Bentz, D. P. (2000). Influence of silica fume on diffusivity in cement-based materials: II. Multi-scale modeling of concrete diffusivity.
Cement and Concrete Research,
30(7), 1121-1129.
https://doi.org/10.1016/S0008-8846(00)00263-5
Brocilo, D., Podlinski, J., Chang, J. S., Mizeraczyk, J., & Findlay, R. D. (2008). Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators.
Journal of Physics: Conference Series,
142(1), 012032.
https://doi.org/10.1088/1742-6596/142/1/012032
Chen, B., Guo, Y., Li, H., Zhou, W., & Liu, B. (2021). Discharge characteristic of barbed electrodes in electrostatic precipitator.
Journal of Electrostatics,
109, 103528.
https://doi.org/10.1016/j.elstat.2020.103528
Chu, Y.-M., Abbasi, A., Al-Khaled, K., Farooq, W., Khan, S. U., Khan, M. I., Eldin, S. M., & Guedri, K. (2023). Mathematical modeling and computational outcomes for the thermal oblique stagnation point investigation for non-uniform heat source and nonlinear chemical reactive flow of Maxwell nanofluid.
Case Studies in Thermal Engineering, 41, 102626.
https://doi.org/10.1016/j.csite.2022.102626
Choi, H. Y., Park, Y. G., & Ha, M. Y. (2021). Numerical simulation of the wavy collecting plate effects on the performance of an electrostatic precipitator.
Powder Technology,
382, 232-243.
https://doi.org/10.1016/j.powtec.2020.12.070
Deepthi, V. V. L., Lashin, M. M. A., Ravi Kumar, N., Raghunath, K., Ali, F., Oreijah, M., Guedri, K., Tag-ElDin, E. S. M., Khan, M. I., & Galal, A. M. (2022). Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines.
Micromachines,
13(10), 1566.
https://www.mdpi.com/2072-666X/13/10/1566
Kodi, R., Ravuri, M. R., Veeranna, V., Ijaz Khan, M., Abdullaev, S., & Tamam, N. (2023). Hall current and thermal radiation effects of 3D rotating hybrid nanofluid reactive flow via stretched plate with internal heat absorption.
Results in Physics, 53, 106915.
https://doi.org/10.1016/j.rinp.2023.106915
Dong, M., Zhou, F., Zhang, Y., Shang, Y., & Li, S. (2018). Numerical study on fine-particle charging and transport behaviour in electrostatic precipitators.
Powder Technology,
330, 210-218.
https://doi.org/10.1016/j.powtec.2018.02.038
Ekin, O., & Adamiak, K. (2023). Electric field and EHD flow in longitudinal wire-to-plate DC and DBD electrostatic precipitators: A numerical study.
Journal of Electrostatics, 124, 103826.
https://doi.org/10.1016/j.elstat.2023.103826
Farnoosh, N., Adamiak, K., & Castle, G. S. P. (2011). Three-dimensional analysis of electrohydrodynamic flow in a spiked electrode-plate electrostatic precipitator.
Journal of Electrostatics,
69(5), 419-428.
https://doi.org/10.1016/j.elstat.2011.06.002
Fujishima, H., Ueda, Y., Tomimatsu, K., & Yamamoto, T. (2004). Electrohydrodynamics of spiked electrode electrostatic precipitators.
Journal of Electrostatics,
62(4), 291-308.
https://doi.org/10.1016/j.elstat.2004.05.006
Ganesan, P., I., B., S., H., S., S., & Sandaran, S. C. (2016). Turbulent forced convection of Cu–water nanofluid in a heated tube: Improvement of the two-phase model.
Numerical Heat Transfer, Part A: Applications, 69(4), 401-420.
https://doi.org/10.1080/10407782.2015.1081019
Goo, J. H., & Lee, J. W. (1997). Stochastic simulation of particle charging and collection characteristics for a wire-plate electrostatic precipitator of short length.
Journal of Aerosol Science,
28(5), 875-893.
https://doi.org/10.1016/S0021-8502(96)00475-2
Hao, J., Kebin, H., & Chao, H. (1990). Calculation of electric field strength distributions for new electrostatic precipitator discharge electrode designs.
Journal of the Air & Waste Management Association,
40(11), 1510-1513.
https://doi.org/10.1080/10473289.1990.10466801
He, X., Vázquez, P. A., & Zhang, M. (2023). Numerical analyses of wire-plate electrohydrodynamic flows.
Journal of Fluid Mechanics, 966, A4, Article A4.
https://doi.org/10.1017/jfm.2023.419
Islamov, R. Sh. (2018). Influence of gas velocity on the particle collection and reentrainment in an air-cleaning electrostatic precipitator.
Aerosol Science and Technology,
52(12), 1415-1428.
https://doi.org/10.1080/02786826.2018.1528003
Jin, Y., Andersson, H., & Zhang, S. (2016). Air Pollution Control Policies in China: A Retrospective and Prospects.
International Journal of Environmental Research and Public Health,
13(12), 1219.
https://www.mdpi.com/1660-4601/13/12/1219
Kallio, G. A., & Stock, D. E. (1992). Interaction of electrostatic and fluid dynamic fields in wire–plate electrostatic precipitators.
J. Fluid Mech,
240., 133–166.
https://doi.org/10.1017/S0022112092000053
Kihm, K. D. (1987). Effects of nonuniformities on particle transport in electrostatic precipitators. Standford University.
Lee, E. M. (2024). Modeling of a novel large-scale electrohydrodynamic vortex flow induced by variation in current density for drag reduction with implication of electrostatic particle clustering.
Journal of Electrostatics, 128, 103899.
https://doi.org/10.1016/j.elstat.2024.103899
Lei, H., Wang, L.-Z., & Wu, Z.-N. (2008). EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator.
Journal of Electrostatics,
66(3), 130-141.
https://doi.org/10.1016/j.elstat.2007.11.001
Leonard G. L., Mitchner M., & Self S. A. (1983). An experimental study of the electrohydrodynamic flow in electrostatic precipitators.
Journal of Applied Fluid Mechanics,
127, 123–140.
https://doi.org/10.1017/S0022112083002657
Neimarlija, N., I., D., & Muzaferija, S. (2011). Numerical Method for Calculation of Two-Phase Electrohydrodynamic Flows in Electrostatic Precipitators.
Numerical Heat Transfer, Part A: Applications,
59(5), 321-348.
https://doi.org/10.1080/10407782.2011.549080
Nikas, K. S. P., Varonos, A. A., & Bergeles, G. C. (2005). Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator.
Journal of Electrostatics,
63(5), 423-443.
https://doi.org/10.1016/j.elstat.2004.12.005
Oglesby, S. J., & Nichols, G. B. (1978). Electrostatic precipitation. Marcel Dekker Inc.
Park, S. J., & Kim, S. S. (2000). Electrohydrodynamic Flow and Particle Transport Mechanism in Electrostatic Precipitators with Cavity Walls.
Aerosol Science and Technology,
33(3), 205-221.
https://doi.org/10.1080/027868200416204
Parker, K. R. (2012). Applied electrostatic precipitation. Springer.
Penney, G. W., & Matick, R. E. (1960). Potentials in D-C corona fields.
Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics,
79(2), 91-99.
https://doi.org/10.1109/TCE.1960.6368550
Podlinski, J., Berendt, A., & Mizeraczyk, J. (2013). Electrohydrodynamic secondary flow and particle collection efficiency in spike-plate multi-electrode electrostatic precipitator.
IEEE Transactions on Dielectrics and Electrical Insulation,
20(5), 1481-1488.
https://doi.org/10.1109/TDEI.2013.6633674
Roache, P. J. (1994). Perspective: A Method for Uniform Reporting of Grid Refinement Studies.
Journal of Fluids Engineering,
116(3), 405-413.
https://doi.org/10.1115/1.2910291
Friedlander, S. K. (2000). Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. Oxford University Press.
Sander, S., Gawor, S., & Fritsching, U. (2018). Separating polydisperse particles using electrostatic precipitators with wire and spiked-wire discharge electrode design.
Particuology,
38, 10-17.
https://doi.org/10.1016/j.partic.2017.05.014
Schmid, H. -J., & Vogel, L. (2003). On the modelling of the particle dynamics in electro-hydrodynamic flow-fields: I. Comparison of Eulerian and Lagrangian modelling approach.
Powder Technology,
135-136, 118-135.
https://doi.org/10.1016/j.powtec.2003.08.009
Shen, H., Yu, W., Jia, H., & Kang, Y. (2018). Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes.
Journal of Electrostatics,
95, 61-70.
https://doi.org/10.1016/j.elstat.2018.08.002
Shen, H., Jia, H., & Kang, Y. (2020). Electrical characteristics and electrohydrodynamic flows in electrostatic precipitator of six shaped discharge electrodes
Journal of Applied Fluid Mechanics,
13(6)
, 1707-1718.
https://doi.org/10.36884/jafm.13.06.31085
Sivasankaran, S., & Mallawi, F. O. M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model.
Case Studies in Thermal Engineering, 26, 101095.
https://doi.org/10.1016/j.csite.2021.101095
Skodras, G., Kaldis, S. P., Sofialidis, D., Faltsi, O., Grammelis, P., & Sakellaropoulos, G. P. (2006). Particulate removal via electrostatic precipitators — CFD simulation.
Fuel Processing Technology,
87(7), 623-631.
https://doi.org/10.1016/j.fuproc.2006.01.012
Soldati, A. (2000). On the effects of electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators.
Journal of Aerosol Science,
31(3), 293-305.
https://doi.org/10.1016/S0021-8502(99)00055-5
Wang, G., Ma, Z., Deng, J., Li, Z., Duan, L., Zhang, Q., Hao, J., & Jiang, J. (2019). Characteristics of particulate matter from four coal–fired power plants with low–low temperature electrostatic precipitator in China.
Science of The Total Environment,
662, 455-461.
https://doi.org/10.1016/j.scitotenv.2019.01.080
Zhou, W., Jiang, R., Sun, Y., Chen, B., & Liu, B. (2021). Study on multi-physical field characteristics of electrostatic precipitator with different collecting electrodes.
Powder Technology,
381, 412-420.
https://doi.org/10.1016/j.powtec.2020.12.028