Bunker, R. S. (2007). Gas Turbine Heat Transfer: Ten Remaining Hot Gas Path Challenges.
Journal of Turbomachinery, 129(2), 193–201.
https://doi.org/10.1115/1.2464142
Cheng, X., Li, Z. R., Wan, H. N., Ji, W. T., He, Y. L., & Tao, W. Q. (2023). Effect of mass flow ratios on the conjugate heat transfer of a metal turbine vane at medium temperature.
International Journal of Heat and Mass Transfer,
209, 124096.
https://doi.org/10.1016/j.ijheatmasstransfer.2023.124096
Cho, H. H., & Rhee, D. H. (2001). Local heat/mass transfer measurement on the effusion plate in impingement/effusion cooling systems.
J. Turbomach.,
123(3), 601-608.
https://doi.org/10.1115/1.1344904
El-Jummah, A. M., Nazari, A., Andrews, G. E., & Staggs, J. E. (2017, June). Impingement/Effusion Cooling Wall Heat Transfer: Reduced Number of Impingement Jet Holes Relative to the Effusion Holes. In
Turbo Expo: Power for Land,
Sea, and Air (Vol. 50893, p. V05CT17A005). American Society of Mechanical Engineers.
https://doi.org/10.1115/GT2017-63494
Kalghatgi, P., & Acharya, S. (2015). Improved film cooling effectiveness with a round film cooling hole embedded in a contoured crater.
Journal of Turbomachinery,
137(10), 101006.
https://doi.org/10.1115/1.4030395
Li, F., Wang, H., Liu, Z., Feng, Z., & Shi, Y. (2022). Comparisons of blade tip phantom cooling effectiveness for two tip structures with three tip clearances.
Applied Thermal Engineering,
202, 117868.
https://doi.org/10.1016/j.applthermaleng.2021.117868
Li, W., Li, X., Ren, J., & Jiang, H. (2017). Large eddy simulation of compound angle hole film cooling with hole length-to-diameter ratio and internal crossflow orientation effects. International Journal of Thermal Sciences, 121, 410-423.
https://doi.org/10.1016/j.ijthermalsci.2017.08.001
Liu, X., Zhang, C., Song, L., & Li, J. (2021). Influence of Biot number and geometric parameters on the overall cooling effectiveness of double wall structure with pins.
Applied Thermal Engineering,
198, 117439.
https://doi.org/10.1016/j.applthermaleng.2021.117439
Liu, Y., Rao, Y., & Yang, L. (2020). Numerical simulations of a double-wall cooling with internal jet impingement and external hexagonal arrangement of film cooling holes.
International Journal of Thermal Sciences,
153, 106337.
https://doi.org/10.1016/j.ijthermalsci.2020.106337
Liu, Y., Rao, Y., Yang, L., Xu, Y., & Terzis, A. (2021). Flow and heat transfer characteristics of double-wall cooling with multi-row short film cooling hole arrangements.
International Journal of Thermal Sciences,
165, 106878.
https://doi.org/10.1016/j.ijthermalsci.2021.106878
Liu, Z., Li, F., Zhang, Z., Feng, Z., & Simon, T. W. (2021). Conjugate heat transfer predictions on combined impingement and film cooling of a blade leading edge model.
Heat Transfer Engineering,
42(16), 1363-1380.
https://doi.org/10.1080/01457632.2020.1794625
Luan, Y., Rao, Y., & Yan, H. (2023). Experimental and numerical study of swirl impingement cooling for turbine blade leading edge with internal ridged wall and film extraction holes.
International Journal of Heat and Mass Transfer,
201, 123633.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.123633
Luo, L., Wang, C., Wang, L., Sunden, B. A., & Wang, S. (2016). A numerical investigation of dimple effects on internal heat transfer enhancement of a double wall cooling structure with jet impingement.
International Journal of Numerical Methods for Heat & Fluid Flow,
26(7), 2175-2197.
http://dx.doi.org/10.1108/HFF-02-2015-0081
Nathan, M. L., Dyson, T. E., Bogard, D. G., & Bradshaw, S. D. (2014). Adiabatic and overall effectiveness for the showerhead film cooling of a turbine vane.
Journal of Turbomachinery,
136(3), 031005.
https://doi.org/10.1115/1.4024680
Nourin, F. N., & Amano, R. S. (2021). Review of gas turbine internal cooling improvement technology.
Journal of Energy Resources Technology,
143(8), 080801.
https://doi.org/10.1115/1.4048865
Ravelli, S., Dobrowolski, L., & Bogard, D. G. (2010, October). Evaluating the effects of internal impingement cooling on a film cooled turbine blade leading edge. In
Turbo Expo: Power for Land,
Sea, and Air (Vol. 43994, pp. 1655-1665), Glasgow, UK.
https://doi.org/10.1115/GT2010-23002
Seok, W., Heo, Y. M., & Rhee, S. H. (2024). Performance enhancement of a vortex ring thruster by adopting the Coanda effect. Journal of Marine Science and Technology, 29(3), 683-695.
https://doi.org/10.1007/s00773-024-01014-2
Unnikrishnan, U., & Yang, V. (2022). A review of cooling technologies for high temperature rotating components in gas turbine.
Propulsion and Power Research,
11(3), 293-310.
https://doi.org/10.1016/j.jppr.2022.07.001
Yang, L., Kan, R., Ren, J., & Jiang, H. (2013, June). Effect of film cooling arrangement on impingement heat transfer on turbine blade leading edge. In
Turbo Expo: Power for Land, Sea, and Air (Vol. 55140, p. V03AT12A037). American Society of Mechanical Engineers.
https://doi.org/10.1115/GT2013-95261
Yang, W., Pu, J., & Wang, J. (2016). The combined effects of an upstream ramp and swirling coolant flow on film cooling characteristics.
Journal of Turbomachinery,
138(11), 111008.
https://doi.org/10.1115/1.4033292
Zhang, J., Zheng, Q., Xu, J., Yue, G., & Jiang, Y. (2023). Conjugate heat transfer and flow analysis on double-wall cooling with impingement induced swirling and film cooling.
Applied Thermal Engineering,
223, 120014.
https://doi.org/10.1016/j.applthermaleng.2023.120014
Zhang, R., Luo, C., Zhou, L., Li, L., Zhang, H., & Du, X. (2022). Impingement/film cooling of C3X vane with double-wall cooling structure using air/mist mixture.
International Journal of Heat and Mass Transfer,
188, 122594.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122594