Altomare, C., Crespo, A. J. C., Domínguez, J. M., Gómez-Gesteira, M., Suzuki, T., & Verwaest, T. (2015). Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures.
Coastal Engineering, 96, 1-12.
https://doi.org/10.1016/j.coastaleng.2014.11.001
Antuono, M., Colagrossi, A., Marrone, S., & Molteni, D. (2010). Free-surface flows solved by means of SPH schemes with numerical diffusive terms.
Computer Physics Communications,
181(3), 532–549.
https://doi.org/10.1016/j.cpc.2009.11.002
Belytschko, T., Liu, W., Moran, B., & Elkhodary, K. (2014). Nonlinear finite elements for continua and structures (2nd ed.). John Wiley & Sons.
Brizzolara, S., Savio, L., Viviani, M., Chen, Y., Temarel, P., Couty, N., Hoflack, S., Diebold, L., Moirod, N., & Souto Iglesias, A. (2009). Comparison of experimental and numerical sloshing loads in partially filled tanks. Analysis and Design of Marine Structures, 13–26.
Campbell, I. M. C., & Weynberg, P. A. (1980). Measurement of parameters affecting slamming (Rapport technique No. 440). Wolfson Unit for Marine Technology, Université de Southampton
Chang, K.-A., Hsu, T.-J., & Liu, P. L.-F. (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves.
Coastal Engineering, 44, 13–36.
https://doi.org/10.1016/S0378-3839(01)00044-7
Chang, K.-A., Hsu, T.-J., & Liu, P. L.-F. (2005). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part II: Cnoidal waves.
Coastal Engineering,
52(3), 257–283.
https://doi.org/10.1016/j.coastaleng.2004.11.006
Chen, J. X., & Da Vitoria Lobo, N. (1995). Toward interactive-rate simulation of fluids with moving obstacles using Navier-Stokes equations.
Graphical Models and Image Processing,
57(2), 107–116.
https://doi.org/10.1006/gmip.1995.1012
Crespo, A. J. C., Dominguez, J. M., Barreiro, A., Gómez-Gesteira, M., & Rogers, B. D. (2011). GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods.
PLoS ONE, 6(6).
https://doi.org/10.1371/journal.pone.0020685
Crespo, A. J. C., Dominguez, J. M., Rogers, B. D., Gómez-Gesteira, M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A., & García-Feal, O. (2015). DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH).
Computer Physics Communications,
187, 204–216.
https://doi.org/10.1016/j.cpc.2014.10.004
Crespo, A. J. C., Gómez-Gesteira, M., & Dalrymple, R. A. (2008). Modeling dam break behavior over a wet bed by a SPH technique.
Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(6), 313–320.
https://doi.org/10.1061/asce0733-950x2008134:6313
Dominguez, J. M., Fourtakas, G., Altomare, C., Canelas, R. B., Tafuni, A., García-Feal, O., Martínez-Estévez, I., Mokos, A., Vacondio, R., Crespo, A. J. C., Rogers, B. D., Stansby, P. K., & Gómez-Gesteira, M. (2022). DualSPHysics: from fluid dynamics to multiphysics problems.
Computational Particle Mechanics,
9(5), 867–895.
https://doi.org/10.1007/s40571-021-00404-2
Faltinsen, O. M., Kjerland, O. K., Tørum, N. A., & Nguyen, T. V. (1977). Water impact loads and dynamic response of horizontal circular cylinders in offshore structures.
Proceedings of the Offshore Technology Conference.
https://doi.org/10.4043/2741-MS
Fang, J., Parriaux, A., Rentschler, M., & Ancey, C. (2009). Improved SPH methods for simulating free surface flows of viscous fluids.
Applied Numerical Mathematics,
59(2), 251–271.
https://doi.org/10.1016/j.apnum.2008.02.003
Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars.
Monthly Notices of the Royal Astronomical Society,
181(3), 375–389.
https://doi.org/10.1093/mnras/181.3.375
Gomez-Gesteira, M., Dalrymple, R. A., & Asce, F. (2004). Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure.
Journal of Waterway, Port, Coastal and Ocean Engineering, 130(2), 63–69.
https://doi.org/10.1061/asce0733-950x2004130:263
Greenhow, M., & Lin, W.-M. (1983). Nonlinear free surface effects: Experiments and theory. MIT Department of Ocean Engineering Report No. 83-19.
Lal, A., & Elangovan, M. (2008). CFD Simulation and Validation of Flap Type Wave-Maker. International Journal of Engineering, Mathematical and Physical Sciences, 2, 10, 708–7014.
Landau, L. D., & Lifshitz, E. M. (2014). Fluid mechanics (Vol. 6). Elsevier Science.
Losasso, F., Talton, J. O., Kwatra, N., & Fedkiw, R. (2008). Two-way coupled SPH and particle level set fluid simulation.
IEEE Transactions on Visualization and Computer Graphics,
14(4), 797–804.
https://doi.org/10.1109/tvcg.2008.37
Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis.
The Astronomical Journal, 82, 1013–1024.
https://doi.org/10.1086/112164
Mahmoodi, M., Shademani, R., & Gorji Bandpy, M. (2018). Viscous Models Comparison in Water Impact of Twin 2D Falling Wedges Simulation by Different Numerical Solvers.
International Journal of Maritime Technology, 9(1), 1–13.
https://doi.org/10.29252/ijmt.9.1
Müller, M., Charypar, D., & Gross, M. (2003). Particle-based fluid simulation for interactive applications. Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154–159. San Diego, CA, USA, July 26–27.
Neves, D. R. C. B., Pires-Silva, A. A., Fortes, C. J. E. M., & Matos, J. J. G. (2016). Comparison of Wave Breaking with RANS and SPH numerical models. Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference.
O’Brien, J. F., Zordan, V. B., & Hodgins, J. K. (2000). Combining Active and Passive Simulations for Secondary Motion.
IEEE Computer Graphics and Applications,
20(4), 86–96.
https://doi.org/10.1109/38.851756
Panizzo, A. (2004a). Physical and numerical modelling of subaerial landslide generated waves (Doctoral dissertation, University of L’Aquila).
Panizzo, A. (2004b). SPH modelling of water waves generated by landslides. In Proceedings of the Convegno di Idraulica e Costruzioni Idrauliche IDRA.
Panizzo, A., & Dalrymple, R. A. (2004). SPH modelling of underwater landslide generated waves. International Conference Coastal Engineering.
Sasson, M., Chai, S., Beck, G., Jin, Y., & Rafieshahraki, J. (2016). A comparison between Smoothed-Particle Hydrodynamics and RANS Volume of Fluid method in modelling slamming.
Journal of Ocean Engineering and Science, 1(2), 119–128.
https://doi.org/10.1016/J.JOES.2016.03.004
Singh, P., Hesla, T. I., & Joseph, D. D. (2003). Distributed Lagrange multiplier method for particulate flows with collisions.
International Journal of Multiphase Flow,
29(3), 495–509.
https://doi.org/10.1016/S0301-9322(02)00164-7
Tafuni, A., De Giorgi, M. G., & De Rosis, A. (2022). Smoothed Particle Hydrodynamics vs Lattice Boltzmann for the solution of steady and unsteady fluid flows.
Computational Particle Mechanics, 9(5), 1049–1071.
https://doi.org/10.1007/s40571-021-00447-5
Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., & Ueki, H. (2003). Realistic Animation of Fluid with Splash and Foam.
Computer Graphics Forum,
22(3), 391–400.
https://doi.org/10.1111/1467-8659.00686
Turhan, E., Ozmen-Cagatay, H., & Tantekin, A. (2019). Modeling flood shock wave propagation with the smoothed particle hydrodynamics (SPH) method: An experimental comparison study.
Applied Ecology and Environmental Research, 17(2), 3033–3047.
https://doi.org/10.15666/aeer/1702_30333047
Vacondio, R., Rogers, B. D., Stansby, P. K., & Mignosa, P. (2012). A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modeling.
International Journal for Numerical Methods in Fluids,
71(7), 850–872.
https://doi.org/10.1002/fld.3687