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ABSTRACT 

This numerical study investigates magnetohydrodynamic (MHD) flow and heat 

transfer for liquid metals within a cylindrical annulus subjected to a radial 

magnetic field. A parametric study compares the thermal behavior of these 

metals under identical conditions, with particular focus on the influence of the 

annular wall's electrical boundary conditions on heat transfer. The finite volume 

method is used to analyze three electrical boundary conditions: electrically 

insulated walls (EI), electrically conducting vertical walls (EC-V), and 

electrically conducting horizontal walls (EC-H). The findings show that 
magnetic field strength, annular gap, aspect ratio, and wall conductivity 

significantly affect temperature distribution, average Nusselt number, Lorentz 

force, and induced electric field. The Nusselt number increases when the aspect 

ratio is below unity but decreases when it is above unity, and it improves 

consistently with a larger annular gap. Stronger magnetic fields are required to 

sustain conduction-dominated regimes in thicker annuli. The magnetic field 

generates characteristic Hartmann and Roberts layers through Lorentz force 

interactions, with layer dissipation observed in conducting wall cases. Among 

the configurations, the EC-H case exhibits the highest heat transfer performance 

compared to EI boundaries, particularly for intermediate gap ratios                    

(R ≈ 0.5–0.87). (EC-H) offers the best heat transfer overall, with up to 10% gains 
for R<0.87, while (EI) performs better for R>0.87, and (EC-V) remains           

the least efficient. 
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1. INTRODUCTION 

The efficient management of heat in industrial 

systems is critical to the performance, safety, and 

sustainability of energy and manufacturing technologies. 

Amongst the various heat transfer media, liquid metals 

such as potassium (K), lithium (Li), and sodium-

potassium (NaK) have garnered significant attention due 

to their exceptional thermal properties and unique 

applicability across a broad temperature spectrum (Wang 
et al., 2021). Each of these metals exhibits distinct 

advantages and limitations which influence their 

integration into specialised cooling and heat exchange 

systems. Liquid K, with its low melting point and high 

thermal conductivity, is particularly suited for moderate-

temperature applications such as NaK eutectic cooling in 

fast-breeder nuclear reactors (Abou-Sena et al., 2016). In 

contrast, Li, characterised by its high specific heat and 

role in tritium breeding, is increasingly vital for high-

performance systems like fusion reactors and aerospace 

thermal regulation (Roux et al., 1992). Molten NaK, 

though less commonly used as a fluid medium, offers 

exceptional thermal stability at ultra-high temperatures, 

making it indispensable in extreme environments such as 

metallurgical processing and space-based power systems 

(Ulyanov et al., 2024). Understanding the comparative 

thermophysical behaviour, reactivity, and compatibility 

of these metals with containment materials is essential 

for optimising heat transfer processes.  

However, the interaction between liquid metals and 
external forces, particularly magnetic fields, introduces 

another layer of complexity and opportunity. Magnetic 

fields have emerged as a transformative tool for 

controlling heat transfer in systems involving electrically 

conductive fluids, such as liquid metals (Ni et al., 2025). 
For instance, in fusion reactors (e.g. ITER), liquid 

lithium is exposed to intense magnetic fields to confine  
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NOMENCLATURE 

A aspect ratio   Ra Rayleigh number  

B magnitude of the external magnetic field 

(Tesla) 

 T temperature  

E’ dimensional induced electric field   u, v, w dimensionless radial, axial, azimuthal 

velocity components 

E dimensionless induced electric field    
fL Lorentz force    Greek symbols 

FL dimensionless Lorentz force  α thermal diffusivity of the fluid  

g acceleration due to gravity    thermal expansion coefficient  

H height of cylindrical annulus    dimensionless temperature  

Ha Hartmann number  ν kinematic viscosity of the fluid  

j electric current density   λ thermal conductivity  

J dimensionless electric current density    density of the fluid  

kw conductance ratio    electric conductivity  

Nu local Nusselt number    dimensionless electric potential 

P dimensionless pressure   Subscripts 

Pr Prandtl number   c cold condition at wall 

R annular gap   h hot condition at wall 

r, θ, z dimensionless spatial coordinates   w wall 

 
plasma and optimise heat extraction via 
magnetohydrodynamic (MHD) effects (Yan, 2024). 

Similarly, NaK alloys can be magnetically manipulated 

to stabilise turbulent flows or induce forced convection 

currents, enhancing thermal transfer efficiency 

(Leonchuk et al., 2022). 

These principles extend to advanced reactor designs 

like Tokamaks. In such systems, natural convection in 

liquid metal blankets (e.g. HCLL, DCLL, HPCB) avoids 

the high pressure drops inherent in forced flow under 

strong magnetic fields whilst simultaneously enabling 

tritium breeding (Boccaccini, 2013). Magnetic fields 
counteract the instabilities inherent in natural convection 

systems, such as chaotic flow patterns caused by 

temperature gradients. By generating Lorentz forces 

which suppress fluid movement, they improve system 

performance, material uniformity, and safety (Kumar & 

Singh, 2013; Mozayyeni & Rahimi, 2012). This 

stabilisation is critical in applications such as crystal 

growth or metallic melt processing, where flow 

symmetry and thermal uniformity are paramount 

(Kakarantzas et al., 2014; Teimouri et al., 2015). Studies 

(Sankar et al., 2011) have demonstrated that magnetic 

field orientation (axial, radial, or transverse) plays a 
decisive role in modulating flow dynamics between 

coaxial cylinders. For example, transverse magnetic 

fields are more effective than axial ones in influencing 

the Nusselt number and thermal performance (Afrand, 

2017), whereas the Hartmann number’s impact on heat 

transfer can outweigh that of the Rayleigh number by a 

factor of 4 (Wrobel et al., 2010). The interaction between 

the annular geometry and fluid velocity plays a critical 

role in vortex formation and recirculation zones, whilst 

magnetic fields significantly influence flow stability (Ali 

et al., 2023; Benhacine et al., 2022a; Mahfoud, 2022). 

These interactions stabilise swirling flows, reduce 

oscillations in thermocapillary convection, and suppress 

vortex formation, as shown in studies of cylindrical and 

annular containers (Dash & Singh, 2019; Wang et al., 

2015). The intersection of nanotechnology and MHD has 

further expanded these applications. Magnetic nanofluids 
and thermally efficient nanoparticles enhance heat 

transfer, stabilise flows, and improve energy efficiency, 

as demonstrated in studies by Benhacine et al. (2022b), 

Selim et al. (2023) and Mahfoud  (2023). 

The induced magnetic field is critically important in 

MHD, particularly under high magnetic Reynolds 

number conditions, with applications in MHD power 

generation, geophysics, oil purification, and glass 

manufacturing. Experimental studies by Jha and Aina 

(2018) have established that field intensity escalates with 

the magnetic interaction parameter (M) and magnetic 
Prandtl number (Pm) in microchannels, significantly 

modifying velocity profiles and amplifying skin friction 

in annular geometries. Conversely, Leela et al. (2022) 

have observed diminished field strength with elevated M 

and Pm when viscous and ohmic dissipation are 

considered. Sankar et al. (2006) numerically confirmed 

that increased radii ratios reduce the Hartmann number 

whilst enhancing the Nusselt number, noting superior 

performance of radial magnetic fields in large cavities. 

Computational approaches predominantly employ the 

Finite Element Method (FEM) and the Finite Difference 

Method (FDM), though the Meshless Finite Difference 
Method (MFDM) offers greater flexibility and efficiency 

despite lower accuracy. To address simulation 

complexity, artificial intelligence (AI) techniques, 

including ANNs (Shoaib et al., 2021), are increasingly 

utilised, revealing velocity suppression by M and 

enhancement by second-grade fluid/Marangoni 

parameters. Complementary work by Shilpa et al. (2023) 

on annular convection has demonstrated that Lorentz 

forces reduce velocity and field strength at higher values 

of Pm and M, whilst mixed convection parameters 

intensify the induced magnetic field. 

Building on this foundation, our study advances 

prior research by addressing two critical yet overlooked 

aspects of MHD convection: wall electrical conductivity 

and induced electric potential. Unlike analyses assuming 

insulating boundaries, we systematically examine MHD 
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convection in a vertical annular channel filled with an 

electrically conducting fluid under a radial magnetic 

field. Key parameters: magnetic field strength, annular 

gap dimensions, aspect ratio, and wall conductivity are 

analyzed for their coupled effects on heat transfer 

(Nusselt number), flow structure, Lorentz forces, and 

induced electric fields. These insights aim to refine 

liquid-metal cooling systems in applications demanding 
precise thermal management and operational safety, such 

as advanced nuclear reactors. 

2. FORMULATION OF THE MATHEMATICAL 

MODEL  

2.1 Model  

This investigation focuses on steady-state, three-

dimensional laminar natural convection of liquid metals 
within a vertical cylindrical annulus subjected to a 

uniform radial magnetic field. The geometric 

configuration comprises two concentric cylinders with 

inner radius rinner, outer radius router, and height H, 

defining an annular gap characterized by the 

dimensionless parameter R= (router − rinner )/router. A radial 

magnetic field B=Ber is imposed, generating distinct 

boundary layers and accounting for induced magnetic 

effects. The inner cylinder is maintained at a high 

temperature Th, while the outer cylinder is cooled to Tc

 (Tc<Th), establishing a radial temperature gradient that 
drives buoyancy-driven flow. Three electrical boundary 

configurations are explored: fully insulated walls (EI), 

conductive vertical inner/outer cylindrical walls (EC-V), 

and conductive horizontal top/bottom surfaces (EC-H) to 

evaluate their impact on magnetohydrodynamic (MHD) 

interactions and thermal transport. Aspect ratios   

(A=H/router) spanning 0.5–3 and annular gaps (R) of 0.5–

0.9 are analyzed to quantify their influence on flow 

patterns and heat transfer. 

The fluid is treated as incompressible and Newtonian, 

with constant thermophysical properties except for 

density variations in the buoyancy term (Boussinesq 
approximation). Rigid no-slip conditions are enforced at 

all walls. Joule heating, viscous dissipation, thermal 

radiation, and Hall effects are neglected to isolate 

primary MHD-convective coupling. The employed 

approximations are validated for the present 

configuration, where operating temperatures remain 

below 100°C and the Hartmann number (Ha) is 

constrained to Ha < 100. These thresholds align with 

established regimes where viscous forces dominate 

electromagnetic effects, ensuring model fidelity as 

documented in prior MHD studies (Afrand, 2017, 
Wrobel et al., 2010). The governing equations, mass 

conservation, momentum (including Lorentz forces), 

energy transport, and electric potential are formulated in 

cylindrical coordinates to resolve coupled thermal and 

electromagnetic phenomena. Figure 1 depicts the system 

geometry and boundary conditions. 

2.2. Mathematical Formulation 

- Mass Conservation: 

The incompressibility condition is expressed as: 

 

Fig. 1 Schematic and structured grid of the present 

model 

 

𝜵. 𝑼 = 0     (1) 

where 𝑼 is the vector of velocity. 

- The momentum equation: 

𝜌 (
𝜕𝑼

𝜕𝑡
+ (𝜵.𝑼)𝑼) = −𝜵𝑝 + 𝜌𝜈[𝜵𝟐𝑼] + 𝐹𝑜𝑟𝑐𝑒𝑠  (2) 

and in presence of buoyancy force and magnetic field, we 

have: Forces = 𝜌𝒈 + (𝒋 × 𝑩). 

Here, P, ρ and ν are respectively pressure, density and 

kinematic viscosity. The Lorentz force fL=𝒋 × 𝑩 arises 

from the interaction between the current density j and 

magnetic field B. 

- Energy Equation: 

Neglecting viscous and ohmic dissipation, the 

temperature field T is governed by: 

(𝑼.𝜵)𝑇 = 𝛼[𝜵𝟐𝑻]      (3)   

where α is the thermal diffusivity.   

- Electric potential (Afrand, 2017) 

𝛻2𝜑 =  𝜵. (𝑼× 𝑩) = 𝑼. (𝛻× 𝑩)⏟      
0

+𝑩. (𝛻 × 𝑼 )            (4) 

In which 𝑩 is the vector of magnetic field. Since the 

constant magnetic field is considered in this study, the 

term of 𝑼. (𝜵× 𝑩) becomes zero. 

The current density J and induced electric field E are 

related by: 

𝒋 =  𝜎[𝑬′ +𝑼× 𝑩], 𝑬′ = −𝛁𝜑                   (5) 

 

Table 1 Nondimensionalization Parameters 

Dim 
Form 

Nondim 

Form 
Dim 

Form 

Nondim 

Form 

u′ u = (u′·R)/α p P = (p·R2)/(ρ·α²) 

v′ v = (v′·R)/α T Θ = (T − Tc)/(Th − Tc) 

w′ w = (w′·R)/α φ Φ = φ / (α·B) 

r′ r = r′ / R E′ E = (E′·R)/(α·B) 

z′ z = z′ / R fL FL = (fL ·R)/(α·σ·B²) 
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where σ is electrical conductivity.  

Non-dimensionalization is achieved via scaling 

parameters: 

Substituting into in Eqs. (1)-(5) yields: 

- Continuity: 

∂u

𝜕𝑟
+
1

𝑟

𝜕𝑣

𝜕𝜃
+
𝜕𝑤

𝜕𝑧
= 0     (6) 

- Radial momentum:  

(𝑢
𝜕𝑢

𝜕𝑟
+
𝑤

𝑟

𝜕𝑢

𝜕𝜃
−
𝑤2

𝑟
+ 𝑣

𝜕𝑢

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑟
+ 𝑃𝑟 (∇2𝑢 −

𝑢

𝑟2
−

2

𝑟2

𝜕𝑤

𝜕𝜃
) + 𝑅𝑎 𝑃𝑟𝛩 ++𝐻𝑎2.𝐹𝐿𝑟                                 (7)    

- Axial momentum: 

(𝑢
𝜕𝑣

𝜕𝑟
+
𝑤

𝑟

𝜕𝑣

𝜕𝜃
+ 𝑣

𝜕𝑣

𝜕𝑧
) = −

𝜕𝑃

𝜕𝑟
+ 𝑃𝑟(∇2𝑣) + +𝐻𝑎2.𝐹𝐿𝑧 

                    (8)  

- Azimuthal momentum: 

𝑢
𝜕𝑤

𝜕𝑟
+
𝑤

𝑟

𝜕𝑣

𝜕𝜃
+ 𝑣

𝜕𝑤

𝜕𝑧
+
𝑢𝑤

𝑟
= −

1

𝑟

𝜕𝑃

𝜕𝜃
+ 

𝑃𝑟 (∇2𝑤 −
𝑤

𝑟2
+

2

𝑟2

𝜕𝑢

𝜕𝜃
) + +𝐻𝑎2.𝐹𝐿𝜃                (9)  

  𝐹𝐿𝑧 = (−
1

𝑟

𝜕Φ

𝜕𝜃
+ 𝑣);  𝐹𝐿𝜃 = (

𝜕Φ

𝜕𝑧
+𝑤) are the axial and 

azimuthal component of the Lorentz force. (FLr=0) 

because 𝒋×𝑩 =0 has no radial component when 𝑩=B𝒆𝒓 

Energy conservation: 

𝑢
𝜕Θ

𝜕𝑟
+
𝑤

𝑟

𝜕Θ

𝜕𝜃
+ 𝑣

𝜕Θ

𝜕𝑧
= ∇2Θ                                   (10) 

- Electric potential: 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕Ф

𝜕𝑟
) +

1

𝑟2

𝜕2Ф

𝜕𝜃2
+
𝜕2Ф

𝜕𝑧2
=

𝜕𝑣

𝜕𝜃
−
𝜕𝑤

𝜕𝑧
                (11) 

Key dimensionless groups include: 

Prandtl number: Pr=ν/α (momentum vs. thermal 

diffusivity). 

Rayleigh number: 𝑅𝑎 = 𝛽𝑔∆𝑇𝑅3/να  (buoyancy vs. 

viscous forces)  

Hartmann number:  𝐻𝑎 = 𝐵𝑅√
𝜎

𝜌𝜈
 (Lorentz vs. viscous 

forces). 

Heat Transfer Quantification: Local and average 

Nusselt numbers (Nu) quantify convective efficiency 

along inner/outer walls (Kakarantzas et al., 2014): 

𝑁𝑢(𝜃) = − ln(
𝑟𝑖

𝑟𝑜
) (𝑟

𝜕Θ

𝜕𝑟
)|
𝑟=𝑟𝑖𝑛𝑛𝑒𝑟 ;  𝑟𝑜𝑢𝑡𝑒𝑟

                    (13)  

The azimuthally-averaged Nusselt numbers (Kakarantzas 

et al., 2014): 

𝐴𝑣 −𝑁𝑢 = (
1

2𝜋
)∫ 𝑁𝑢

2𝜋

0
(𝜃)𝑑𝜃                                 (14) 

While the overall (i.e., axially and azimuthally 

averaged) Nusselt numbers at the inner and outer walls 

are calculated as follows: 

𝐴𝑣 −𝑁𝑢 = (
1

𝐻𝜋
)∫ ∫ 𝑁𝑢

𝐻

0
(𝜃)

2𝜋

0
𝑑𝑧𝑑𝜃                 (15) 

- Boundary Conditions: 

The system’s boundaries are defined by hydrodynamic, 

thermal, and electromagnetic constraints as follows: 

All Walls: No-slip condition (U=0) is enforced at all 

solid surfaces. Summary of the boundary conditions 

employed in the study (Table 2). 

 

Table 2 Boundary conditions 

Boundary Thermal Electromagnetic 

Inner wall (r =rᵢnner) Θ = 1 (hot wall) Conductive 

  𝜎
∂Φ

∂r
= σ𝑤

∂Φ𝑤

∂r
 

Insulated:   
𝜕Φ

𝜕𝑟
= 0 

Outer wall (r =rₒuter) Θ = 0 (cold wall) Conductive  

  𝜎
∂Φ

∂r
= σ𝑤

∂Φ𝑤

∂r
 

Insulated:   
𝜕Φ

𝜕𝑟
= 0 

Top wall (z = H)  

Bottom wall (z = 0) 

∂Θ/∂z = 0 (thermally 
insulated) 

∂Φ/∂z = 0 

 (no vertical current) 

 

For electrically conductive wall, continuity of the 

radial current at the fluid-wall interface is enforced: 

𝜎
∂Φ

∂r
= σ𝑤

∂Φ𝑤

∂r
; where σ is the fluid’s electrical 

conductivity, σw is the wall conductivity, and Φw is the 

wall potential. The conductance ratio kw =w ew/ R links 

wall properties (thickness ew, conductivity σw) to fluid 

and geometric parameters. When wall conductance 

dominates (kw ≫ 1), the boundary condition simplifies 

to Φw = constant. This ideal conductor approximation is 

physically justified as dominant wall conductance short-
circuits radial currents, decoupling their behavior from 

the fluid. 

3. NUMERICAL SOLUTION, GRID SIZES AND 

VALIDATION 

3.1 Numerical Solution 

The governing equations are discretized using 

a finite-volume method (FVM) on a staggered cylindrical 

grid, ensuring robust prevention of pressure-velocity 

decoupling. To resolve critical magnetohydrodynamic 

(MHD) boundary layers, specifically the Hartmann 

layers (thickness scaling as ~1/Ha) and Roberts 

layers (thickness ~1/√Ha), a non-uniform mesh 

refinement is applied near boundaries. For spatial 

discretization, second-order central differences are used 

for diffusion terms, while the third-order QUICK 
scheme minimizes numerical diffusion in advection 

terms. Temporal integration follows a pseudo-transient 

IMEX strategy: diffusion terms are treated implicitly via 

the Crank-Nicolson method, and nonlinear advection 

terms are integrated explicitly using a third-order Runge-

Kutta (RK3) scheme. Mass conservation is rigorously 

enforced through the fractional-step method, with 

pressure correction computed via an FFT-accelerated 

Poisson solver (Boyd, 2000). The electric potential is 

solved iteratively using the GMRES algorithm with ILU 

preconditioning, and electromagnetic boundary 
conditions at conducting walls are robustly enforced 

through Nitsche’s method (Ben Salah et al., 2001). 
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Fig. 2 Profiles of the local Nusselt number for 

different grid resolutions (A = 1, R = 0.9, Ra = 10⁵), 

with H = 0 (top) and Ha = 80 (bottom) 

 

3.2. Grid Independence  

A comprehensive mesh sensitivity analysis was 

conducted for the most computationally demanding case 
(A = 1, R = 0.9) at Ha = 0. Three mesh resolutions were 

compared: a coarse grid (35×110×40 nodes), an 

intermediate grid (45×110×50), and a finer grid 

(55×110×60). Key validation metrics included the local 

Nusselt number (Nu) on the inner wall. Results 

demonstrated <3% deviation between the coarse and fine 

grids, validating the computational efficiency of the 

coarser mesh. To optimize accuracy, geometric 

stretching (5–10% growth) was applied near boundaries, 

while the azimuthal node count (Nθ = 110) was fixed to 

preserve three-dimensional flow effects.  

For simulations involving a magnetic field (Ha > 0), 
additional radial grid refinement is applied to properly 

resolve the Hartmann and Roberts boundary layers. The 

final mesh configurations, selected based on the 

Hartmann number (Ha), are scalable: a mesh with 45 

radial, 110 azimuthal and 50 axial cells (45R × 110 × 

50A) was used for Ha ≤ 5. For Ha ≥ 20, a finer mesh 

(65R×110×65A) was adopted, featuring increased radial 

and axial resolution to accurately capture the effects of 

Lorentz forces. A comparison grid for Ha=80 is shown in 

Fig. 2b. 

3.3 Validation 

The numerical model was thoroughly validated 

against both experimental data and high-fidelity 

numerical benchmarks, confirming its accuracy under 

diverse thermal and geometric configurations. The first  

 

Fig. 3 Comparison of average Nusselt number 

results with experimental data of Wrobel et al. (2010) 

 

validation utilized experimental results from Wrobel et 

al. (2010), which involved a high-Prandtl-number fluid 

(Pr = 61), a diameter ratio of 2.7, and an aspect ratio of 

5.41. The model demonstrated excellent agreement, with 

deviations in the average Nusselt number remaining 

below 5%, as shown in Fig. 3. 

A second validation compared our results against the 

DNS study of Kakarantzas et al. (2014), which analyzed 

magnetohydrodynamic (MHD) flow between vertically 

oriented coaxial cylinders under internal volumetric 

heating. Their configuration featured a Hartmann number 

(Ha = 100), radius ratio (R = 2Ri), Rayleigh number (Ra 

= 10⁴), radially applied magnetics stabilization, thermally 

insulated end caps, and isothermal cylindrical walls (Fig. 

4). Our model reproduced the flow structures and heat 

transfer behavior with a relative error of 5%, confirming 

its reliability for magnetic field-influenced natural 
convection simulations. Figure 5 further validates this 

agreement by comparing axial velocity profiles versus 

radius at θ=0° and θ=90°, evaluated at three vertical 

positions. 

4. RESULTS AND DISCUSSION 

In magnetohydrodynamics, the behavior of the 
system is dictated by the interaction of an electrically 

conducting fluid (such as liquid) with an externally 

imposed magnetic field. As the fluid moves through the 

magnetic field, electric currents are induced within the 

fluid, giving rise to a Lorentz force that acts 

perpendicular to both the flow direction and the magnetic 

field lines. This force significantly modifies the fluid 

dynamics, resulting in complex distributions of velocity 

and current throughout the domain. 

To establish appropriate simulation parameters, a 

preliminary comparison was conducted between 
Rayleigh numbers Ra=104 and Ra=105. The results 

showed that the higher Rayleigh number (Ra=105) leads 

to stronger convective effects, thereby offering better 

insight into coupled thermal and hydrodynamic 

interactions. Consequently, all subsequent simulations 

were performed at Ra=105. A second parametric study  
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Fig. 4 Comparison of axial velocity, our result (top) 

with Kakarantzas et al. (2014) at bottom 

 

Fig. 5 Influence of (a) Rayleigh number Ra and (b) 

Prandtl and Hartmann numbers on the average 

Nusselt number 

 

examined the influence of different Prandtl numbers 

associated with various liquid metals: potassium (Pr=0.072), 

lithium (Pr=0.055), and a sodium-potassium eutectic 

alloy (Pr=0.037). 

To assess the effect of boundary electrical properties 

on MHD behavior and heat transfer performance, three 

distinct electrical boundary conditions were investigated. 

In the first configuration Electrically Insulated Walls 
(EI), all boundaries, including the inner and outer 

cylindrical surfaces and the top and bottom horizontal 

walls, were assumed to be electrically insulating, thereby 

inhibiting any current exchange with the surroundings. 

The second configuration Electrically Conductive 

Vertical Walls (EC-V) allowed electrical conduction 

through the vertical (cylindrical) walls, enabling radial 

current flow, while the horizontal boundaries remained 

insulated. In the third configuration Electrically 

Conductive Horizontal Walls (EC-H) only the top and 

bottom surfaces were electrically conductive, allowing 

vertical current penetration, whereas the cylindrical walls 
were kept insulated. These configurations provide a 

framework for understanding how wall conductivity 

influences current distribution, fluid motion, and thermal 

transport within the annular cavity. 

To comprehensively characterize system behavior 

under varying geometrical and electromagnetic 

conditions, simulations were performed for a range of 

aspect ratios A=0.5, 1, 2, and 3, as well as dimensionless 

gap widths R=0.5, 0.6, 0.7, 0.8, 0.9. This systematic 

exploration enables detailed insights into the combined 

effects of geometry and boundary conditions on MHD 

flow and heat transfer performance. 

4.1 Influence of Key Parameters on Heat Transfer 

This section investigates the influence of five key 

dimensionless parameters, namely, the Prandtl number 

(Pr), Rayleigh number (Ra), Hartmann number (Ha), 

aspect ratio (A), and annular gap (R) on convective heat 

transfer in natural convection flows within annular 
geometries. The average Nusselt number (Nu) is used as 

the primary metric to quantify heat transfer performance. 

Among these parameters, the Hartmann number, 

representing the ratio of electromagnetic to viscous 

forces, plays a crucial role in modulating the flow 

structure and heat transport behavior. 

An initial comparison between Ra = 10⁴ and Ra = 

10⁵ shows that the latter generates much stronger 

convective currents, making it the more suitable choice 

for analyzing coupled thermal and hydrodynamic 

interactions. Therefore, all subsequent simulations are 

conducted at Ra = 10⁵ (see Fig. 5a). A second analysis 
examines three Prandtl numbers (Pr = 0.072, 0.055, and 

0.037) corresponding to liquid potassium, lithium, and a 

sodium-potassium eutectic alloy, respectively. Figure 5b 

illustrates the combined effects of Prandtl and Hartmann 

numbers on the average Nusselt number in an annular 

configuration with a gap ratio R = 0.9. As shown, the 

average Nusselt number consistently increases with the 

Prandtl number across all Hartmann numbers. This 

behavior is linked to the greater influence of viscous 

forces and the reduced thermal diffusivity at higher 
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Prandtl numbers. As Pr increases, the momentum 

boundary layer thickens while the thermal boundary 

layer becomes thinner. This thinner thermal boundary 

layer intensifies the temperature gradient near the heated 

surface, thereby enhancing heat transfer and yielding a 

higher Nusselt number. 

Furthermore, although the effect of Hartmann 

number on Nu is qualitatively similar across different 
Prandtl numbers, it is evident that the sensitivity of Nu to 

changes in Prandtl number diminishes as Ha increases. 

This behavior can be explained by the growing influence 

of the Lorentz force at higher Hartmann numbers, which 

suppresses convective motion and thus reduces the role 

of boundary layer dynamics. As the magnetic field 

strengthens, convective heat transfer is increasingly 

dampened, and the system gradually transitions toward 

conduction-dominated heat transfer. In this conduction-

dominated regime, the average Nusselt number along the 

inner cylinder tends to approach the asymptotic value 

predicted by the purely conductive solution, given by: 
Nu-cond=ln(ro-ri)/riln(ro/ri) (Afrand, 2017) For instance, 

when 𝑅=0.9, the theoretical conductive Nusselt number 

is approximately 𝑁𝑢-cond=4.04, as determined from the 

equation above. This asymptotic behavior is clearly 

evident in Fig. 5b, where the Nusselt number approaches 

the conduction limit at high Hartmann numbers. In the 

case of 𝑅=0.9, pure conduction is practically achieved at  

>300, indicating that a stronger magnetic field is required 

to suppress convection entirely in thick annuli. Among 
these, potassium (Pr=0.072) demonstrated the most 

vigorous convective behavior, justifying its selection as 

the working fluid. Hence, all simulations were conducted 

using Ra=105 and Pr=0.072. 

Figure 6 illustrates the variation of the local Nusselt 

number along the inner wall of an annular domain for 

three different aspect ratios: A=0.5, A=1, and A=2, at a 

fixed radii ratio R=0.9, under two magnetic field 

conditions: Ha=0 (no magnetic field) and Ha=40 

(moderate magnetic field). In the absence of a magnetic 

field (Ha=0), the local Nusselt number distribution is 
stratified, indicating the presence of strong convective 

activity driven purely by buoyancy forces. This 

stratification becomes more pronounced for intermediate 

aspect ratios (particularly A=1), where the natural 

convection patterns are well-developed. When the 

magnetic field is applied (Ha=40), the stratified pattern is 

significantly suppressed, and the local Nusselt number 

distribution becomes not-uniform along the angular 

direction. This smoothing effect is a direct result of the 

Lorentz force, which dampens the velocity fluctuations 

and inhibits the development of convective cells, leading 

to a transition toward more conduction-dominated heat 
transfer. Moreover, the aspect ratio influences the 

intensity and distribution of heat transfer. For lower 

aspect ratios (A=0), the flow is more confined vertically, 

resulting in lower overall Nu values. For larger aspect 

ratios (A=2), the vertical space allows for the formation 

of stronger convective rolls under Ha=40, but these are 

also strongly suppressed under H=40, demonstrating the 

destabilizing effect of the magnetic field across all 

geometries. 
 

 

 

Fig. 6 Nusselt number on inner wall for three aspect 

ratio A = 0.5, 1,2 for(a) Ha = 0 and (b) Ha = 40 

 

 

Fig. 7 3D plot of the Nusselt number on inner wall 
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Fig. 8 Polar plot of Nusselt number distribution along 

the inner wall for Ha=0 and Ha=40 

 

Figure 7 presents a three-dimensional plot of the local 

Nusselt number on both the inner and outer walls of the 

annular cavity for A = 1 and R = 0.9, under two magnetic 

field conditions (Ha = 0 and Ha = 40). When Ha = 0, the 

spatial distribution of the Nusselt number is smoother 

and more symmetric. The inner wall generally exhibits 
higher heat transfer intensity than the outer wall, which is 

consistent with the imposed thermal boundary 

conditions. In contrast, when Ha = 40, the heat transfer 

distribution becomes more heterogeneous on both walls, 

with localized peaks corresponding to regions where 

convective cells interact with the boundaries. This 

behavior highlights the suppressive effect of the 

magnetic field on convective motion. This trend is 

further confirmed by Fig. 8, which shows a polar plot of 

the local Nusselt number distribution along the inner wall 

for A = 1 and R = 0.9 under Ha = 0 and Ha = 40. Overall, 
the results clearly demonstrate that the application of a 

magnetic field leads to less uniform, more conduction-

like heat transfer, and that the inner and outer walls 

respond differently due to their distinct roles in the 

development of thermal boundary layers. 

Figure 9 illustrates the dependence of the average 

Nusselt number on the annular gap ratio (R), aspect ratio 

(A), and Hartmann number (Ha). Subfigures (a), (b), and 

(c) present two-dimensional trends: (a) average Nusselt 

number (Av-Nu) versus R at A=1; (b) Av-Nu versus A 

for a fixed R=0.9; and (c) Av-Nu versus A at two values 

of R=0.7and R=0.9 all evaluated under increasing 
Hartmann numbers. Subfigure (d) provides a three-

dimensional representation that captures the combined 

influence of R, A, and Ha on convective heat transfer. 

From Fig.9(a) and 9(c), it is observed that the average 

Nusselt number increases with the annular gap ratio R, 

while it decreases with increasing Ha. In Fig. 9(b), two 

distinct regimes are identified: for A<1, increasing the 

annulus height enhances convective flow, leading to 

higher Nusselt numbers, in agreement with findings 

reported in (Kuehn & Goldstein, 1976), conversely, for 

A>1, the Nusselt number decreases as heat transfer 

becomes concentrated near the base of the heated wall,  

 

Fig. 9 (a) Av-Nu vs. R (A=1), (b) Av-Nu vs. A (R=0.9), 

(c) Av-Nu vs. A (R=0.7and 0.9) for Ha=0 and Ha=80. 

(d) 3D Av-Nu vs. Ha and R (A=1) 
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consistent with observations by Afrand et al. (2017). The 

3D plots in Fig. 9(d) further demonstrate that increasing 

R enhances heat transfer across all Hartmann numbers, 

primarily due to curvature-induced increases in fluid 

velocity and the formation of thinner thermal boundary 

layers (Prasad & Kulacki, 1984). At higher Hartmann 

numbers, the Lorentz force strongly suppresses flow 

instabilities and turbulent fluctuations, resulting in 
reduced velocity gradients and a shift toward conduction-

dominated heat transfer, as evidenced by the lower 

Nusselt numbers. These findings emphasize the intricate 

interplay between the geometric parameters (R, A) and 

the magnetic field strength (Ha) in controlling convective 

heat transfer within annular domains. 

4.2 Analysis of Temperature, Lorentz Force, Induced 

Fields 

The flow within an annular gap can be categorized 

into three distinct regions: the core region, the Hartmann 

layer, and the Roberts layer. The minimum theoretical 

thicknesses of the Hartmann and Roberts layers are 
proportional to Ha−1 and Ha−1/2, respectively. Within the 

Hartmann layer adjacent to walls normal to the applied 

magnetic field, viscous forces compete with magnetic 

forces. Since all walls are electrically insulating, electric 

currents remain confined within the fluid, generating a 

Lorentz force. As the Lorentz force intensifies, the 

buoyancy-driven layer initially governed by a balance 

between buoyancy and viscous forces is progressively 

supplanted by the Hartmann layer, where 

electromagnetic and viscous forces equilibrate (Mahfoud, 

2023). Under a radial magnetic field, the Lorentz force 
accelerates the fluid and suppresses flow 

inhomogeneities, eliminating convection once the field 

strength exceeds a critical threshold. 

Figure 10 demonstrates the influence of a magnetic 

field on temperature distributions, visualised on the 

vertical median (x-y) plane and  the isosurface Θ = 

0.8, and azimuthal velocity profiles at vertical positions z 

= 0.1and z = 0.9, for parameters R = 0.9 and A = 1. In the 

absence of a magnetic field (Ha = 0), isotherms exhibit 

axisymmetric behaviour. However, at a Hartmann 

number of 40, distinct thermal stratification emerges in 
the y-plane, whilst the x-plane remains unaffected. This 

asymmetry stems from the amplified Lorentz force in the 

y-plane, which suppresses fluid motion and disrupts 

convective heat transfer. A striking enhancement in 

tangential velocity occurs at the cylinder’s base, where w 

= 13.2 for Ha = 80, compared with w = 0.03 for Ha = 0. 

These magnetic layers fundamentally alter velocity and 

thermal profiles, marking a shift from buoyancy-

dominated convection to MHD-governed dynamics. 

Figure 11 illustrates the influence  of  the magnetic 

field on isotherms, Lorentz force, and induced electric 

fields in vertical (x-y plane) and horizontal (z-plane) 
cross-sections for an annular gap configuration (R = 0.9, 

A = 1) under a strong magnetic field (Ha = 80). The left 

panel highlights the thermal patterns, showing a 

transition of the isotherms from axisymmetric 

distributions at Ha = 0 (as seen in Fig. 10) to asymmetric 

stratification in the y-plane at Ha = 80. This anisotropy 

results from the Lorentz force suppressing convective  

 

 

(a)Ha=0  (c)Ha=0,w at z=0.1 and 

z=0.9 

 

 
(b)Ha=80 (d)Ha=80,w at z=0.1 and 

z=0.9 

Fig. 10 Magnetic field effects on (a-b) temperature 

plotted on the vertical median (x-y) plane, and 

isosurface Θ=0.8; (c-d) azimuthal velocity contours 

 

 

 

 

 

 

 

 

Fig. 11 Magnetic effect on isotherms, Lorentz force 

and induced electric field in the (left) vertical median 

planes and (right) horizontal median plane 

 

motion in the y-plane, whilst the x-plane remains largely 

unaffected thermally. The Lorentz force distribution 

(center panel) confirms its dominance in the y-plane, 

where it peaks at Fmax ≈ 25, contrasting with weaker  

effects in the x-plane. Conversely, the x-plane exhibits 

significant induced electric potential (Emax ≈ 50), a result 
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of the magnetic field’s y-axis alignment. The horizontal 

median plane (bottom panel) reveals vertical electric 

field contours, with maxima localised in the x-plane and 

minima in the y-plane. This asymmetry arises from the 

orientation of B: In the y-plane, it is perpendicular to the 

vorticity vector (∇ × U), which suppresses the induced 

electric potential as described by Eq. (4). In contrast, the 
x-plane alignment permits significant U × B motional 

induction, resulting in pronounced electric potential 

peaks. Equation 5 clarifies the competition between 

induced (E′) and motional (U × B) currents. In regions 

where these components cancel each other, the net 

current density becomes negligible (j ≈ 0). Elsewhere, the 

dominance of one term over the other determines the 

Lorentz force direction, which always opposes the main 

flow. These trends, consistent across annular gaps, 

underscore the magnetic field’s role in reshaping thermal 

and momentum transport. The suppression of convection 

in the y-plane and enhanced electric effects in the x-plane 
highlight the transition from buoyancy-driven to MHD 

dominance at high Ha. 

Figure 12 presents a comparative analysis of the 

Lorentz force and induced electric field distributions in 

the horizontal midplane (z = 0.5) for various annular gap 

ratios (R = 0.7, 0.8, 0.9) and Hartmann numbers (Ha = 20 

and 60). The results reveal the  presence of two distinct 

electromagnetic boundary layers. Hartmann layers, 

located adjacent to walls perpendicular to the magnetic 

field, exhibit strong Lorentz forces due to the direct 

interaction between the magnetic field and flow vorticity 

(∇ × U). When R = 0.7 and Ha = 60, the Lorentz force 

reaches a maximum of approximately Fₘₐₓ ≈ 14. In 

contrast, Roberts’s layers are characterised by dominant 

induced electric fields, peaking at Eₘₐₓ ≈ 42 for the same 

parameters. These layers arise from the alignment of the 

vorticity vector with the magnetic field, which enhances 

motional induction (U × B) and leads to steep velocity 

gradients. 

The radial orientation of the magnetic field introduces 

anisotropy in the flow. In the y-plane, Lorentz forces 

suppress the flow, demonstrating strong electromagnetic 
damping. Conversely, in the x-plane, the radial alignment 

of velocity vectors minimises U × B, resulting in 

negligible Lorentz forces but significant enhancement of 

the induced electric fields. Increasing the Hartmann 

number intensifies both electromagnetic components, 

sharpening the boundary layer contrasts. For example, 

doubling Ha from 20 to 60 increases Fₘₐₓ by 

approximately 50% for R = 0.7. Meanwhile, increasing 

the annular gap ratio R promotes higher fluid velocities 

due to reduced geometric confinement, which enhances 

Lorentz forces (e.g. Fₘₐₓ ≈ 14.01 at R = 0.7) but 
paradoxically diminishes local electric fields. This 

reduction is attributed to partial cancellation of the 

induced electric field E’ by the motional term U × B. 

Despite localised reductions, the overall electric field 

magnitude tends to increase with R. Furthermore, the 

emergence of regions where j ≈ 0 demonstrates MHD’s 

intrinsic capability to balance induced and motional 

effects, a critical mechanism for stabilising turbulent or 

unstable flows. 

 

Fig. 12 Contour plots of Lorentz force and induced 

electric field in the horizontal mi-plane (z = 0.5) for 

Ha = 20 (left) and Ha = 60 (right), with A = 1 

 

Figure 13 explores the interplay between electrically 

conductive walls and magnetic effects on heat transfer, 

quantified through local and average Nusselt numbers 

along the inner wall for an annular gap R = 0.9 and A = 

1. For Ha = 0, natural convection dominates, yielding a 

peak local Nu of 10.85 and an Av-Nu of 8.38. For Ha 

=60, insulating walls (EI) exhibit heightened localised 

heat transfer (Numax = 11.34) but reduced bulk 

convection (Av-Nu = 6.96), reflecting Lorentz-force 

suppression. EC-V further diminishes both metrics (local  
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Fig. 13 Local Nusselt for Ha = 0 and Ha = 60 

 

Numax = 10.44, Av-Nu = 6.72) due to radial current 

leakage amplifying electromagnetic dissipation, whilst 

EC-H partially mitigates damping (Av-Nu = 6.86, local 

Numax = 10.65) by preserving inertial effects. This 

asymmetry underscores that vertical conductive walls 

intensify Lorentz losses, whereas horizontal ones 

stabilise local flow. 

Figure14 shows that for Ha = 80 and R = 0.7, the EC-

H configurations outperform both EI and EC-V at lower 

heights (z < 0.2) due to the dominance of inertial effects 

in wider gaps. Across R = 0.5–0.87, EC-H enhances heat 

transfer by eliminating Hartmann layers and sustaining 
inertial flow, but beyond R > 0.87, geometric constraints 

dominate, favouring EI configurations which restrict 

current leakage. A critical transition at R ≈ 0.87 suggests 

that EC-H optimises thermal performance in moderate 

gaps, whilst EI is more effective in narrow geometries. 

Conductive walls reshape current pathways, weakening 

viscous boundary layers but introducing trade-offs: (EC-

V) consistently underperforms due to disrupted 

circulation, while (EC-H) optimizes heat transfer in by 

harmonizing inertial and electromagnetic effects. 

4.3. Effects of Electrically Conductive Boundaries on 

Induced Fields and Lorentz Forces 

Figures 15–16 explore the influence of wall electrical 

conductivity on the distributions of induced electric 

fields and Lorentz forces within a vertical cylindrical 

annulus subjected to a radial magnetic field (Ha = 80). 

The configuration with electrically insulated walls (EI) 

shows strong confinement of current within the fluid, 

resulting in a maximum induced electric field of 75.1 in 

the x-plane and a reduced value of 50.82 in the y-plane 

due to asymmetric current circulation. When the top and  

 
Fig. 14 Superimposed Local Nu for EC-wall 

configurations at A = 1 with (a) Ha = 80, R = 0.9 and 

(b) Ha = 80, R = 0.7. Average Nu vs. R for A = 1 with 

(c) EC-H and EI-walls (d) EC-V and EI-walls 

 

bottom walls are made conductive (EC-H), slight current 

leakage reduces the x-plane field to 73.1, while  

it maintains moderate strength in the y-plane. In contrast,  

(d) Ha=60 EC-H 
Av-Nu=6.86 

 

(c) Ha=60, (EC-V) 
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Fig. 15 Induced electric field contours (median/horizontal planes) when Ha=80 

 

the configuration with conductive vertical walls (EC-V) 

significantly alters the current pathways: short- circuiting 

through the radial boundaries drastically reduces the y-

plane field to 22.92, demonstrating the dominant role of 

vertical conductivity in dissipating current. 

The Lorentz force distribution exhibits strong 

directional asymmetry, with consistently higher 
magnitudes in the y-plane due to the effective coupling 

between the radial magnetic field and azimuthal currents. 

In the EI case, the peak Lorentz force reaches 20.18 in 

the y-plane versus 17.72 in the x-plane. The EC-V 

configuration, despite its lower bulk electric field, yields 

the highest localized Lorentz force (20.71) near the 

conductive walls in the y-plane, while the x-plane force 

drops to 16.55 due to the suppression of transverse 

currents. The EC-H configuration produces intermediate 

force levels (e.g., 16.55 in the x-plane), reflecting partial 

current diversion through horizontal walls. 

Consequently, conductive walls act as current sinks, 

reducing the overall electric field within the fluid but 

intensifying localized Lorentz forces near the boundaries. 

At high Hartmann number (Ha = 80), this behavior 

results in the formation of thin Hartmann layers along 

conductive surfaces, where the balance between viscous 

and electromagnetic forces becomes dominant. The 

annular geometry further accentuates directional effects 

by allowing optimal coupling of the radial magnetic field 

with azimuthal currents in the y-plane, explaining the 

consistently stronger forces observed in this direction. 

Contour plots in the horizontal mid-plane (z = 0.5) 
further reveal spatial reorganization under different 

conductivity scenarios. The EC-V configuration disrupts 

the classical Roberts layer typically present near the outer 

wall, highlighting how vertical wall conductivity 

modifies canonical MHD flow structures. While EI and 

EC-H configurations show nearly axisymmetric force 

distributions, EC-V produces highly asymmetric, 

localized forces concentrated near the conductive vertical 

boundaries, which aligns with the observed peak of 20.71 

in the y-plane. 

5. CONCLUSION 

A three-dimensional numerical investigation was 

performed to examine natural convection of liquid  

metal in a vertical cylindrical annulus exposed to a radial  
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Fig.16. Lorentz force contours (median/horizontal planes) when R=0.9, Ha=80 and  A=1. 

 

magnetic field. The focus was on understanding how 

wall electrical conductivity, Lorentz forces, and 

geometric factors affect flow dynamics and heat transfer 

behavior. Key findings include: 

• Increasing the Rayleigh number from Ra=104 to Ra 

=105 significantly strengthens convective currents. 

The higher Rayleigh number provides a more realistic 

representation of the coupled thermal and fluid 

dynamics in the system. 

• (EC-H) yields the highest average Nusselt number 

(6.86 at R = 0.9, Ha = 60), with an increase of 1.4% 

compared to EI and 2.1% compared to (EC-V). Gains 

reach up to approximately 10% for R < 0.87, while EI 

outperforms (EC-H) for R > 0.87. (EC-V) 
consistently exhibits lower performance, with 

reductions of 3–5% compared to (EI). 

• Increasing the Hartmann number (Ha) enhances the 

Lorentz force, which suppresses convective motion. 

At high-Ha, the heat transfer becomes nearly 

conduction-dominated, especially in thick annuli. 

• For A<1, heat transfer improves due to enhanced 

convection. For A>1, thermal stratification suppresses 

convection, leading to a monotonic decrease in 

Nusselt number. Increasing the annular gap R 

enhances heat transfer by allowing more fluid motion 

and space for convection. 

• The magnetic field generates Hartmann layers on 

walls perpendicular to its direction and Roberts’s 

layers on parallel walls. These boundary layers 

disrupt the symmetry of the natural convection flow. 

• The EC-V configuration is most effective for 

intermediate radius ratios (R≈0.5–0.87) under strong 

magnetic fields, as it reduces Lorentz damping and 

supports fluid momentum. 

• (EI) case is more effective at larger gaps 

(R>0.87), limiting current leakage and 
maintaining strong electromagnetic interactions 

in the fluid bulk. 

• It is recommended that future studies investigate 

the influence of wall thickness on induced 

current distributions, particularly in systems 

with conductive boundaries. 
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