Ahmadi, N. (2024). Influences of optimizing the turbulator arrangement on the heat transfer and hydraulic characteristics of the tubular heat exchanger.
International Journal of Thermal Sciences,
197, 108792.
https://doi.org/10.1016/j.ijthermalsci.2023.108792
Bennour, E., Kezrane, C., Kaid, N., Alkhafaji, M., Alhassan, M., & Menni, Y. (2024). Numerical Assessment of Vortex Generators for Enhancing Thermal Performance in Corrugated Tubes.
Journal of Applied Fluid Mechanics,
17(10), 2115-2127.
https://doi.org/10.47176/jafm.17.10.2460
Che, M., & Elbel, S. (2021). Experimental quantification of air-side row-by-row heat transfer coefficients on fin-and-tube heat exchangers.
International Journal of Refrigeration,
131, 657-665.
https://doi.org/10.1016/j.ijrefrig.2021.06.012
Córcoles, J., Díaz-Heras, M., Coy, P. D., & Almendros-Ibáñez, J. (2024). 3-D numerical simulation of the heat transfer of a fluidized bed with a horizontal tube bundle and Geldart D particles.
International Journal of Heat and Mass Transfer,
225, 125406.
https://doi.org/10.1016/j.ijheatmasstransfer.2024.125406
Deeb, R. (2023). Enhancing heat exchanger performance through hybrid angle of attack control for drop-shaped tubes.
Physics of Fluids,
35(8), 085122.
https://doi.org/10.1063/5.0160385
Feng, Z., Zhang, Y., & Zang, F. (2013). Numerical simulation of flow-induced vibration in straight tube bundles.
Applied Mathematics and Mechanics,
34(11), 1165-1172.
https://doi.org/10.11949/0438–1157.20190527
Holman, J. P. (2002). Heat Transfer. Tata McGraw-Hill Education.
Hu, S., Zhu, L., Zhang, M., Tang, X., & Wang, X. (2023). Development and prospect of vacuum high-pressure gas quenching technology.
Materials,
16(23), 7413.
https://doi.org/10.3390/ma16237413
Jakob, M. (1938). Discussion: Heat transfer and flow resistance in cross flow of gases over tube banks.
Transactions of the American Society of Mechanical Engineers,
60(4), 384-386.
https://doi.org/10.1115/1.4020766
Kong, Y., Yang, L., Du, X., & Yang, Y. (2016). Effects of continuous and alternant rectangular slots on thermo-flow performances of plain finned tube bundles in in-line and staggered configurations.
International Journal of Heat and Mass Transfer,
93, 97-107.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.008
Kwak, K., Torii, K., & Nishino, K. (2003). Heat transfer and pressure loss penalty for the number of tube rows of staggered finned-tube bundles with a single transverse row of winglets.
International Journal of Heat and Mass Transfer,
46(1), 175-180.
https://doi.org/10.1016/S0017-9310(02)00235-1
Lang, C., Lu, C., Sun, B., Xin, C., Zhou, T., & Fu, T. (2024). Performance comparison of inline and staggered integrally-molded spiral finned tubes for low-carbon emissions.
Applied Thermal Engineering,
241, 122355.
https://doi.org/10.1016/j.applthermaleng.2024.122355
Liu, C., Jia, L., Dang, C., Cui, Z., & Yin, L. (2021). Effect of Liquid-Vapor Separation on the Thermal-Hydraulic Performance of an Air-Cooled Condenser.
Journal of Enhanced Heat Transfer,
28(3), 63-90.
https://doi.org/10.1615/JEnhHeatTransf.2021036375
Moharana, S., Sha, B. B., Das, M. K., Pecherkin, N. I., Pavlenko, A. N., & Volodin, O. A. (2023). Effect of tube rows on two-phase heat transfer characteristics of water over staggered tube bundles under flow boiling mode.
Journal of Thermal Science and Engineering Applications,
15(5), 050904.
https://doi.org/10.1115/1.4056246
Moreira, D. C., Ribatski, G., & Kandlikar, S. G. (2022). Heat transfer and pressure drop in single-phase flows in tapered microchannels.
Journal of heat transfer,
144(7), 072502.
https://doi.org/10.1115/1.4054351
Na, X., Wang, L.-B., Li, H.-R., Lu, X., & Zhang, J.-L. (2025). The correlation between fin side air flow and condensation in inclined tubes of a flat tube bank fin radiator with tube short axis posited horizontally.
International Journal of Thermal Sciences,
210, 109601.
https://doi.org/https://doi.org/10.1016/j.ijthermalsci.2024.109601
Sadeghi, M., Yadegari, M., & Khoshnevis, A. B. (2024). Numerical investigation of the flow characteristics around two sequential cylinders with circular and square cross-sections.
Journal of Marine Science and Technology,
29, 315–332.
https://doi.org/10.1007/s00773-024-00987-4
Sakib, S., & Al-Faruk, A. (2018). Flow and thermal characteristics analysis of plate–finned tube and annular–finned tube heat exchangers for in–line and staggered configurations.
Mechanics and Mechanical Engineering,
22(4), 1407-1417.
https://doi.org/10.2478/mme-2018-0110
Sang, Y., Li, J., Li, P., Wang, Z., Wan, Z., Jurasz, J., & Zheng, W. (2025). Study on optimization and risk resilience of integrated energy system in near-zero carbon park considering carbon taxes.
Energy and Buildings,
335(15), 115578.
https://doi.org/10.1016/j.enbuild.2025.115578
Sarangi, S., Mishra, D., & Mishra, P. (2020). Parametric investigation of wavy rectangular winglets for heat transfer enhancement in a fin-and–tube heat transfer surface.
Journal of Applied Fluid Mechanics,
13(2), 615-628.
https://doi.org/10.29252/jafm.13.02.30545
Tsutsui, T. (2010). An experimental study on heat transfer around two side-by-side closely arranged circular cylinders.
Journal of heat transfer,
132(11), 111704.
https://doi.org/10.1115/1.4002147
Wang, T. ( 2018). Numerical simulation of the high-pressure gas quenching cooling process and optimization of the air duct structure Chinese Academy of Machinery Science and Technology].
Wei, L. (2013). Design of key structures for ultra-high pressure gas quenching furnace Tianjin University of Technology].
Wu, Z., You, S., Zhang, H., & Zheng, W. (2020). A comparative experimental study on the performance of staggered tube-bundle heat exchanger with unequally-pitch and equally-pitch arrangement in oscillating flow.
International Journal of Heat and Mass Transfer,
154, 119680.
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119680
Yang, D., Wang, N., Xie, J., & Wang, J. (2022). Comparative Numerical Study on Global Heat Transfer Process in Micro-Channel Gas Coolers with Different Structures.
Journal of Applied Fluid Mechanics,
15(2), 579-589.
https://doi.org/10.47176/jafm.15.02.33180
Zdravkovich, M. (1988). Review of interference-induced oscillations in flow past two parallel circular cylinders in various arrangements.
Journal of Wind Engineering and Industrial Aerodynamics,
28(1-3), 183-199.
https://doi.org/10.1016/0167-6105(88)90115-8
Zhang, H., & Melbourne, W. (1992). Interference between two circular cylinders in tandem in turbulent flow.
Journal of Wind Engineering and Industrial Aerodynamics,
41(1-3), 589-600.
https://doi.org/10.1016/0167-6105(92)90468-P
Zhang, L.-Z., Ouyang, Y.-w., Zhang, Z.-G., & Wang, S.-F. (2015). Oblique fluid flow and convective heat transfer across a tube bank under uniform wall heat flux boundary conditions.
International Journal of Heat and Mass Transfer,
91, 1259-1272.
https://doi.org/10.1016/j.ijheatmasstransfer.2015.08.062
Zheng, W., Wang, D., Lyu, F., Shen, Y., Pan, Y., & Wu, M. (2024). Influence of elasticity of high-concentration paste on unsteady flow in pipeline transportation.
Physics of Fluids,
36(1), 013113.
https://doi.org/10.1063/5.0176824
Zhou, Y., Feng, S., Alam, M. M., & Bai, H. (2009). Reynolds number effect on the wake of two staggered cylinders.
Physics of Fluids,
21(12), 125105.
https://doi.org/10.1063/1.3275846
Zukauskas, A. A. (1986). Convective heat transfer in heat exchangers. Science Press.