Al-Khishali, K. J. M., Mashkour, M. A., & Omaraa, E. S. (2010). Analysis of Flow Characteristics In Inlet And Exhaust Manifolds of Experimental Gasoline Combustion In A VCR Engine.
Engineering and Technology Journal, 28(7).
https://doi.org/10.30684/etj.28.7.12
Alphonse, M., & Kumar, R. (2021). Investigation of heat dissipation in exhaust manifold using computational fluid dynamics.
International Journal of Ambient Energy, 42(9), 999-1004.
https://doi.org/10.1080/01430750.2019.1583130
Assi, W. N., Ali, M. A. N., & Allawee, A. S. (2020). Experimental and numerical assessment of a multi-cylinder engine exhaust manifold. IOP Conference Series:
Materials Science and Engineering, 745, 012071.
https://doi.org/10.1088/1757-899X/745/1/012071.
Bajpai, K., Chandrakar, A., Agrawal, A., & Shekhar, S. (2017). CFD analysis of exhaust manifold of SI engine and comparison of back pressure using alternative fuels.
IOSR Journal of Mechanical and Civil Engineering, 14(01), 23-29.
https://doi.org/10.9790/1684-1401012329
De Angelis, G., & Palomba, F. (2004).
The Reliability Improvement of a Conventional Cast Iron Exhaust Manifold for a Small Size Gasoline Engine.
Internal Combustion Engine Division Fall Technical Conference, 37467, 541-546.
https://doi.org/10.1115/ICEF2004-0876
Desai, A. R., Buradi, A., Gowthami, L., Praveena, B. A., Madhusudhan, A., & Bora, B. J. (2022). Computational Investigation of Engine Exhaust Manifold with Different Alternative Fuels By Using CFD.
2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon),
1-6.
https://doi.org/10.1109/MysuruCon55714.2022.9972359
Deubert, D., Klingel, L., & Selig, A. (2024). Online simulation at machine level: a systematic review.
The International Journal of Advanced Manufacturing Technology, 131(3), 977-998.
https://doi.org/10.1007/s00170-024-13065-1
Guoquan, X., Huaming, W., Lin, C., & Xiaobin, H. (2021). Predicting unsteady heat transfer effect of vehicle thermal management system using steady velocity equivalent method.
Science Progress, 104(2), 00368504211025933.
https://doi.org/10.1177/00368504211025933
Kresovic, U., Hussein, W., Zhou, C. Q., Majdak, J., & Cantwell, R. (2002). CFD Analysis of Liquid-Cooled Exhaust Manifolds in a Real Time Engine Cycle.
ASME International Mechanical Engineering Congress and Exposition, 36355, 39-46.
https://doi.org/10.1115/IMECE2002-32095
Kumar, R. R., Razak, A., Alshahrani, S., Sharma, A., Thakur, D., Shaik, S., Saleel, C. A., & Afzal, A. (2022). Vibration analysis of composite exhaust manifold for diesel engine using CFD.
Case Studies in Thermal Engineering, 32, 101853.
https://doi.org/10.1016/j.csite.2022.101853
Li, D. L., Yin, Y. F., Chen, G. F., Cui, C., & Han, B. (2012). Thermal fatigue analysis of the engine exhaust manifold.
Advanced Materials Research, 482, 214-219.
https://doi.org/10.4028/www.scientific.net/AMR.482-484.214
Lin, T. Y., Shi, G., Yang, C., Zhang, Y., Wang, J., Jia, Z., Guo, L., Xiao, Y., Wei, Z., & Lan, S. (2021). Efficient container virtualization-based digital twin simulation of smart industrial systems.
Journal of cleaner production, 281, 124443.
https://doi.org/10.1016/j.jclepro.2020.124443
Maheshappa, H., Pravin, V. K., Umesh, K. S., & Veena, P. H. (2013). Design analysis of catalytic converter to reduce particulate matter and achieve limited back pressure in diesel engine by CFD.
International Journal of Engineering Research and Applications (IJERA), 3(1), 998-1004.
https://doi.org/10.4271/2011-01-1245
Prithvi, R. R., Midhun, M. P., & Prakash, D. (2020). Computational simulation and experimental validation of an engineering problem: A case study on heat transfer in cylindrical fin with phase‐change material.
Computer Applications in Engineering Education, 28(1).
https://doi.org/10.1002/cae.22183
Rodríguez, B., González, F., Naya, M. Á., & Cuadrado, J. (2020). Assessment of methods for the real-time simulation of electronic and thermal circuits.
Energies, 13(6), 1354.
https://doi.org/10.3390/en13061354
Sadhasivam, C., Murugan, S., Vairamuthu, J., & Priyadharshini, S. M. (2021). Design and analysis of two-cylinder exhaust manifold with improved performance in CFD.
Materials Today: Proceedings, 37, 2141-2144.
https://doi.org/10.1016/j.matpr.2020.07.574
Sahoo, D. K., & Thiya, R. (2019). Coupled CFD–FE analysis for the exhaust manifold to reduce stress of a direct injection-diesel engine.
International Journal of Ambient Energy, 40(4), 361-366.
https://doi.org/10.1080/01430750.2017.1399457
Seenikannan, P., Periyasamy, V. M., & Nagaraj, P. (2008). An experimental analysis of a Y section exhaust manifold system with improved engine performance.
International Journal of Product Development, 6(1), 50-56.
https://doi.org/10.1504/IJPD.2008.019121
Sulistyo, B., Sofyan, H., Sukardi, T., & Widyianto, A. (2023). Performance and Emission Characteristics Using Dual Injection System of Gasoline and Ethanol.
Automotive Experiences, 6(2), 245-258.
https://doi.org/10.31603/ae.8070
Taibani, A. Z., & Kalamkar, V. (2012). Experimental and computational analysis of behavior of three-way catalytic converter under axial and radial flow conditions.
International Journal of Fluid Machinery and Systems, 5(3), 134-142.
https://doi.org/10.5293/IJFMS.2012.5.3.134
Teja, M. A., Ayyappa, K., Katam, S., & Anusha, P. (2016). Analysis of exhaust manifold using computational fluid dynamics.
Fluid Mechanics Open Access 3(1), 1000129.
https://doi.org/10.4172/2476-2296.1000129
Yogesh, K., Ananthesha, B., & Mahendra Babu, N. C. (2020). Assessment of thermo-mechanical fatigue performance of an exhaust manifold through simulation.
Indian Journal of Science and Technology, 10(12), 1-6.
https://doi.org/10.17485/ijst/2017/v10i12/105559