Confrontation Between Smoothed Particle Hydrodynamics and Unsteady Reynolds-averaged Navier–Stokes Methods for a Sinking Rigid Body

Document Type : Regular Article

Authors

1 Department of Mechanical Engineering, Higher Institute of Applied Sciences and Technology of Sousse (ISSAT Sousse) University of Sousse, Sousse, 4003, Tunisia University of Sousse, Sousse, 4003, Tunisia

2 Hydraulic and Environmental Modeling Laboratory, Department of Civil Engineering, National Engineering School of Tunis (ENIT), University of Tunis El Manar, Tunis,1002, Tunisia

10.47176//jafm.2025.8788.3633

Abstract

In this article, we present detailed numerical results concerning the hydrodynamic behavior of two distinct rigid bodies; a cylinder and a wedge; interacting with a free water surface. To analyze the temporal evolution of the free surface and the resulting motion of the rigid bodies, including their vertical displacements, two numerical techniques are employed: the Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method and the Unsteady Reynolds-Averaged Navier–Stokes (URANS) approach with the Volume of Fluid (VOF) technique. Both approaches are used to predict key physical quantities such as the vertical motion and velocity of the rigid bodies, as well as the pressure distribution within the fluid domain. The results highlight the strengths and limitations of each method, showing that WCSPH excels in capturing free surface dynamics, while URANS provides more accurate pressure predictions, using measured data for validation. The findings offer valuable insights into the appropriate method selection for marine and coastal engineering applications.

Keywords

Main Subjects


Altomare, C., Crespo, A. J. C., Domínguez, J. M., Gómez-Gesteira, M., Suzuki, T., & Verwaest, T. (2015). Applicability of Smoothed Particle Hydrodynamics for estimation of sea wave impact on coastal structures. Coastal Engineering, 96, 1-12. https://doi.org/10.1016/j.coastaleng.2014.11.001
Antuono, M., Colagrossi, A., Marrone, S., & Molteni, D. (2010). Free-surface flows solved by means of SPH schemes with numerical diffusive terms. Computer Physics Communications, 181(3), 532–549. https://doi.org/10.1016/j.cpc.2009.11.002
Batchelor, G. K. (2000). An introduction to fluid dynamics. Cambridge University Press. https://doi.org/10.1017/CBO9780511800955
Belytschko, T., Liu, W., Moran, B., & Elkhodary, K. (2014). Nonlinear finite elements for continua and structures (2nd ed.). John Wiley & Sons.
Brizzolara, S., Savio, L., Viviani, M., Chen, Y., Temarel, P., Couty, N., Hoflack, S., Diebold, L., Moirod, N., & Souto Iglesias, A. (2009). Comparison of experimental and numerical sloshing loads in partially filled tanks. Analysis and Design of Marine Structures, 13–26.
Campbell, I. M. C., & Weynberg, P. A. (1980). Measurement of parameters affecting slamming (Rapport technique No. 440). Wolfson Unit for Marine Technology, Université de Southampton
Chang, K.-A., Hsu, T.-J., & Liu, P. L.-F. (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle: Part I. Solitary waves. Coastal Engineering, 44, 13–36. https://doi.org/10.1016/S0378-3839(01)00044-7
Chang, K.-A., Hsu, T.-J., & Liu, P. L.-F. (2005). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle. Part II: Cnoidal waves. Coastal Engineering, 52(3), 257–283. https://doi.org/10.1016/j.coastaleng.2004.11.006
Chen, J. X., & Da Vitoria Lobo, N. (1995). Toward interactive-rate simulation of fluids with moving obstacles using Navier-Stokes equations. Graphical Models and Image Processing, 57(2), 107–116. https://doi.org/10.1006/gmip.1995.1012
Crespo, A. J. C., Dominguez, J. M., Barreiro, A., Gómez-Gesteira, M., & Rogers, B. D. (2011). GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods. PLoS ONE, 6(6). https://doi.org/10.1371/journal.pone.0020685
Crespo, A. J. C., Dominguez, J. M., Rogers, B. D., Gómez-Gesteira, M., Longshaw, S., Canelas, R., Vacondio, R., Barreiro, A., & García-Feal, O. (2015). DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH). Computer Physics Communications, 187, 204–216. https://doi.org/10.1016/j.cpc.2014.10.004
Crespo, A. J. C., Gómez-Gesteira, M., & Dalrymple, R. A. (2008). Modeling dam break behavior over a wet bed by a SPH technique. Journal of Waterway, Port, Coastal, and Ocean Engineering, 134(6), 313–320. https://doi.org/10.1061/asce0733-950x2008134:6313
Cundall, P. A., & Strack, O. D. L. (1979). A discrete numerical model for granular assemblies. Géotechnique, 29(1), 47–65. https://doi.org/10.1680/geot.1979.29.1.47
Dalrymple, R. A., & Rogers, B. D. (2006). Numerical modeling of water waves with the SPH method. Coastal Engineering, 53(2–3), 141–147. https://doi.org/10.1016/j.coastaleng.2005.10.004
Dominguez, J. M., Fourtakas, G., Altomare, C., Canelas, R. B., Tafuni, A., García-Feal, O., Martínez-Estévez, I., Mokos, A., Vacondio, R., Crespo, A. J. C., Rogers, B. D., Stansby, P. K., & Gómez-Gesteira, M. (2022). DualSPHysics: from fluid dynamics to multiphysics problems. Computational Particle Mechanics, 9(5), 867–895. https://doi.org/10.1007/s40571-021-00404-2
Faltinsen, O. M., Kjerland, O. K., Tørum, N. A., & Nguyen, T. V. (1977). Water impact loads and dynamic response of horizontal circular cylinders in offshore structures. Proceedings of the Offshore Technology Conference. https://doi.org/10.4043/2741-MS
Fang, J., Parriaux, A., Rentschler, M., & Ancey, C. (2009). Improved SPH methods for simulating free surface flows of viscous fluids. Applied Numerical Mathematics, 59(2), 251–271. https://doi.org/10.1016/j.apnum.2008.02.003
Gingold, R. A., & Monaghan, J. J. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3), 375–389. https://doi.org/10.1093/mnras/181.3.375
Gomez-Gesteira, M. (2010). State-of-the-art of classical SPH for free-surface flows. Journal of Hydraulic Research, 48(extra), 6–27. https://doi.org/10.3826/jhr.2010.0012
Gomez-Gesteira, M., Dalrymple, R. A., & Asce, F. (2004). Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. Journal of Waterway, Port, Coastal and Ocean Engineering, 130(2), 63–69. https://doi.org/10.1061/asce0733-950x2004130:263
Greenhow, M., & Lin, W.-M. (1983). Nonlinear free surface effects: Experiments and theory. MIT Department of Ocean Engineering Report No. 83-19.
Hagiwara, K., & Yuhara, T. (1975). Fundamental Study of Wave Impact Loads on Ship Bow (3rd Report). Journal of the Society of Naval Architects of Japan, (137), 240–245. https://doi.org/10.2534/jjasnaoe1968.1975.240
Hirt, C. W., Amsden, A. A., & Cook, J. L. (1974). An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 135, 203–216. https://doi.org/https://doi.org/10.1016/0021-9991(74)90051-5
Hosain, M. L., Sand, U., & Fdhila, R. B. (2018). Numerical Investigation of Liquid Sloshing in Carrier Ship Fuel Tanks. IFAC-PapersOnLine, 51(2), 583–588. https://doi.org/10.1016/J.IFACOL.2018.03.098
Johnson, G. R., Stryk, R. A., & Beissel, S. R. (1996). SPH for high velocity impact computations. Computer Methods in Applied Mechanics and Engineering, 139(1–4), 347–373. https://doi.org/10.1016/S0045-7825(96)01089-4
Lal, A., & Elangovan, M. (2008). CFD Simulation and Validation of Flap Type Wave-Maker. International Journal of Engineering, Mathematical and Physical Sciences, 2, 10, 708–7014.
Landau, L. D., & Lifshitz, E. M. (2014). Fluid mechanics (Vol. 6). Elsevier Science.
Liu, P. L. F., & Al-Banaa, K. (2004). Solitary wave runup and force on a vertical barrier. Journal of Fluid Mechanics, 505, 225–233. https://doi.org/10.1017/S0022112004008547
Losasso, F., Talton, J. O., Kwatra, N., & Fedkiw, R. (2008). Two-way coupled SPH and particle level set fluid simulation. IEEE Transactions on Visualization and Computer Graphics, 14(4), 797–804. https://doi.org/10.1109/tvcg.2008.37
Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis. The Astronomical Journal, 82, 1013–1024. https://doi.org/10.1086/112164
Mahmoodi, M., Shademani, R., & Gorji Bandpy, M. (2018). Viscous Models Comparison in Water Impact of Twin 2D Falling Wedges Simulation by Different Numerical Solvers. International Journal of Maritime Technology, 9(1), 1–13. https://doi.org/10.29252/ijmt.9.1
Monaghan, J. J. (1994). Simulating Free Surface Flows with SPH. Journal of Computational Physics, 110(2), 399–406. https://doi.org/10.1006/jcph.1994.1034
Morris, J. P. (1996). A Study of the Stability Properties of Smooth Particle Hydrodynamics. Publications of the Astronomical Society of Australia, 13(1), 97–102. https://doi.org/10.1017/S1323358000020610
Müller, M., Charypar, D., & Gross, M. (2003). Particle-based fluid simulation for interactive applications. Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 154–159. San Diego, CA, USA, July 26–27.
Neves, D. R. C. B., Pires-Silva, A. A., Fortes, C. J. E. M., & Matos, J. J. G. (2016). Comparison of Wave Breaking with RANS and SPH numerical models. Proceedings of the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference.
O’Brien, J. F., Zordan, V. B., & Hodgins, J. K. (2000). Combining Active and Passive Simulations for Secondary Motion. IEEE Computer Graphics and Applications, 20(4), 86–96. https://doi.org/10.1109/38.851756
Panizzo, A. (2004a). Physical and numerical modelling of subaerial landslide generated waves (Doctoral dissertation, University of L’Aquila).
Panizzo, A. (2004b). SPH modelling of water waves generated by landslides. In Proceedings of the Convegno di Idraulica e Costruzioni Idrauliche IDRA.
Panizzo, A., & Dalrymple, R. A. (2004). SPH modelling of underwater landslide generated waves. International Conference Coastal Engineering.
Rogers, B. D., Dalrymple, R. A., & Stansby, P. K. (2010). Simulation of caisson breakwater movement using 2-D SPH. Journal of Hydraulic Research, 48(Suppl. 1), 135–141. https://doi.org/10.1080/00221686.2010.9641254
Sasson, M., Chai, S., Beck, G., Jin, Y., & Rafieshahraki, J. (2016). A comparison between Smoothed-Particle Hydrodynamics and RANS Volume of Fluid method in modelling slamming. Journal of Ocean Engineering and Science, 1(2), 119–128. https://doi.org/10.1016/J.JOES.2016.03.004
Singh, J., & Pal, A. (2023). Numerical Investigation of Water Entry of Hydrophobic Spheres. https://doi.org/https://doi.org/10.48550/arXiv.2306.15289
Singh, P., Hesla, T. I., & Joseph, D. D. (2003). Distributed Lagrange multiplier method for particulate flows with collisions. International Journal of Multiphase Flow, 29(3), 495–509. https://doi.org/10.1016/S0301-9322(02)00164-7
Tafuni, A., De Giorgi, M. G., & De Rosis, A. (2022). Smoothed Particle Hydrodynamics vs Lattice Boltzmann for the solution of steady and unsteady fluid flows. Computational Particle Mechanics, 9(5), 1049–1071. https://doi.org/10.1007/s40571-021-00447-5
Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., & Ueki, H. (2003). Realistic Animation of Fluid with Splash and Foam. Computer Graphics Forum, 22(3), 391–400. https://doi.org/10.1111/1467-8659.00686
Turhan, E., Ozmen-Cagatay, H., & Tantekin, A. (2019). Modeling flood shock wave propagation with the smoothed particle hydrodynamics (SPH) method: An experimental comparison study. Applied Ecology and Environmental Research, 17(2), 3033–3047. https://doi.org/10.15666/aeer/1702_30333047
Vacondio, R., Rogers, B. D., Stansby, P. K., & Mignosa, P. (2012). A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modeling. International Journal for Numerical Methods in Fluids, 71(7), 850–872. https://doi.org/10.1002/fld.3687
Vacondio, R., Rogers, B. D., Stansby, P. K., & Mignosa, P. (2013). Shallow water SPH for flooding with dynamic particle coalescing and splitting. Advances in Water Resources, 58, 10–23. https://doi.org/10.1016/j.advwatres.2013.04.007
Yettou, E. M., Desrochers, A., & Champoux, Y. (2006). Experimental study on the water impact of a symmetrical wedge. Fluid Dynamics Research, 38(1), 47–66. https://doi.org/10.1016/j.fluiddyn.2005.09.003
Yuk, D., Yim, S. C., & Liu, P. L. F. (2006). Numerical modeling of submarine mass-movement generated waves using RANS model. Computers and Geosciences, 32(7), 927–935. https://doi.org/10.1016/j.cageo.2005.10.028