heidari, M. G. (2018). CFD simulation of the preheater cyclone of a cement plant and the optimization of its performance using a combination of the design of experiments and multi-gene genetic programming.
Powder Technology. https://doi.org/10.1016/j.powtec.2017.12.091
Katare, P., Krupan, A., Dewasthale, A., Datar, A., & Dalkilic, A. S. (2021). CFD analysis of cyclone separator used for fine filtration in separation industry.
Case Studies in Thermal Engineering, 28, 101384.
https://doi.org/10.1016/j.csite.2021.101384.
Leith, D., & Licht, W. (1972). The collection efficiency of cyclone type particle collectors — a new theoretical approach. AIChE Symposium Series, 68, 196–206.
Lou, H., Zhang, X., Liu, X., Wang, Y., & Liao, R. (2024). Numerical simulation study of the effect of outlet on the axial vortex separator.
Journal of Applied Fluid Mechanics, 17(9), 2045–2060.
https://doi.org/10.47176/jafm.17.9.2461.
Mariani, A., Zeng, Y., Rebughini, S., Caresana, F., & Bianchi, G. (2017). Numerical optimization of a gas-solid cyclone separator for cement production.
Applied Thermal Engineering, 120, 574–584.
https://doi.org/10.1016/j.applthermaleng.2017.04.020.
Mirzaei, M., Clausen, S., Wu, H., Zakrzewski, S., Nakhaei, M., Zhou, H., Jønck, K. M., Jensen, P. A., & Lin, W. (2023). CFD simulation and experimental validation of multiphase flow in industrial cyclone preheaters.
Chemical Engineering Journal, 465, 142757.
https://doi.org/10.1016/j.cej.2023.142757.
Mothilal, T., & Pitchandi, K. (2015). Influence of inlet velocity of air and solid particle feed rate on holdup mass and heat transfer characteristics in cyclone heat exchanger
. Journal of Mechanical Science and Technology, 29(10), 4509–4518.
https://doi.org/10.1007/s12206-015-0950-z.
Mothilal, T., & Pitchandi, K. (2016). Effect of particles density on holdup mass and heat transfer rate in solid cyclone heat exchanger. ARPN Journal of Engineering and Applied Sciences, 11(2), 1293–1297.
Mothilal, T., & Pitchandi, K. (2017). Computational Fluid Dynamics analysis on the effect of particles density and body diameter in a tangential inlet cyclone heat exchanger.
Thermal Science, 21(6B), 2883–2895.
https://doi.org/10.2298/TSCI151105055T
Mothilal, T., & Pitchandi, K. (2018). Effect of vortex finder dimension on holdup mass and heat transfer rate in cyclone heat exchanger—CFD approach.
International Journal of Computer Aided Engineering and Technology, 10(1/2), 66–75.
https://doi.org/10.1504/IJCAET.2018.088829.
Mothilal, T., Pitchandi, K., Velukumar, V., & Parthiban, K. (2018). CFD and statistical approach for optimization of operating parameters in a tangential cyclone heat exchanger.
Journal of Applied Fluid Mechanics, 11(2), 459–466.
https://doi.org/10.29252/jafm.11.02.27791.
Mothilal, T., Velukumar, V., Pitchandi, K., & Selvin Immanuel, M. (2016). Effect of cyclone height on holdup mass and heat transfer rate in solid cyclone heat exchanger—CFD approach. ARPN Journal of Engineering and Applied Sciences, 11(2), 1269–1276.
Mujumdar, A. S., & Menon, A. S. (2020). Drying of solids: principles, classification, and selection of dryers.
Handbook of industrial drying (pp. 1-39). CRC Press.
https://doi.org/10.1201/9780429289774.
Qing, W., Guogang, Sun, & Cuizhi, G. (2020). Numerical analysis of axial gas flow in cyclone separators with different vortex finder diameters and inlet dimensions.
Powder Technology, 369, 321–333.
https://doi.org/10.1016/j.powtec.2020.05.038.
Stairmand, C. J. (1951). The design and performance of cyclone separators. Transactions of the Institution of Chemical Engineers, 29, 356–383.
Venkatesh, S., Suresh Kumar, R., Sivapirakasam, S. P. Sakthivel, M., Venkatesh, D., & Yasar Arafath, S. (2020). Multi-objective optimization, experimental and CFD approach for performance analysis in square cyclone separator.
Powder Technology, 371, 115–129.
https://doi.org/10.1016/j.powtec.2020.05.080
Xu, S., Xie, J., Mei, S., He, F., Li, R., Deng, Y., Zhang, C., & Zheng, X. (2023). Numerical simulation of gas-solid two-phase heat transfer in a kaolin cyclone cooling system.
Energies, 16, 3744.
https://doi.org/10.3390/en16093744
Yohana, E., Tauviqirrahman, M., Laksono, D. A., Charlesa, H., Choi, K.-H., & Yulianto, M. E. (2022).
Powder Technology, 399, 117235.
https://doi.org/10.1016/j.powtec.2022.117235
Zhang, N., Pan, X., Yang, J., Liu, Q., Lian, W., Du, X., Zhang, Z., Hao, X., & Guan, G. (2023). Simulation of gas–solids heat transfer in cyclone pyrolyzer using CFD–DEM model.
Particology, 85, 155–166.
https://doi.org/10.1016/j.partic.2023.03.025