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ABSTRACT

This numerical study investigates magnetohydrodynamic (MHD) flow and heat
transfer for liquid metals within a cylindrical annulus subjected to a radial
magnetic field. A parametric study compares the thermal behavior of these
metals under identical conditions, with particular focus on the influence of the
annular wall's electrical boundary conditions on heat transfer. The finite volume
method is used to analyze three electrical boundary conditions: electrically
insulated walls (EI), electrically conducting vertical walls (EC-V), and
electrically conducting horizontal walls (EC-H). The findings show that
magnetic field strength, annular gap, aspect ratio, and wall conductivity
significantly affect temperature distribution, average Nusselt number, Lorentz
force, and induced electric field. The Nusselt number increases when the aspect
ratio is below unity but decreases when it is above unity, and it improves
consistently with a larger annular gap. Stronger magnetic fields are required to
sustain conduction-dominated regimes in thicker annuli. The magnetic field
generates characteristic Hartmann and Roberts layers through Lorentz force
interactions, with layer dissipation observed in conducting wall cases. Among
the configurations, the EC-H case exhibits the highest heat transfer performance
compared to EI boundaries, particularly for intermediate gap ratios
(R~ 0.5-0.87). (EC-H) offers the best heat transfer overall, with up to 10% gains
for R<0.87, while (EI) performs better for R>0.87, and (EC-V) remains
the least efficient.

1. INTRODUCTION
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The efficient management of heat in industrial
systems is critical to the performance, safety, and
sustainability of energy and manufacturing technologies.
Amongst the various heat transfer media, liquid metals
such as potassium (K), lithium (Li), and sodium-
potassium (NaK) have garnered significant attention due
to their exceptional thermal properties and unique
applicability across a broad temperature spectrum (Wang
et al., 2021). Each of these metals exhibits distinct
advantages and limitations which influence their
integration into specialised cooling and heat exchange
systems. Liquid K, with its low melting point and high
thermal conductivity, is particularly suited for moderate-
temperature applications such as NaK eutectic cooling in
fast-breeder nuclear reactors (Abou-Sena et al., 2016). In
contrast, Li, characterised by its high specific heat and
role in tritium breeding, is increasingly vital for high-

performance systems like fusion reactors and aerospace
thermal regulation (Roux et al., 1992). Molten NaK,
though less commonly used as a fluid medium, offers
exceptional thermal stability at ultra-high temperatures,
making it indispensable in extreme environments such as
metallurgical processing and space-based power systems
(Ulyanov et al., 2024). Understanding the comparative
thermophysical behaviour, reactivity, and compatibility
of these metals with containment materials is essential
for optimising heat transfer processes.

However, the interaction between liquid metals and
external forces, particularly magnetic fields, introduces
another layer of complexity and opportunity. Magnetic
fields have emerged as a transformative tool for
controlling heat transfer in systems involving electrically
conductive fluids, such as liquid metals (Ni et al., 2025).
For instance, in fusion reactors (e.g. ITER), liquid
lithium is exposed to intense magnetic fields to confine
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NOMENCLATURE

A aspect ratio

B magnitude of the external magnetic field
(Tesla)

E dimensional induced electric field

E dimensionless induced electric field

fi Lorentz force

Fr dimensionless Lorentz force

g acceleration due to gravity
H height of cylindrical annulus

Ha Hartmann number

i electric current density

J dimensionless electric current density

ke conductance ratio

Nu local Nusselt number

P dimensionless pressure

Pr Prandtl number

R annular gap

r, 6,z dimensionless spatial coordinates

Ra Rayleigh number
T temperature
u, v, w  dimensionless radial, axial, azimuthal

velocity components

Greek symbols

thermal diffusivity of the fluid
thermal expansion coefficient
dimensionless temperature
kinematic viscosity of the fluid
thermal conductivity

density of the fluid

electric conductivity
dimensionless electric potential
ubscripts

cold condition at wall

hot condition at wall

wall
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plasma and  optimise heat  extraction via
magnetohydrodynamic (MHD) effects (Yan, 2024).
Similarly, NaK alloys can be magnetically manipulated
to stabilise turbulent flows or induce forced convection
currents, enhancing thermal transfer efficiency
(Leonchuk et al., 2022).

These principles extend to advanced reactor designs
like Tokamaks. In such systems, natural convection in
liquid metal blankets (e.g. HCLL, DCLL, HPCB) avoids
the high pressure drops inherent in forced flow under
strong magnetic fields whilst simultaneously enabling
tritium breeding (Boccaccini, 2013). Magnetic fields
counteract the instabilities inherent in natural convection
systems, such as chaotic flow patterns caused by
temperature gradients. By generating Lorentz forces
which suppress fluid movement, they improve system
performance, material uniformity, and safety (Kumar &
Singh, 2013; Mozayyeni & Rahimi, 2012). This
stabilisation is critical in applications such as crystal
growth or metallic melt processing, where flow
symmetry and thermal uniformity are paramount
(Kakarantzas et al., 2014; Teimouri et al., 2015). Studies
(Sankar et al., 2011) have demonstrated that magnetic
field orientation (axial, radial, or transverse) plays a
decisive role in modulating flow dynamics between
coaxial cylinders. For example, transverse magnetic
fields are more effective than axial ones in influencing
the Nusselt number and thermal performance (Afrand,
2017), whereas the Hartmann number’s impact on heat
transfer can outweigh that of the Rayleigh number by a
factor of 4 (Wrobel et al., 2010). The interaction between
the annular geometry and fluid velocity plays a critical
role in vortex formation and recirculation zones, whilst
magnetic fields significantly influence flow stability (Ali
et al., 2023; Benhacine et al., 2022a; Mahfoud, 2022).

These interactions stabilise swirling flows, reduce
oscillations in thermocapillary convection, and suppress
vortex formation, as shown in studies of cylindrical and
annular containers (Dash & Singh, 2019; Wang et al.,
2015). The intersection of nanotechnology and MHD has

further expanded these applications. Magnetic nanofluids
and thermally efficient nanoparticles enhance heat
transfer, stabilise flows, and improve energy efficiency,
as demonstrated in studies by Benhacine et al. (2022b),
Selim et al. (2023) and Mahfoud (2023).

The induced magnetic field is critically important in
MHD, particularly under high magnetic Reynolds
number conditions, with applications in MHD power
generation, geophysics, oil purification, and glass
manufacturing. Experimental studies by Jha and Aina
(2018) have established that field intensity escalates with
the magnetic interaction parameter (M) and magnetic
Prandtl number (Pm) in microchannels, significantly
modifying velocity profiles and amplifying skin friction
in annular geometries. Conversely, Leela et al. (2022)
have observed diminished field strength with elevated M
and Pm when viscous and ohmic dissipation are
considered. Sankar et al. (2006) numerically confirmed
that increased radii ratios reduce the Hartmann number
whilst enhancing the Nusselt number, noting superior
performance of radial magnetic fields in large cavities.
Computational approaches predominantly employ the
Finite Element Method (FEM) and the Finite Difference
Method (FDM), though the Meshless Finite Difference
Method (MFDM) offers greater flexibility and efficiency
despite lower accuracy. To address simulation
complexity, artificial intelligence (AI) techniques,
including ANNs (Shoaib et al., 2021), are increasingly
utilised, revealing velocity suppression by M and
enhancement by  second-grade  fluid/Marangoni
parameters. Complementary work by Shilpa et al. (2023)
on annular convection has demonstrated that Lorentz
forces reduce velocity and field strength at higher values
of Pm and M, whilst mixed convection parameters
intensify the induced magnetic field.

Building on this foundation, our study advances
prior research by addressing two critical yet overlooked
aspects of MHD convection: wall electrical conductivity
and induced electric potential. Unlike analyses assuming
insulating boundaries, we systematically examine MHD
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convection in a vertical annular channel filled with an
electrically conducting fluid under a radial magnetic
field. Key parameters: magnetic field strength, annular
gap dimensions, aspect ratio, and wall conductivity are
analyzed for their coupled effects on heat transfer
(Nusselt number), flow structure, Lorentz forces, and
induced electric fields. These insights aim to refine
liquid-metal cooling systems in applications demanding
precise thermal management and operational safety, such
as advanced nuclear reactors.

2. FORMULATION OF THE MATHEMATICAL
MODEL

2.1 Model

This investigation focuses on steady-state, three-
dimensional laminar natural convection of liquid metals
within a vertical cylindrical annulus subjected to a
uniform radial magnetic field. The geometric
configuration comprises two concentric cylinders with
inner radius Zimer, outer radius rouwe, and height H,
defining an annular gap characterized by the
dimensionless parameter R= (Fouer — Finner ) Touwer. A radial
magnetic field B=Be,is imposed, generating distinct
boundary layers and accounting for induced magnetic
effects. The inner cylinder is maintained at a high
temperature 75, while the outer cylinder is cooled to 7.
(T.<T)), establishing a radial temperature gradient that
drives buoyancy-driven flow. Three electrical boundary
configurations are explored: fully insulated walls (EI),
conductive vertical inner/outer cylindrical walls (EC-V),
and conductive horizontal top/bottom surfaces (EC-H) to
evaluate their impact on magnetohydrodynamic (MHD)
interactions and thermal transport. Aspect ratios
(A=H/¥ outer) spanning 0.5-3 and annular gaps (R) of 0.5—
0.9 are analyzed to quantify their influence on flow
patterns and heat transfer.

The fluid is treated as incompressible and Newtonian,
with constant thermophysical properties except for
density variations in the buoyancy term (Boussinesq
approximation). Rigid no-slip conditions are enforced at
all walls. Joule heating, viscous dissipation, thermal
radiation, and Hall effects are neglected to isolate
primary MHD-convective coupling. The employed
approximations are validated for the present
configuration, where operating temperatures remain
below 100°C and the Hartmann number (Ha) is
constrained to Ha < 100. These thresholds align with
established regimes where viscous forces dominate
electromagnetic effects, ensuring model fidelity as
documented in prior MHD studies (Afrand, 2017,
Wrobel et al., 2010). The governing equations, mass
conservation, momentum (including Lorentz forces),
energy transport, and electric potential are formulated in
cylindrical coordinates to resolve coupled thermal and
electromagnetic phenomena. Figure 1 depicts the system
geometry and boundary conditions.

2.2. Mathematical Formulation
- Mass Conservation:

The incompressibility condition is expressed as:

L T RN

T AT

Fig. 1 Schematic and structured grid of the present
model

v.U=0 (1)
where U is the vector of velocity.

- The momentum equation:

p (Z—It] + (V. U)U) = —Vp + pv[V?U] + Forces (2)
and in presence of buoyancy force and magnetic field, we
have: Forces =pg + (j X B).

Here, P, p and v are respectively pressure, density and
kinematic viscosity. The Lorentz force fi=j X B arises
from the interaction between the current density j and
magnetic field B.

- Energy Equation:

Neglecting viscous and ohmic dissipation, the
temperature field 7'is governed by:

(U.V)T = a[V?*T] 3)
where a is the thermal diffusivity.
- Electric potential (Afrand, 2017)
V2p=V.(UxB)=U.(VxB)+B.(VxU) )]
0

In which B is the vector of magnetic field. Since the
constant magnetic field is considered in this study, the
term of U. (VX B) becomes zero.

The current density J and induced electric field E are
related by:

j= olE'+UxB], E'=-V¢ (5)

Table 1 Nondimensionalization Parameters

Dim Nondim Dim Nondim
Form Form Form Form
u’ u=(u"R)a p P = (p-R)/(p-0?)
v’ v=(v"R)/a T O =(T—-T)/(Th—Tc)
w' w = (W"R)/a [0) d=¢/(uB)
r' r=r'/R E’ E =(E""R)/(aB)
7' z=7'/R fi Fr=(ft ‘R)/(06-B?)
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where ¢ is electrical conductivity.

Non-dimensionalization is achieved via

parameters:

scaling

Substituting into in Egs. (1)-(5) yields:
- Continuity:

ou 10v ow
wtreta =0 (©)

- Radial momentum:

=—6—P+Pr(V2u—l—
ar

r2

Uu—+———— g

ar r 00 r v dz
2 0w

290

( ou  wou w? 6u)

) + RaPro + +Ha?.Fy, )
- Axial momentum:

v wov vy _ 9P 2 2
(u6r+r66+vaz)_ ar+Pr(Vv)++Ha.FLZ

(®)
- Azimuthal momentum:
ow wov ow uw 10P
R e A A T
Pr(VPw =5+ 55) + +Ha?. F 14 )

F, = (—%Z—j +v); Fo= (Z—j + w) are the axial and

azimuthal component of the Lorentz force. (F1,-0)
because jX B =0 has no radial component when B=Be,.

Energy conservation:

90 wae 0 _
uar+rae+vaZ—V® (10)
- Electric potential:

19 oD 1020 920 dv ow

() et an

Key dimensionless groups include:

Prandtl  number: Pr=v/a (momentum  Vvs.
diffusivity).

thermal

Rayleigh number: Ra = BgATR?3 /va (buoyancy vs.
viscous forces)

Hartmann number: Ha = BR \/% (Lorentz vs. viscous
forces).

Heat Transfer Quantification: Local and average
Nusselt numbers (Nu) quantify convective efficiency
along inner/outer walls (Kakarantzas et al., 2014):

Nu(9) = —ln(:—;) (rg—?)

(13)

T=Tinner; Touter

The azimuthally-averaged Nusselt numbers (Kakarantzas
etal., 2014):

1Y (2
Av — Nu = (;) [Z" Nu (8)de (14)

While the overall (i.e., axially and azimuthally
averaged) Nusselt numbers at the inner and outer walls
are calculated as follows:

Av — Nu = (ﬁ) SZ 7 Nu (8) dzdf (15)

- Boundary Conditions:

The system’s boundaries are defined by hydrodynamic,
thermal, and electromagnetic constraints as follows:

All Walls: No-slip condition (U=0) is enforced at all
solid surfaces. Summary of the boundary conditions
employed in the study (Table 2).

Table 2 Boundary conditions

Boundary Thermal Electromagnetic
Inner wall (r =rimer) | ® =1 (hot wall) Conductive
0 _ 3,
o or Ow ar
Insulated: Z—T =0
Outer wall (7 =roueer) | ® = 0 (cold wall) Conductive
0 _ 9o,

g ar Ow or
ad
Insulated: — =0
ar

Top wall (z=H)
Bottom wall (z = 0)

00/0z = 0 (thermally | 0®/0z =0
insulated) (no vertical current)

For electrically conductive wall, continuity of the
radial current at the fluid-wall interface is enforced:
o2 9w, fluid’s

0-; = Ow or ’

conductivity, oy is the wall conductivity, and ®@,, is the
wall potential. The conductance ratio ky =cw ew/c R links
wall properties (thickness e, conductivity cy) to fluid
and geometric parameters. When wall conductance
dominates (kw > 1), the boundary condition simplifies
to @, = constant. This ideal conductor approximation is
physically justified as dominant wall conductance short-
circuits radial currents, decoupling their behavior from
the fluid.

where gis  the electrical

3. NUMERICAL SOLUTION, GRID SIZES AND
VALIDATION

3.1 Numerical Solution

The governing equations are discretized using
a finite-volume method (FVM) on a staggered cylindrical
grid, ensuring robust prevention of pressure-velocity
decoupling. To resolve critical magnetohydrodynamic
(MHD) boundary layers, specifically the Hartmann
layers (thickness  scaling as ~1/Ha) and Roberts
layers (thickness — ~1/ VHa), anon-uniform  mesh
refinement is applied near boundaries. For spatial
discretization, second-order central differences are used
for diffusion terms, while the third-order QUICK
scheme minimizes numerical diffusion in advection
terms. Temporal integration follows a pseudo-transient
IMEX strategy: diffusion terms are treated implicitly via
the Crank-Nicolson method, and nonlinear advection
terms are integrated explicitly using a third-order Runge-
Kutta (RK3) scheme. Mass conservation is rigorously
enforced through the fractional-step method, with
pressure correction computed via an FFT-accelerated
Poisson solver (Boyd, 2000). The electric potential is
solved iteratively using the GMRES algorithm with ILU
preconditioning, and  electromagnetic = boundary
conditions at conducting walls are robustly enforced
through Nitsche’s method (Ben Salah et al., 2001).
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Fig. 2 Profiles of the local Nusselt number for
different grid resolutions (A =1, R= 0.9, Ra = 10°),
with H = 0 (top) and Ha = 80 (bottom)

3.2. Grid Independence

A comprehensive mesh sensitivity —analysis was
conducted for the most computationally demanding case
(A= 1,R=0.9) at Ha = 0. Three mesh resolutions were
compared: a coarse grid (35%110%40 nodes), an
intermediate grid (45%110%x50), and a finer grid
(55%110%60). Key validation metrics included the local
Nusselt number (Nu)on the inner wall. Results
demonstrated <3% deviation between the coarse and fine
grids, validating the computational efficiency of the
coarser mesh. To optimize accuracy, geometric
stretching (5-10% growth) was applied near boundaries,
while the azimuthal node count (Ny = 110) was fixed to
preserve three-dimensional flow effects.

For simulations involving a magnetic field (Ha > 0),
additional radial grid refinement is applied to properly
resolve the Hartmann and Roberts boundary layers. The
final mesh configurations, selected based on the
Hartmann number (Ha), are scalable: a mesh with 45
radial, 110 azimuthal and 50 axial cells (45R x 110 x
50A) was used for Ha < 5. For Ha > 20, a finer mesh
(65Rx110%65A) was adopted, featuring increased radial
and axial resolution to accurately capture the effects of
Lorentz forces. A comparison grid for Ha=80 is shown in
Fig. 2b.

3.3 Validation

The numerical model was thoroughly validated
against both experimental data and high-fidelity
numerical benchmarks, confirming its accuracy under
diverse thermal and geometric configurations. The first
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Fig. 3 Comparison of average Nusselt number
results with experimental data of Wrobel et al. (2010)

validation utilized experimental results from Wrobel et
al. (2010), which involved a high-Prandtl-number fluid
(Pr = 61), a diameter ratio of 2.7, and an aspect ratio of
5.41. The model demonstrated excellent agreement, with
deviations in the average Nusselt number remaining
below 5%, as shown in Fig. 3.

A second validation compared our results against the
DNS study of Kakarantzas et al. (2014), which analyzed
magnetohydrodynamic (MHD) flow between vertically
oriented coaxial cylinders under internal volumetric
heating. Their configuration featured a Hartmann number
(Ha = 100), radius ratio (R = 2Ri), Rayleigh number (Ra
= 10%), radially applied magnetics stabilization, thermally
insulated end caps, and isothermal cylindrical walls (Fig.
4). Our model reproduced the flow structures and heat
transfer behavior with a relative error of 5%, confirming
its reliability for magnetic field-influenced natural
convection simulations. Figure 5 further validates this
agreement by comparing axial velocity profiles versus
radius at 6=0° and 0=90°, evaluated at three vertical
positions.

4. RESULTS AND DISCUSSION

In magnetohydrodynamics, the behavior of the
system 1is dictated by the interaction of an electrically
conducting fluid (such as liquid) with an externally
imposed magnetic field. As the fluid moves through the
magnetic field, electric currents are induced within the
fluid, giving rise to a Lorentz force that acts
perpendicular to both the flow direction and the magnetic
field lines. This force significantly modifies the fluid
dynamics, resulting in complex distributions of velocity
and current throughout the domain.

To establish appropriate simulation parameters, a
preliminary comparison was conducted between
Rayleigh numbers Ra=10* and Ra=10°. The results
showed that the higher Rayleigh number (Ra=10°) leads
to stronger convective effects, thereby offering better
insight into coupled thermal and hydrodynamic
interactions. Consequently, all subsequent simulations
were performed at Ra=10°. A second parametric study
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Fig. 4 Comparison of axial velocity, our result (top)
with Kakarantzas et al. (2014) at bottom

examined the influence of different Prandtl numbers
associated with various liquid metals: potassium (Pr=0.072),
lithium (Pr=0.055), and a sodium-potassium eutectic
alloy (Pr=0.037).

To assess the effect of boundary electrical properties
on MHD behavior and heat transfer performance, three
distinct electrical boundary conditions were investigated.
In the first configuration Electrically Insulated Walls
(EI), all boundaries, including the inner and outer
cylindrical surfaces and the top and bottom horizontal
walls, were assumed to be electrically insulating, thereby
inhibiting any current exchange with the surroundings.
The second configuration Electrically Conductive
Vertical Walls (EC-V) allowed electrical conduction
through the vertical (cylindrical) walls, enabling radial
current flow, while the horizontal boundaries remained
insulated. In the third configuration Electrically
Conductive Horizontal Walls (EC-H) only the top and
bottom surfaces were electrically conductive, allowing
vertical current penetration, whereas the cylindrical walls
were kept insulated. These configurations provide a
framework for understanding how wall conductivity
influences current distribution, fluid motion, and thermal
transport within the annular cavity.

To comprehensively characterize system behavior
under varying geometrical and electromagnetic
conditions, simulations were performed for a range of
aspect ratios A=0.5, 1, 2, and 3, as well as dimensionless
gap widths R=0.5, 0.6, 0.7, 0.8, 0.9. This systematic
exploration enables detailed insights into the combined

12 T T T T

Ra=10*

M~ o — =Ra=10°

—a— potassium (Pr=0,072)
—e— lithium (Pr=0,055
—a— NaK2 (Pr=0,037)

Average Nu
o ~

o
1

4 meond . e z

® o s 100

T T T T
150 4 200 250 300 350

Fig. 5 Influence of (a) Rayleigh number Ra and (b)
Prandtl and Hartmann numbers on the average
Nusselt number

effects of geometry and boundary conditions on MHD
flow and heat transfer performance.

4.1 Influence of Key Parameters on Heat Transfer

This section investigates the influence of five key
dimensionless parameters, namely, the Prandtl number
(Pr), Rayleigh number (Ra), Hartmann number (Ha),
aspect ratio (A), and annular gap (R) on convective heat
transfer in natural convection flows within annular
geometries. The average Nusselt number (Nu) is used as
the primary metric to quantify heat transfer performance.
Among these parameters, the Hartmann number,
representing the ratio of electromagnetic to viscous
forces, plays a crucial role in modulating the flow
structure and heat transport behavior.

An initial comparison between Ra = 10* and Ra =
10° shows that the latter generates much stronger
convective currents, making it the more suitable choice
for analyzing coupled thermal and hydrodynamic
interactions. Therefore, all subsequent simulations are
conducted at Ra = 10° (see Fig. 5a). A second analysis
examines three Prandtl numbers (Pr = 0.072, 0.055, and
0.037) corresponding to liquid potassium, lithium, and a
sodium-potassium eutectic alloy, respectively. Figure 5b
illustrates the combined effects of Prandtl and Hartmann
numbers on the average Nusselt number in an annular
configuration with a gap ratio R = 0.9. As shown, the
average Nusselt number consistently increases with the
Prandtl number across all Hartmann numbers. This
behavior is linked to the greater influence of viscous
forces and the reduced thermal diffusivity at higher
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Prandtl numbers. As Pr increases, the momentum
boundary layer thickens while the thermal boundary
layer becomes thinner. This thinner thermal boundary
layer intensifies the temperature gradient near the heated
surface, thereby enhancing heat transfer and yielding a
higher Nusselt number.

Furthermore, although the effect of Hartmann
number on Nu is qualitatively similar across different
Prandtl numbers, it is evident that the sensitivity of Nu to
changes in Prandtl number diminishes as Ha increases.
This behavior can be explained by the growing influence
of the Lorentz force at higher Hartmann numbers, which
suppresses convective motion and thus reduces the role
of boundary layer dynamics. As the magnetic field
strengthens, convective heat transfer is increasingly
dampened, and the system gradually transitions toward
conduction-dominated heat transfer. In this conduction-
dominated regime, the average Nusselt number along the
inner cylinder tends to approach the asymptotic value
predicted by the purely conductive solution, given by:
Nu-cond=In(r,-1;)/riln(ro/r;) (Afrand, 2017) For instance,
when R=0.9, the theoretical conductive Nusselt number
is approximately Nu-cond=4.04, as determined from the
equation above. This asymptotic behavior is clearly
evident in Fig. 5b, where the Nusselt number approaches
the conduction limit at high Hartmann numbers. In the
case of R=0.9, pure conduction is practically achieved at
>300, indicating that a stronger magnetic field is required
to suppress convection entirely in thick annuli. Among
these, potassium (Pr=0.072) demonstrated the most
vigorous convective behavior, justifying its selection as
the working fluid. Hence, all simulations were conducted
using Ra=10° and Pr=0.072.

Figure 6 illustrates the variation of the local Nusselt
number along the inner wall of an annular domain for
three different aspect ratios: A=0.5, A=1, and A=2, at a
fixed radii ratio R=0.9, under two magnetic field
conditions: Ha=0 (no magnetic field) and Ha=40
(moderate magnetic field). In the absence of a magnetic
field (Ha=0), the local Nusselt number distribution is
stratified, indicating the presence of strong convective
activity driven purely by buoyancy forces. This
stratification becomes more pronounced for intermediate
aspect ratios (particularly A=1), where the natural
convection patterns are well-developed. When the
magnetic field is applied (Ha=40), the stratified pattern is
significantly suppressed, and the local Nusselt number
distribution becomes not-uniform along the angular
direction. This smoothing effect is a direct result of the
Lorentz force, which dampens the velocity fluctuations
and inhibits the development of convective cells, leading
to a transition toward more conduction-dominated heat
transfer. Moreover, the aspect ratio influences the
intensity and distribution of heat transfer. For lower
aspect ratios (A=0), the flow is more confined vertically,
resulting in lower overall Nu values. For larger aspect
ratios (A=2), the vertical space allows for the formation
of stronger convective rolls under Ha=40, but these are
also strongly suppressed under H=40, demonstrating the
destabilizing effect of the magnetic field across all
geometries.
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Fig. 8 Polar plot of Nusselt number distribution along
the inner wall for Ha=0 and Ha=40

Figure 7 presents a three-dimensional plot of the local
Nusselt number on both the inner and outer walls of the
annular cavity for A =1 and R = 0.9, under two magnetic
field conditions (Ha = 0 and Ha = 40). When Ha = 0, the
spatial distribution of the Nusselt number is smoother
and more symmetric. The inner wall generally exhibits
higher heat transfer intensity than the outer wall, which is
consistent with the imposed thermal boundary
conditions. In contrast, when Ha = 40, the heat transfer
distribution becomes more heterogeneous on both walls,
with localized peaks corresponding to regions where
convective cells interact with the boundaries. This
behavior highlights the suppressive effect of the
magnetic field on convective motion. This trend is
further confirmed by Fig. 8, which shows a polar plot of
the local Nusselt number distribution along the inner wall
for A=1 and R = 0.9 under Ha = 0 and Ha = 40. Overall,
the results clearly demonstrate that the application of a
magnetic field leads to less uniform, more conduction-
like heat transfer, and that the inner and outer walls
respond differently due to their distinct roles in the
development of thermal boundary layers.

Figure 9 illustrates the dependence of the average
Nusselt number on the annular gap ratio (R), aspect ratio
(A), and Hartmann number (Ha). Subfigures (a), (b), and
(c) present two-dimensional trends: (a) average Nusselt
number (Av-Nu) versus R at A=1; (b) Av-Nu versus A
for a fixed R=0.9; and (c) Av-Nu versus A at two values
of R=0.7and R=0.9 all evaluated under increasing
Hartmann numbers. Subfigure (d) provides a three-
dimensional representation that captures the combined
influence of R, A, and Ha on convective heat transfer.
From Fig.9(a) and 9(c), it is observed that the average
Nusselt number increases with the annular gap ratio R,
while it decreases with increasing Ha. In Fig. 9(b), two
distinct regimes are identified: for A<I, increasing the
annulus height enhances convective flow, leading to

higher Nusselt numbers, in agreement with findings
reported in (Kuehn & Goldstein, 1976), conversely, for
A>1, the Nusselt number decreases as heat transfer
becomes concentrated near the base of the heated wall,
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(c) Av-Nu vs. A (R=0.7and 0.9) for Ha=0 and Ha=80.
(d) 3D Av-Nu vs. Ha and R (A=1)
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consistent with observations by Afrand et al. (2017). The
3D plots in Fig. 9(d) further demonstrate that increasing
R enhances heat transfer across all Hartmann numbers,
primarily due to curvature-induced increases in fluid
velocity and the formation of thinner thermal boundary
layers (Prasad & Kulacki, 1984). At higher Hartmann
numbers, the Lorentz force strongly suppresses flow
instabilities and turbulent fluctuations, resulting in
reduced velocity gradients and a shift toward conduction-
dominated heat transfer, as evidenced by the lower
Nusselt numbers. These findings emphasize the intricate
interplay between the geometric parameters (R, A) and
the magnetic field strength (Ha) in controlling convective
heat transfer within annular domains.

4.2 Analysis of Temperature, Lorentz Force, Induced
Fields

The flow within an annular gap can be categorized
into three distinct regions: the core region, the Hartmann
layer, and the Roberts layer. The minimum theoretical
thicknesses of the Hartmann and Roberts layers are
proportional to Ha™' and Ha 2, respectively. Within the
Hartmann layer adjacent to walls normal to the applied
magnetic field, viscous forces compete with magnetic
forces. Since all walls are electrically insulating, electric
currents remain confined within the fluid, generating a
Lorentz force. As the Lorentz force intensifies, the
buoyancy-driven layer initially governed by a balance
between buoyancy and viscous forces is progressively
supplanted by the Hartmann layer, where
electromagnetic and viscous forces equilibrate (Mahfoud,
2023). Under a radial magnetic field, the Lorentz force
accelerates the fluild and  suppresses  flow
inhomogeneities, eliminating convection once the field
strength exceeds a critical threshold.

Figure 10 demonstrates the influence of a magnetic
field on temperature distributions, visualised on the
vertical median (x-y) plane and the isosurface ® =
0.8, and azimuthal velocity profiles at vertical positions z
=0.1land z = 0.9, for parameters R = 0.9 and A = 1. In the
absence of a magnetic field (Ha = 0), isotherms exhibit
axisymmetric behaviour. However, at a Hartmann
number of 40, distinct thermal stratification emerges in
the y-plane, whilst the x-plane remains unaffected. This
asymmetry stems from the amplified Lorentz force in the
y-plane, which suppresses fluid motion and disrupts
convective heat transfer. A striking enhancement in
tangential velocity occurs at the cylinder’s base, where w
= 13.2 for Ha = 80, compared with w = 0.03 for Ha = 0.
These magnetic layers fundamentally alter velocity and
thermal profiles, marking a shift from buoyancy-
dominated convection to MHD-governed dynamics.

Figure 11 illustrates the influence of the magnetic
field on isotherms, Lorentz force, and induced electric
fields in vertical (x-y plane) and horizontal (z-plane)
cross-sections for an annular gap configuration (R = 0.9,
A = 1) under a strong magnetic field (Ha = 80). The left
panel highlights the thermal patterns, showing a
transition of the isotherms from axisymmetric
distributions at Ha = 0 (as seen in Fig. 10) to asymmetric
stratification in the y-plane at Ha = 80. This anisotropy
results from the Lorentz force suppressing convective

i
@AY

(a)Ha=0 (c)Ha=0, w at z=0.1 and
z=0.9

(b) Ha=80 (d)Ha=80,w at z=0.1 and
z2=0.9
Fig. 10 Magnetic field effects on (a-b) temperature
plotted on the vertical median (x-y) plane, and

isosurface ®=0.8; (c-d) azimuthal velocity contours

Fig. 11 Magnetic effect on isotherms, Lorentz force
and induced electric field in the (left) vertical median
planes and (right) horizontal median plane

motion in the y-plane, whilst the x-plane remains largely
unaffected thermally. The Lorentz force distribution
(center panel) confirms its dominance in the y-plane,
where it peaks at Fnax = 25, contrasting with weaker
effects in the x-plane. Conversely, the x-plane exhibits
significant induced electric potential (Emax = 50), a result
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of the magnetic field’s y-axis alignment. The horizontal
median plane (bottom panel) reveals vertical electric
field contours, with maxima localised in the x-plane and
minima in the y-plane. This asymmetry arises from the
orientation of B: In the y-plane, it is perpendicular to the
vorticity vector (V x U), which suppresses the induced
electric potential as described by Eq. (4). In contrast, the
x-plane alignment permits significant U X B motional
induction, resulting in pronounced -electric potential
peaks. Equation 5 clarifies the competition between
induced (E’) and motional (U x B) currents. In regions
where these components cancel each other, the net
current density becomes negligible (j = 0). Elsewhere, the
dominance of one term over the other determines the
Lorentz force direction, which always opposes the main
flow. These trends, consistent across annular gaps,
underscore the magnetic field’s role in reshaping thermal
and momentum transport. The suppression of convection
in the y-plane and enhanced electric effects in the x-plane
highlight the transition from buoyancy-driven to MHD
dominance at high Ha.

Figure 12 presents a comparative analysis of the
Lorentz force and induced electric field distributions in
the horizontal midplane (z = 0.5) for various annular gap
ratios (R =10.7, 0.8, 0.9) and Hartmann numbers (Ha = 20
and 60). The results reveal the presence of two distinct
electromagnetic boundary layers. Hartmann layers,
located adjacent to walls perpendicular to the magnetic
field, exhibit strong Lorentz forces due to the direct
interaction between the magnetic field and flow vorticity
(V x U). When R = 0.7 and Ha = 60, the Lorentz force
reaches a maximum of approximately Fm.x = 14. In
contrast, Roberts’s layers are characterised by dominant
induced electric fields, peaking at Em.x = 42 for the same
parameters. These layers arise from the alignment of the
vorticity vector with the magnetic field, which enhances
motional induction (U % B) and leads to steep velocity
gradients.

The radial orientation of the magnetic field introduces
anisotropy in the flow. In the y-plane, Lorentz forces
suppress the flow, demonstrating strong electromagnetic
damping. Conversely, in the x-plane, the radial alignment
of velocity vectors minimises U x B, resulting in
negligible Lorentz forces but significant enhancement of
the induced electric fields. Increasing the Hartmann
number intensifies both electromagnetic components,
sharpening the boundary layer contrasts. For example,
doubling Ha from 20 to 60 increases Fnax by
approximately 50% for R = 0.7. Meanwhile, increasing
the annular gap ratio R promotes higher fluid velocities
due to reduced geometric confinement, which enhances
Lorentz forces (e.g. Fmax = 14.01 at R = 0.7) but
paradoxically diminishes local electric fields. This
reduction is attributed to partial cancellation of the
induced electric field E’ by the motional term U x B.
Despite localised reductions, the overall electric field
magnitude tends to increase with R. Furthermore, the
emergence of regions where j = 0 demonstrates MHD’s
intrinsic capability to balance induced and motional
effects, a critical mechanism for stabilising turbulent or
unstable flows.
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Fig. 12 Contour plots of Lorentz force and induced
electric field in the horizontal mi-plane (z = 0.5) for
Ha =20 (left) and Ha = 60 (right), with 4 =1

Figure 13 explores the interplay between electrically
conductive walls and magnetic effects on heat transfer,
quantified through local and average Nusselt numbers
along the inner wall for an annular gap R = 0.9 and A =
1. For Ha = 0, natural convection dominates, yielding a
peak local Nu of 10.85 and an Av-Nu of 8.38. For Ha
=60, insulating walls (EI) exhibit heightened localised
heat transfer (Numax = 11.34) but reduced bulk
convection (Av-Nu = 6.96), reflecting Lorentz-force
suppression. EC-V further diminishes both metrics (local
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(a) Ha=0, (b) Ha=60, (EI)
Av-Nu=8.38 Av-Nu=6.96
p—— N—p—

i

(d) Ha=60 EC-H
Av-Nu=6.86

(c) Ha=60, (EC-V)
Av-Nu=6.72

Fig. 13 Local Nusselt for Ha =0 and Ha = 60

Numax = 10.44, Av-Nu = 6.72) due to radial current
leakage amplifying electromagnetic dissipation, whilst
EC-H partially mitigates damping (Av-Nu = 6.86, local
Numax = 10.65) by preserving inertial effects. This
asymmetry underscores that vertical conductive walls
intensify Lorentz losses, whereas horizontal ones
stabilise local flow.

Figure14 shows that for Ha = 80 and R = 0.7, the EC-
H configurations outperform both EI and EC-V at lower
heights (z < 0.2) due to the dominance of inertial effects
in wider gaps. Across R = 0.5-0.87, EC-H enhances heat
transfer by eliminating Hartmann layers and sustaining
inertial flow, but beyond R > 0.87, geometric constraints
dominate, favouring EI configurations which restrict
current leakage. A critical transition at R = 0.87 suggests
that EC-H optimises thermal performance in moderate
gaps, whilst EI is more effective in narrow geometries.
Conductive walls reshape current pathways, weakening
viscous boundary layers but introducing trade-offs: (EC-
V) consistently underperforms due to disrupted
circulation, while (EC-H) optimizes heat transfer in by
harmonizing inertial and electromagnetic effects.

4.3. Effects of Electrically Conductive Boundaries on
Induced Fields and Lorentz Forces

Figures 15-16 explore the influence of wall electrical
conductivity on the distributions of induced electric
fields and Lorentz forces within a vertical cylindrical
annulus subjected to a radial magnetic field (Ha = 80).
The configuration with electrically insulated walls (EI)
shows strong confinement of current within the fluid,
resulting in a maximum induced electric field of 75.1 in
the x-plane and a reduced value of 50.82 in the y-plane
due to asymmetric current circulation. When the top and
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bottom walls are made conductive (EC-H), slight current
leakage reduces the x-plane field to 73.1, while
it maintains moderate strength in the y-plane. In contrast,
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Fig. 15 Induced electric field contours (median/horizontal planes) when Ha=80

the configuration with conductive vertical walls (EC-V)
significantly alters the current pathways: short- circuiting
through the radial boundaries drastically reduces the y-
plane field to 22.92, demonstrating the dominant role of
vertical conductivity in dissipating current.

The Lorentz force distribution exhibits strong
directional ~asymmetry, with consistently higher
magnitudes in the y-plane due to the effective coupling
between the radial magnetic field and azimuthal currents.
In the EI case, the peak Lorentz force reaches 20.18 in
the y-plane versus 17.72 in the x-plane. The EC-V
configuration, despite its lower bulk electric field, yields
the highest localized Lorentz force (20.71) near the
conductive walls in the y-plane, while the x-plane force
drops to 16.55 due to the suppression of transverse
currents. The EC-H configuration produces intermediate
force levels (e.g., 16.55 in the x-plane), reflecting partial
current diversion through horizontal walls.

Consequently, conductive walls act as current sinks,
reducing the overall electric field within the fluid but
intensifying localized Lorentz forces near the boundaries.
At high Hartmann number (Ha = 80), this behavior
results in the formation of thin Hartmann layers along

conductive surfaces, where the balance between viscous
and electromagnetic forces becomes dominant. The
annular geometry further accentuates directional effects
by allowing optimal coupling of the radial magnetic field
with azimuthal currents in the y-plane, explaining the
consistently stronger forces observed in this direction.

Contour plots in the horizontal mid-plane (z = 0.5)
further reveal spatial reorganization under different
conductivity scenarios. The EC-V configuration disrupts
the classical Roberts layer typically present near the outer
wall, highlighting how vertical wall conductivity
modifies canonical MHD flow structures. While EI and
EC-H configurations show nearly axisymmetric force
distributions, EC-V  produces highly asymmetric,
localized forces concentrated near the conductive vertical
boundaries, which aligns with the observed peak of 20.71
in the y-plane.

5. CONCLUSION
A three-dimensional numerical investigation was

performed to examine natural convection of liquid
metal in a vertical cylindrical annulus exposed to a radial
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Fig.16. Lorentz force contours (median/horizontal planes) when R=0.9, Ha=80 and A=1.

magnetic field. The focus was on understanding how
wall electrical conductivity, Lorentz forces, and
geometric factors affect flow dynamics and heat transfer
behavior. Key findings include:

e Increasing the Rayleigh number from Ra=10* to Ra .
=10° significantly strengthens convective currents.
The higher Rayleigh number provides a more realistic
representation of the coupled thermal and fluid
dynamics in the system.

e (EC-H) yields the highest average Nusselt number
(6.86 at R = 0.9, Ha = 60), with an increase of 1.4%
compared to EI and 2.1% compared to (EC-V). Gains
reach up to approximately 10% for R < 0.87, while EI
outperforms (EC-H) for R > 0.87. (EC-V)
consistently exhibits lower performance, with
reductions of 3—5% compared to (EI).

e Increasing the Hartmann number (Ha) enhances the
Lorentz force, which suppresses convective motion.
At high-Ha, the heat transfer becomes nearly
conduction-dominated, especially in thick annuli.

e For A<, heat transfer improves due to enhanced
convection. For A>1, thermal stratification suppresses
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convection, leading to a monotonic decrease in
Nusselt number. Increasing the annular gap R
enhances heat transfer by allowing more fluid motion
and space for convection.

The magnetic field generates Hartmann layers on
walls perpendicular to its direction and Roberts’s
layers on parallel walls. These boundary layers
disrupt the symmetry of the natural convection flow.

The EC-V configuration is most effective for
intermediate radius ratios (R~0.5-0.87) under strong
magnetic fields, as it reduces Lorentz damping and
supports fluid momentum.

e (EI) case is more effective at larger gaps
(R>0.87), limiting current leakage and
maintaining strong electromagnetic interactions
in the fluid bulk.

e Itis recommended that future studies investigate
the influence of wall thickness on induced
current distributions, particularly in systems
with conductive boundaries.
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