Variation Law and Calculation Model of Slurry Critical Non-silting Velocity under the Action of Swirler

Document Type : Regular Article

Authors

1 School of Intelligent Manufacturing, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221116, China

2 School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou 221116, China

3 CCTEG Chongqing Research Institute, Chongqing 400039, China

10.47176/jafm.19.1.3616

Abstract

Critical non-silting velocity, a key parameter in slurry pipeline transport systems, significantly influences operational conditions and economic viability. A lower critical non-silting velocity is advantageous for reducing energy consumption, minimizing pipeline wear, and enhancing system stability. To achieve this objective, this study proposes a method to improve the particle suspension state within slurry pipelines through the addition of a swirler. The research comprehensively investigated variations in the critical non-silting velocity under diverse conveying conditions, comparing scenarios both with and without the swirler. The results demonstrate that the swirler induces a circumferential flow within the pipeline. This flow exerts a drag force on particles, promoting their transition from a settled state to a non-silting flow regime, thereby reducing the critical non-silting velocity. For slurries characterized by low concentration, small particle size, and low density, the circumferential kinetic energy required to alter their flow state is smaller; consequently, the reduction in critical non-silting velocity is more pronounced. The calculation model of critical non-silting velocity considering the swirl characteristics was established. Compared to experimental values, the model yields an average error of 9.10% and a maximum error of 14.08%. 

Keywords

Main Subjects


Bao, J. S., Zhao, S. D., Wang, Z. B., Ge, S. R., Yin, Y., Huang, C. G., & Zhou, H. (2022). A deep coal fluidized pipeline transportation system. [ZL202110715365.2]. China National Intellectual Property Administration, 2022-02-18. https://kns.cnki.net/kcms2/article/abstract?v=o8vMLOX1CKv9b1WdRNtmgyCB-yPmJ7xAMihYJ72y-nZ4mX2FQs8zsrYs5QHzbKkEP1U-qeAH-gJZIWCyQ1DC_DfkKwfjjEpYqH2JOkCjnmbxSFDnddFqWEMkuzZCwleRBGtGJtVocrNHt_G3Er38v359ncjOA9KAe0RG261CIwLW2tercU9l4Q==&uniplatform=NZKPT&language=CHS
Bao, J. S., Zhao, S. D., Yin, Y., Wang, Z. B., Liu, S., & Ge, S. R. (2025). Nonsilting transport characteristics of coal slurry in a deep underground fluidization conveying pipeline under the action of a guide vane swirler. Deep Underground Science and Engineering, 1-17. https://doi.org/10.1002/dug2.70026
Baria, S, & Saad, I. (2013). CFD modelling of the effect of guide vane swirl and tumble device to generate better in-cylinder air flow in a CI engine fuelled by biodiesel. Computers & Fluids, 84, 262-69. https://doi.org/10.1016/j.compfluid.2013.06.011
Chen, S. D., Tang, D. Z., Hou, W., Li, Y. Z., Tao, S., Xu, H., Li, S., Tang, S. L., Pu, Y. F., & Zhang, B. (2023). Geological particularity and reservoir engineering response of deep coalbed methane. Acta Petrolei Sinica, 44(11), 1993-2006. https://doi.org/10.7623/syxb202311018.
Das, D., Das, S. K., Parhi, P. K., Dan, A. K., Mishra, S., & Misra, P. K. (2021). Green strategies in formulating, stabilizing and pipeline transportation of coal water slurry in the framework of WATER-ENERGY NEXUS: A state of the art review. Energy Nexus, 4, 100025. https://doi.org/10.1016/j.nexus.2021.100025
Das, S. N., Biswal, S. K., & Mohapatra, R. K. (2020). Recent advances on stabilization and rheological behaviour of iron ore slurry for economic pipeline transportation. Materials Today: Proceedings, 33, 5093-5097. https://doi.org/10.1016/j.matpr.2020.02.851.
Durand, R. (1952). The hydraulic transportation of coal and other materials in pipes. London: College National Board.
Galy, B., & Giraud, L. (2023). Risk mitigation strategies for automated current and future mine hoists. Safety Science, 167, 106267. https://doi.org/10.1016/j.ssci.2023.106267
Gao, J., Hao, X. D., Wang, L., & Wang, P. (2016). Resistance characteristics of coal slime in pipe flow at high pressure. International Journal of Chemical Reactor Engineering, 14(1), 299-307. https://doi.org/10.1515/ijcre-2015-0076
Kim, I., Kim, J., Choe, Y., Ryu, K., Cha, J., & Ri, J. (2023). Effect of vane angle on combustion characteristics of premixed H2/air in swirl micro-combustors with straight vane or twisted vane. Applied Thermal Engineering, 228, 120528. https://doi.org/10.1016/j.applthermaleng.2023.120528
Li, X. Y. (2021). Dewatering technology and system configuration at terminal of shenwei high concentration coal slurry piping line. Coal Technology, 40(5), 193-195. https://doi.org/10.13301/j.cnki.ct.2021.05.053.
Li, Y. G., Pang, Y. Q., Song, X. T., Jia, X. M., Lu, Y. F., Sun, X. H., & Zhang, X. L. (2021). Influence of setting angle for guide bar on velocity characteristics of spiral flow in cross-sections between piped carriages. Transactions of the Chinese Society of Agricultural Engineering, 37(5), 87-94. https://doi.org/10.11975/j.issn.1002-6819.2021.05.010
Li, Y., Liu, D. X., Cui, B. L., Lin, Z., Zheng, Y. H., & Ishnazarov, O. (2024). Studying particle transport characteristics in centrifugal pumps under external vibration using CFD-DEM simulation. Ocean Engineering, 301, 117538. https://doi.org/10.1016/j.oceaneng.2024.117538
Lu, Y. (2020). Application status and development direction of coal slurry pipeline transportation technology. www.gdchem.com, 47(10), 67-68.  CNKI:SUN:GDHG.0.2020-10-032
Ma, Y., Chen, J. Q., Men, Z. M., Ruan, Z. Y., Zou, D. Z., Zuo, H. Q., & Han, W. L. (2017). Optimization of coal pipeline transportation parameters. Coal Engineering, 49(5), 107-111. https://doi.org/10.11799/ce201705032
Saad, I., & Baria, S. (2014). Guide vane swirl and tumble device to improve in-cylinder air flow of CI engine using vegetable oil. Procedia Engineering, 90, 425-30. https://doi.org/10.1016/j.proeng.2014.11.872
Singh, M. K., Kumar, S., & Ratha, D. (2020). Computational analysis on disposal of coal slurry at high solid concentrations through slurry pipeline. International Journal of Coal Preparation and Utilization, 40(2), 116-130. https://doi.org/10.1080/19392699.2017.1346632
Singh, M. K., Kumar, S., Ratha, D., & Kaur, H. (2019). Improvement in head loss characteristics of fine particulate coal water suspension with addition of coarser particulate. International Journal of Coal Preparation and Utilization, 42(3), 305-314. https://doi.org/10.1080/19392699.2019.1600512
Singh, R. P., Mallick, M., & Verma M. K. (2016). Studies on failure behaviour of wire rope used in underground coal mines. Engineering Failure Analysis, 70, 290-304. https://doi.org/10.1016/j.engfailanal.2016.09.002
Sun, X. H., Yan, Q. F., & Li, Y. Y. (2012). Study on Hydraulic Characteristics of Pipe Helical Flow Transportation. Beijing: China Water and Power Press.
Wang, D. G., Zhang, J., Ge, S. R., Zhang, D. K., & Shi, G. Y. (2019). Mechanical behavior of hoisting rope in 2 km ultra deep coal mine. Engineering Failure Analysis, 106, 104185. https://doi.org/10.1016/j.engfailanal.2019.104185
Xie, H. P., Gao, F., Ju, Y., Zhang, R., Gao, M. Z., & Deng, J. H. (2017a). Novel idea and disruptive technologies for the exploration and research of deep earth. Advanced Engineering Sciences 49(1), 1-8. https://doi.org/10.15961/j.jsuese.2017.01.001
Xie, H. P., Gao, F., Ju, Y., Ge, S. R., Wang, G. F., Zhang, R., Gao, M. Z., Wu, G., & Liu, J. Z. (2017b). Theoretical and technological conception of the fluidization mining for deep coal resources. Journal of China Coal Society, 42(3), 547-56. https://doi.org/10.13225/j.cnki.jccs.2017.0299
Xie, H. P., Ju Y., Ren S. H., Gao F., Liu J., & Zhu Y. (2019). Theoretical and technological exploration of deep in situ fluidized coal mining. Frontiers in Energy, 13(4), 603-611. http://dx.doi.org/10.1007/s11708-019-0643-x
Xie, H. P., Ju, Y., Gao, M. Z., Gao, F., Liu, J. Z., Ren, H. W., & Ge, S. R. (2018). Theories and technologies for in-situ fluidized mining of deep underground coal resources. Journal of China Coal Society, 43(5), 1210-1219. http://dx.doi.org/10.13225/j.cnki.jccs.2018.0519
Zhang, Q. H., Wang, X. R., & Yuan, L. (2023). Development of a multi-field coupled numerical simulation program for underground coal gasification and multi-field evolution laws. Journal of China Coal Society, 48(6), 2506-2518. http://dx.doi.org/10.13225/j.cnki.jccs.xh22.1670
Zhao, S. D. (2024). Research on slurry non-silting characteristics and elbow wear rule of deep coal fluidized pipeline lifting system (Doctoral Dissertation). China University of Mining and Technology, Xuzhou. https://doi.org/10.27623/d.cnki.gzkyu.2024.000222
Zhao, S. D., Bao, J. S., Ge, S. R., Wang, Z. B., Yin, Y., & Huang, C. G. (2024). Influence and optimization of swirler parameters on elbow wear of deep coal fluidization pipeline transportation system. Friction, 12, 1408-1433. https://doi.org/10.1007/s40544-023-0781-3
Zhao, S. D., Bao, J. S., Ge, S. R., Wang, Z. B., Yin, Y., & Li Y. F. (2023). Influence of solid-liquid two-phase flow conveying parameters on the elbow wear with and without the swirler. Tribology International, 186, 108635. https://doi.org/10.1016/j.triboint.2023.108635.
Zhou, J. W., Du, C. L., Liu, S. Y., & Liu, Y. (2016). Comparison of three types of swirling generators in coarse particle pneumatic conveying using CFD-DEM simulation. Powder Technology, 301, 1309-1320. http://dx.doi.org/10.1016/j.powtec.2016.07.047