Electrohydrodynamic Flow and Particle Dynamics in Four-shaped Electrostatic Precipitators via a Modified Eulerian Approach

Document Type : Regular Article

Authors

1 Department of Refrigeration and Air Conditioning, Shanghai Ocean University, Shanghai, 201306, China

2 Department of Energy Conservation, China Testing & Certification International Group Shanghai Testing Limited Company, Shanghai, 201210, China

3 College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China

10.47176/jafm.19.1.3604

Abstract

Electrostatic precipitators (ESPs) are essential for particulate removal from industrial emissions, yet the investigation of the influence of electrode geometry and arrangement on the flow patterns, electrical characteristics, and collection efficiency remains insufficient. In the present study, the finite volume method in ANSYS Fluent with User-Defined Functions is employed to simulate the flow pattern and particle transportation in duct-type ESPs for four discharge‒collecting configurations (i.e., combinations of rod-wire corona electrode with planar and wavy collecting plates). The results reveal that the corona electrode’s geometry plays a key role in determining the electric field strength, charge distribution, and ionic wind generation in the channels, while the collecting plate’s curvature primarily influences the field intensity near its surface. In the wavy plate channel, evident vortices appear in the concave area adjacent to the collecting wall at a moderate inlet velocity (u0 = 0.5 m/s), which enhances the local flow that favors particle deposition and thus improves collection efficiency. At a high inlet velocity (u0 = 1.0 m/s), the enhancement effect attributed to flow-induced deposition is reduced in all four channels because the flow acceleration caused by electric wind adversely affects the collection efficiency. The numerical results provide practical information for optimizing the design of the electrode structure and the channel configuration to improve the ESP performance under varying operational parameters.

Keywords

Main Subjects


Adamiak, K. (2013). Numerical models in simulating wire-plate electrostatic precipitators: A review. Journal of Electrostatics, 71(4), 673-680. https://doi.org/10.1016/j.elstat.2013.03.001
Behroyan, I., Ganesan, P., He, S., & Sivasankaran, S. (2015). Turbulent forced convection of Cu–water nanofluid: CFD model comparison. International Communications in Heat and Mass Transfer, 67, 163-172. https://doi.org/10.1016/j.icheatmasstransfer.2015.07.014
Bentz, D. P. (2000). Influence of silica fume on diffusivity in cement-based materials: II. Multi-scale modeling of concrete diffusivity. Cement and Concrete Research, 30(7), 1121-1129. https://doi.org/10.1016/S0008-8846(00)00263-5
Bernstein, S., & Crowe, C. T. (1981). Interaction between electrostatics and fluid dynamics in electrostatic precipitators. Environment International, 6(1), 181-189. https://doi.org/10.1016/0160-4120(81)90024-6
Brocilo, D., Podlinski, J., Chang, J. S., Mizeraczyk, J., & Findlay, R. D. (2008). Electrode geometry effects on the collection efficiency of submicron and ultra-fine dust particles in spike-plate electrostatic precipitators. Journal of Physics: Conference Series, 142(1), 012032. https://doi.org/10.1088/1742-6596/142/1/012032
Chen, B., Guo, Y., Li, H., Zhou, W., & Liu, B. (2021). Discharge characteristic of barbed electrodes in electrostatic precipitator. Journal of Electrostatics, 109, 103528. https://doi.org/10.1016/j.elstat.2020.103528
Chu, Y.-M., Abbasi, A., Al-Khaled, K., Farooq, W., Khan, S. U., Khan, M. I., Eldin, S. M., & Guedri, K. (2023). Mathematical modeling and computational outcomes for the thermal oblique stagnation point investigation for non-uniform heat source and nonlinear chemical reactive flow of Maxwell nanofluid. Case Studies in Thermal Engineering, 41, 102626. https://doi.org/10.1016/j.csite.2022.102626
Choi, H. Y., Park, Y. G., & Ha, M. Y. (2021). Numerical simulation of the wavy collecting plate effects on the performance of an electrostatic precipitator. Powder Technology, 382, 232-243. https://doi.org/10.1016/j.powtec.2020.12.070
Deepthi, V. V. L., Lashin, M. M. A., Ravi Kumar, N., Raghunath, K., Ali, F., Oreijah, M., Guedri, K., Tag-ElDin, E. S. M., Khan, M. I., & Galal, A. M. (2022). Recent Development of Heat and Mass Transport in the Presence of Hall, Ion Slip and Thermo Diffusion in Radiative Second Grade Material: Application of Micromachines. Micromachines, 13(10), 1566. https://www.mdpi.com/2072-666X/13/10/1566
Kodi, R., Ravuri, M. R., Veeranna, V., Ijaz Khan, M., Abdullaev, S., & Tamam, N. (2023). Hall current and thermal radiation effects of 3D rotating hybrid nanofluid reactive flow via stretched plate with internal heat absorption. Results in Physics, 53, 106915. https://doi.org/10.1016/j.rinp.2023.106915
Dong, M., Zhou, F., Zhang, Y., Shang, Y., & Li, S. (2018). Numerical study on fine-particle charging and transport behaviour in electrostatic precipitators. Powder Technology, 330, 210-218. https://doi.org/10.1016/j.powtec.2018.02.038
Ekin, O., & Adamiak, K. (2023). Electric field and EHD flow in longitudinal wire-to-plate DC and DBD electrostatic precipitators: A numerical study. Journal of Electrostatics, 124, 103826. https://doi.org/10.1016/j.elstat.2023.103826
Farnoosh, N., Adamiak, K., & Castle, G. S. P. (2011). Three-dimensional analysis of electrohydrodynamic flow in a spiked electrode-plate electrostatic precipitator. Journal of Electrostatics, 69(5), 419-428. https://doi.org/10.1016/j.elstat.2011.06.002
Fujishima, H., Ueda, Y., Tomimatsu, K., & Yamamoto, T. (2004). Electrohydrodynamics of spiked electrode electrostatic precipitators. Journal of Electrostatics, 62(4), 291-308. https://doi.org/10.1016/j.elstat.2004.05.006
Ganesan, P., I., B., S., H., S., S., & Sandaran, S. C. (2016). Turbulent forced convection of Cu–water nanofluid in a heated tube: Improvement of the two-phase model. Numerical Heat Transfer, Part A: Applications, 69(4), 401-420. https://doi.org/10.1080/10407782.2015.1081019
Goo, J. H., & Lee, J. W. (1997). Stochastic simulation of particle charging and collection characteristics for a wire-plate electrostatic precipitator of short length. Journal of Aerosol Science, 28(5), 875-893. https://doi.org/10.1016/S0021-8502(96)00475-2
Hao, J., Kebin, H., & Chao, H. (1990). Calculation of electric field strength distributions for new electrostatic precipitator discharge electrode designs. Journal of the Air & Waste Management Association, 40(11), 1510-1513. https://doi.org/10.1080/10473289.1990.10466801
He, X., Vázquez, P. A., & Zhang, M. (2023). Numerical analyses of wire-plate electrohydrodynamic flows. Journal of Fluid Mechanics, 966, A4, Article A4. https://doi.org/10.1017/jfm.2023.419
Iranshahi, K., Defraeye, T., Rossi, R. M., & Müller, U. C. (2024). Electrohydrodynamics and its applications: Recent advances and future perspectives. International Journal of Heat and Mass Transfer, 232, 125895. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125895
Islamov, R. Sh. (2018). Influence of gas velocity on the particle collection and reentrainment in an air-cleaning electrostatic precipitator. Aerosol Science and Technology, 52(12), 1415-1428. https://doi.org/10.1080/02786826.2018.1528003
Jin, Y., Andersson, H., & Zhang, S. (2016). Air Pollution Control Policies in China: A Retrospective and Prospects. International Journal of Environmental Research and Public Health, 13(12), 1219. https://www.mdpi.com/1660-4601/13/12/1219
Kallio, G. A., & Stock, D. E. (1992). Interaction of electrostatic and fluid dynamic fields in wire–plate electrostatic precipitators. J. Fluid Mech, 240., 133–166. https://doi.org/10.1017/S0022112092000053
Kihm, K. D. (1987). Effects of nonuniformities on particle transport in electrostatic precipitators. Standford University.
Lee, E. M. (2024). Modeling of a novel large-scale electrohydrodynamic vortex flow induced by variation in current density for drag reduction with implication of electrostatic particle clustering. Journal of Electrostatics, 128, 103899. https://doi.org/10.1016/j.elstat.2024.103899
Lei, H., Wang, L.-Z., & Wu, Z.-N. (2008). EHD turbulent flow and Monte-Carlo simulation for particle charging and tracing in a wire-plate electrostatic precipitator. Journal of Electrostatics, 66(3), 130-141. https://doi.org/10.1016/j.elstat.2007.11.001
Leonard G. L., Mitchner M., & Self S. A. (1983). An experimental study of the electrohydrodynamic flow in electrostatic precipitators. Journal of Applied Fluid Mechanics, 127, 123–140. https://doi.org/10.1017/S0022112083002657
Neimarlija, N., I., D., & Muzaferija, S. (2011). Numerical Method for Calculation of Two-Phase Electrohydrodynamic Flows in Electrostatic Precipitators. Numerical Heat Transfer, Part A: Applications, 59(5), 321-348. https://doi.org/10.1080/10407782.2011.549080
Nikas, K. S. P., Varonos, A. A., & Bergeles, G. C. (2005). Numerical simulation of the flow and the collection mechanisms inside a laboratory scale electrostatic precipitator. Journal of Electrostatics, 63(5), 423-443. https://doi.org/10.1016/j.elstat.2004.12.005
Oglesby, S. J., & Nichols, G. B. (1978). Electrostatic precipitation. Marcel Dekker Inc.
Park, S. J., & Kim, S. S. (2000). Electrohydrodynamic Flow and Particle Transport Mechanism in Electrostatic Precipitators with Cavity Walls. Aerosol Science and Technology, 33(3), 205-221. https://doi.org/10.1080/027868200416204
Parker, K. R. (2012). Applied electrostatic precipitation. Springer.
Penney, G. W., & Matick, R. E. (1960). Potentials in D-C corona fields. Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 79(2), 91-99. https://doi.org/10.1109/TCE.1960.6368550
Podlinski, J., Berendt, A., & Mizeraczyk, J. (2013). Electrohydrodynamic secondary flow and particle collection efficiency in spike-plate multi-electrode electrostatic precipitator. IEEE Transactions on Dielectrics and Electrical Insulation, 20(5), 1481-1488. https://doi.org/10.1109/TDEI.2013.6633674
Roache, P. J. (1994). Perspective: A Method for Uniform Reporting of Grid Refinement Studies. Journal of Fluids Engineering, 116(3), 405-413. https://doi.org/10.1115/1.2910291
Friedlander, S. K. (2000). Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics. Oxford University Press.
Sander, S., Gawor, S., & Fritsching, U. (2018). Separating polydisperse particles using electrostatic precipitators with wire and spiked-wire discharge electrode design. Particuology, 38, 10-17. https://doi.org/10.1016/j.partic.2017.05.014
Schmid, H. -J., & Vogel, L. (2003). On the modelling of the particle dynamics in electro-hydrodynamic flow-fields: I. Comparison of Eulerian and Lagrangian modelling approach. Powder Technology, 135-136, 118-135. https://doi.org/10.1016/j.powtec.2003.08.009
Shen, H., Yu, W., Jia, H., & Kang, Y. (2018). Electrohydrodynamic flows in electrostatic precipitator of five shaped collecting electrodes. Journal of Electrostatics, 95, 61-70. https://doi.org/10.1016/j.elstat.2018.08.002
Shen, H., Jia, H., & Kang, Y. (2020). Electrical characteristics and electrohydrodynamic flows in electrostatic precipitator of six shaped discharge electrodes Journal of Applied Fluid Mechanics, 13(6), 1707-1718. https://doi.org/10.36884/jafm.13.06.31085
Sivasankaran, S., & Mallawi, F. O. M. (2021). Numerical study on convective flow boiling of nanoliquid inside a pipe filling with aluminum metal foam by two-phase model. Case Studies in Thermal Engineering, 26, 101095. https://doi.org/10.1016/j.csite.2021.101095
Skodras, G., Kaldis, S. P., Sofialidis, D., Faltsi, O., Grammelis, P., & Sakellaropoulos, G. P. (2006). Particulate removal via electrostatic precipitators — CFD simulation. Fuel Processing Technology, 87(7), 623-631. https://doi.org/10.1016/j.fuproc.2006.01.012
Soldati, A. (2000). On the effects of electrohydrodynamic flows and turbulence on aerosol transport and collection in wire-plate electrostatic precipitators. Journal of Aerosol Science, 31(3), 293-305. https://doi.org/10.1016/S0021-8502(99)00055-5
Talaie, M. R. (2005). Mathematical modeling of wire-duct single-stage electrostatic precipitators. Journal of Hazardous Materials, 124(1), 44-52. https://doi.org/10.1016/j.jhazmat.2005.01.007
Wang, G., Ma, Z., Deng, J., Li, Z., Duan, L., Zhang, Q., Hao, J., & Jiang, J. (2019). Characteristics of particulate matter from four coal–fired power plants with low–low temperature electrostatic precipitator in China. Science of The Total Environment, 662, 455-461. https://doi.org/10.1016/j.scitotenv.2019.01.080
Yamamoto, T., & Velkoff H. R. (1981). Electrohydrodynamics in an electrostatic precipitator. J. Fluid Mech, 108, 1–18. https://doi.org/10.1017/S002211208100195X
Zhou, W., Jiang, R., Sun, Y., Chen, B., & Liu, B. (2021). Study on multi-physical field characteristics of electrostatic precipitator with different collecting electrodes. Powder Technology, 381, 412-420. https://doi.org/10.1016/j.powtec.2020.12.028