Bao, J. S., Zhao, S. D., Wang, Z. B., Ge, S. R., Yin, Y., Huang, C. G., & Zhou, H. (2022). A deep coal fluidized pipeline transportation system. [ZL202110715365.2].
China National Intellectual Property Administration, 2022-02-18.
https://kns.cnki.net/kcms2/article/abstract?v=o8vMLOX1CKv9b1WdRNtmgyCB-yPmJ7xAMihYJ72y-nZ4mX2FQs8zsrYs5QHzbKkEP1U-qeAH-gJZIWCyQ1DC_DfkKwfjjEpYqH2JOkCjnmbxSFDnddFqWEMkuzZCwleRBGtGJtVocrNHt_G3Er38v359ncjOA9KAe0RG261CIwLW2tercU9l4Q==&uniplatform=NZKPT&language=CHS
Bao, J. S., Zhao, S. D., Yin, Y., Wang, Z. B., Liu, S., & Ge, S. R. (2025). Nonsilting transport characteristics of coal slurry in a deep underground fluidization conveying pipeline under the action of a guide vane swirler.
Deep Underground Science and Engineering, 1-17.
https://doi.org/10.1002/dug2.70026
Baria, S, & Saad, I. (2013). CFD modelling of the effect of guide vane swirl and tumble device to generate better in-cylinder air flow in a CI engine fuelled by biodiesel.
Computers & Fluids,
84, 262-69.
https://doi.org/10.1016/j.compfluid.2013.06.011
Chen, S. D., Tang, D. Z., Hou, W., Li, Y. Z., Tao, S., Xu, H., Li, S., Tang, S. L., Pu, Y. F., & Zhang, B. (2023). Geological particularity and reservoir engineering response of deep coalbed methane.
Acta Petrolei Sinica,
44(11), 1993-2006.
https://doi.org/10.7623/syxb202311018.
Das, D., Das, S. K., Parhi, P. K., Dan, A. K., Mishra, S., & Misra, P. K. (2021). Green strategies in formulating, stabilizing and pipeline transportation of coal water slurry in the framework of WATER-ENERGY NEXUS: A state of the art review.
Energy Nexus,
4, 100025.
https://doi.org/10.1016/j.nexus.2021.100025
Das, S. N., Biswal, S. K., & Mohapatra, R. K. (2020). Recent advances on stabilization and rheological behaviour of iron ore slurry for economic pipeline transportation.
Materials Today: Proceedings,
33, 5093-5097.
https://doi.org/10.1016/j.matpr.2020.02.851.
Durand, R. (1952). The hydraulic transportation of coal and other materials in pipes. London: College National Board.
Gao, J., Hao, X. D., Wang, L., & Wang, P. (2016). Resistance characteristics of coal slime in pipe flow at high pressure.
International Journal of Chemical Reactor Engineering,
14(1), 299-307.
https://doi.org/10.1515/ijcre-2015-0076
Kim, I., Kim, J., Choe, Y., Ryu, K., Cha, J., & Ri, J. (2023). Effect of vane angle on combustion characteristics of premixed H2/air in swirl micro-combustors with straight vane or twisted vane.
Applied Thermal Engineering, 228, 120528.
https://doi.org/10.1016/j.applthermaleng.2023.120528
Li, Y. G., Pang, Y. Q., Song, X. T., Jia, X. M., Lu, Y. F., Sun, X. H., & Zhang, X. L. (2021). Influence of setting angle for guide bar on velocity characteristics of spiral flow in cross-sections between piped carriages.
Transactions of the Chinese Society of Agricultural Engineering,
37(5), 87-94.
https://doi.org/10.11975/j.issn.1002-6819.2021.05.010
Li, Y., Liu, D. X., Cui, B. L., Lin, Z., Zheng, Y. H., & Ishnazarov, O. (2024). Studying particle transport characteristics in centrifugal pumps under external vibration using CFD-DEM simulation.
Ocean Engineering,
301, 117538.
https://doi.org/10.1016/j.oceaneng.2024.117538
Lu, Y. (2020). Application status and development direction of coal slurry pipeline transportation technology.
www.gdchem.com,
47(10), 67-68.
CNKI:SUN:GDHG.0.2020-10-032
Ma, Y., Chen, J. Q., Men, Z. M., Ruan, Z. Y., Zou, D. Z., Zuo, H. Q., & Han, W. L. (2017). Optimization of coal pipeline transportation parameters.
Coal Engineering, 49(5), 107-111.
https://doi.org/10.11799/ce201705032
Singh, M. K., Kumar, S., & Ratha, D. (2020). Computational analysis on disposal of coal slurry at high solid concentrations through slurry pipeline.
International Journal of Coal Preparation and Utilization, 40(2), 116-130.
https://doi.org/10.1080/19392699.2017.1346632
Singh, M. K., Kumar, S., Ratha, D., & Kaur, H. (2019). Improvement in head loss characteristics of fine particulate coal water suspension with addition of coarser particulate.
International Journal of Coal Preparation and Utilization,
42(3), 305-314.
https://doi.org/10.1080/19392699.2019.1600512
Sun, X. H., Yan, Q. F., & Li, Y. Y. (2012). Study on Hydraulic Characteristics of Pipe Helical Flow Transportation. Beijing: China Water and Power Press.
Wang, D. G., Zhang, J., Ge, S. R., Zhang, D. K., & Shi, G. Y. (2019). Mechanical behavior of hoisting rope in 2 km ultra deep coal mine.
Engineering Failure Analysis, 106, 104185.
https://doi.org/10.1016/j.engfailanal.2019.104185
Xie, H. P., Gao, F., Ju, Y., Zhang, R., Gao, M. Z., & Deng, J. H. (2017a). Novel idea and disruptive technologies for the exploration and research of deep earth.
Advanced Engineering Sciences 49(1), 1-8.
https://doi.org/10.15961/j.jsuese.2017.01.001
Xie, H. P., Gao, F., Ju, Y., Ge, S. R., Wang, G. F., Zhang, R., Gao, M. Z., Wu, G., & Liu, J. Z. (2017b). Theoretical and technological conception of the fluidization mining for deep coal resources.
Journal of China Coal Society, 42(3), 547-56.
https://doi.org/10.13225/j.cnki.jccs.2017.0299
Xie, H. P., Ju Y., Ren S. H., Gao F., Liu J., & Zhu Y. (2019). Theoretical and technological exploration of deep in situ fluidized coal mining.
Frontiers in Energy,
13(4), 603-611.
http://dx.doi.org/10.1007/s11708-019-0643-x
Xie, H. P., Ju, Y., Gao, M. Z., Gao, F., Liu, J. Z., Ren, H. W., & Ge, S. R. (2018). Theories and technologies for in-situ fluidized mining of deep underground coal resources.
Journal of China Coal Society,
43(5), 1210-1219.
http://dx.doi.org/10.13225/j.cnki.jccs.2018.0519
Zhang, Q. H., Wang, X. R., & Yuan, L. (2023). Development of a multi-field coupled numerical simulation program for underground coal gasification and multi-field evolution laws.
Journal of China Coal Society,
48(6), 2506-2518.
http://dx.doi.org/10.13225/j.cnki.jccs.xh22.1670
Zhao, S. D. (2024).
Research on slurry non-silting characteristics and elbow wear rule of deep coal fluidized pipeline lifting system (Doctoral Dissertation). China University of Mining and Technology, Xuzhou.
https://doi.org/10.27623/d.cnki.gzkyu.2024.000222
Zhao, S. D., Bao, J. S., Ge, S. R., Wang, Z. B., Yin, Y., & Huang, C. G. (2024). Influence and optimization of swirler parameters on elbow wear of deep coal fluidization pipeline transportation system.
Friction, 12, 1408-1433.
https://doi.org/10.1007/s40544-023-0781-3
Zhao, S. D., Bao, J. S., Ge, S. R., Wang, Z. B., Yin, Y., & Li Y. F. (2023). Influence of solid-liquid two-phase flow conveying parameters on the elbow wear with and without the swirler.
Tribology International,
186, 108635.
https://doi.org/10.1016/j.triboint.2023.108635.
Zhou, J. W., Du, C. L., Liu, S. Y., & Liu, Y. (2016). Comparison of three types of swirling generators in coarse particle pneumatic conveying using CFD-DEM simulation.
Powder Technology,
301, 1309-1320.
http://dx.doi.org/10.1016/j.powtec.2016.07.047