Effect of Boundary-layer Suction on the Performance of an Intake under Off-design Condition

Document Type : Regular Article

Authors

1 High Speed Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

2 School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

10.47176/jafm.19.1.3618

Abstract

Under off-design conditions, shock wave-boundary layer interaction (SWBLI) and large-scale separation within the intake become prominent, leading to significant decrease in aerodynamic performance. By introducing a boundary layer suction system, numerical calculations are used to investigate the variations in flow and performance, and to analyze the suction mechanism. Boundary layer suction effectively removes low kinetic energy fluid, reduces the size of the separation bubble size, relieves the pressure gradient, and transforms the bow shock at the inlet into an incident oblique shock. At the same time, the suction device can also increase the total pressure recovery ratio (TPR), and the captured mass flow ratio (CMFR), while reducing the distortion index (DI). In particular, different suction locations and numbers, as well as backpressures, affect the flow field differently. The S2 is key in controlling the cowl-incident shock wave and separating bubble. Its suction action can change the type of shock interaction at the inlet from λ-type to x-type. Therefore, the reasonable setting of suction holes can enhance the aerodynamic performance and operating stability of the intake by optimizing the internal shock wave system.

Keywords

Main Subjects


Abedi, M., Askari, R., & Soltani, R. (2020a). Numerical simulation of inlet buzz. Aerospace Science and Technology, 97, 105547. https://doi.org/10.1016/j.ast.2019.105547
Abedi, M., Askari, R., Sepahi J., & Soltani, R. (2020b). Axisymmetric and three-dimensional flow simulation of a mixed compression supersonic air inlet. Propulsion and Power Research, 9(1), 51-61. https://doi.org/10.1016/j.jppr.2020.01.002
Alfonsi, G. (2009). Reynolds-Averaged Navier-Stocks Equations for Turbulence Modeling. Applied. Mechanics Reviews, 62, 933–944. https://doi.org/10.1115/1.3124648
Chen, H., Tan, H., Liu, Y., & Zhang, Q. (2019). External-compression supersonic inlet free from violent buzz. AIAA Journal, 57(6), 2513–2523. https://doi.org/10.2514/1.J057811
Choe, Y., Kim, C., & Kim, K. (2020). Effects of optimized bleed system on supersonic inlet performance and buzz. Journal of Propulsion and Power, 36(2), 211-222. https://doi.org/10.2514/1.B37474
Eichorn, M., Barnhart, P., Davis, D., Vyas, M., & Slater, J. (2013). Effect of boundary-layer bleed hole inclination angle and scaling on flow coefficient behavior. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 424. https://doi.org/10.2514/6.2013-424
Fisher, A. (1986). Three-dimensional flow effects in a two-dimensional supersonic air intake. Journal of Propulsion and Power, 2(6), 546-551. https://doi.org/10.2514/3.22940
Fukuda, M., Hingst, W., & Reshotko, E. (1977). Bleed effects on shock/boundary-layer interactions in supersonic mixed compression inlets. Journal of Aircraft, 14(2), 151–156. https://doi.org/10.2514/3.58756
Giehler, J., Grenson, P., & Bur, R. (2024). Parameter influence on porous bleed performance for supersonic turbulent flows. Journal of Propulsion and Power, 40(1), 74-93. https://doi.org/10.2514/1.B39236
Green, J. (1970). Interaction between shock waves and turbulent boundary layers. Progress in Aerospace Sciences, 11, 235-340. https://doi.org/10.1016/0376-0421(70)90018-7
Hamed, A., Yeuan, J., & Shih, S. (1995). Shock-wave/boundary-layer interactions with bleed. II - effect of slot location. Journal of Propulsion and Power, 11(6), 1236–1241. https://doi.org/10.2514/3.23963
He, Y., Huang, H., & Yu, D. (2017). Investigation of corner separation and suction control in constant area duct. Aerospace and Science Technology, 66, 70-82. https://doi.org/10.1016/j.ast.2017.01.029
Herrmann, C., & Koschel, W. (2002). Experimental investigation of the internal compression inside a hypersonic intake, In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 4130. https://doi.org/10.2514/6.2002-4130
Herrmann, D., Blem, S., & Gulhan, A. (2011). Experimental study of boundary-layer bleed impact on ramjet inlet performance. Journal of Propulsion and Power, 27 (6), 1186–1195 https://doi.org/10.2514/1.B34223
Herrmann, D., Siebe, F., & Gulhan, A. (2013). Pressure Fluctuations (Buzzing) and Inlet Performance of an Airbreathing Missile. Journal of Propulsion and Power, 29(4), 839–848. https://doi.org/10.2514/1.B34629
Hirschen, C., Herrmann, D., & Gülhan, A. (2007). Experimental investigations of the performance and unsteady behaviour of a supersonic intake. Journal of Propulsion and Power, 23(3), 566–574. https://doi.org/10.2514/1.25103
Khan, A., Chidambaranathan, M., Verma, S., & Kumar, R. (2023) Swept shock/boundary-layer interaction control using micro-vortex generators. Shock Waves, 33(7), 553-567. https://doi.org/10.1007/s00193-023-01155-0
Kwak, E., & Lee, S. (2013). Numerical study of the effect of exit configurations on supersonic inlet buzz. In 31st AIAA Applied Aerodynamics Conference, San Diego, California. https://doi.org/10.2514/6.20133025
Liou, M., & Benson, T. (2010). Optimization of Bleed for Supersonic Inlet. In 13th AIAA/ISSMO multidisciplinary analysis optimization conference, 2010-9172. https://doi.org/10.2514/6.2010-9172
Menter, F. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605. https://doi.org/10.2514/3.12149
Narayanaswamy, M., & Funderburk, V. (2019). Experimental investigation of microramp control of an axisymmetric shock/boundary layer interaction. AIAA Journal, 57(4), 1594–1607. https://doi.org/10.2514/1.J057846
Pattnaik, S., & Rajan, N. (2022). Numerical investigation of impact of fixed-exit boundary-layer bleed on supersonic intake performance. Aerospace Science and Technology, 120, 107286. https://doi.org/10.1016/j.ast.2021.107286
Schülein, E., Schnepf, C., & Weiss, S. (2022). Concave bump for impinging-shock control in supersonic flows. AIAA Journal, 60(5), 2749–2766. https://doi.org/10.2514/1.J060799
Sethuraman, V., Kim, T., & Kim, H. (2021). Control of the oscillations of shock train using boundary layer suction. Aerospace and Science Technology, 118, 107012. https://doi.org/10.1016/j.ast.2021.107012
Slater, J. W. (2012). Improvements in modeling 90-degree bleed holes for supersonic inlets. Journal of Propulsion and Power, 28(4), 773-781. https://doi.org/10.2514/1.B34333
Soltani, M., Daliri, A., Younsi, J., & Farahani, M. (2016). Effects of bleed position on the stability of a supersonic inlet. Journal of Propulsion and Power, 32(5), 1153-1166. https://doi.org/10.2514/1.B36162
Soltani, M., Younsi, J., & Farahani, M. (2015). Effects of boundary-layer bleed parameters on supersonic intake performance. Journal of Propulsion and Power, 31(3), 826–836. https://doi.org/10.2514/1.B35461
Tian, S., Jin, L., Huang, W., & Shen, Y. (2023). Surrogate-based optimization on bump for shock wave/boundary layer interaction control. Acta Astronautica, 212, 139-151. https://doi.org/10.1016/j.actaastro.2023.08.008
Titchener, N., & Babinsky, H. (2013). Shock wave/boundary-layer interaction control using a combination of vortex generators and bleed. AIAA Journal, 51(5), 1221–1233. https://doi.org/10.2514/1.J052079
Wang, B., Sandham, N., Hu, Z., & Liu, W. (2015). Numerical study of oblique shock-wave/boundary-layer interaction considering sidewall effects. Journal of Fluid Mechanics, 767, 526-561. https://doi.org/10.1017/jfm.2015.58
Wang, Z., Chang, J., Li, Y., & Kong, C. (2021). Investigation of shock wave control by suction in a supersonic cascade. Aerospace Science and Technology, 108, 106382. https://doi.org/10.1016/j.ast.2020.106382
Wilcox, D. (1998). Turbulence Modeling for CFD. DCW Industries: La Canada, CA, USA.
Wong, W. (1974). The application of boundary layer suction to suppress strong shock-induced separation in supersonic inlets. In 10th Propulsion Conference, 1974-1063. https://doi.org/10.2514/6.1974-1063
Yamamoto, J., Kojima, Y., Kameda, M., Watanabe, Y., Hashimoto, A., & Aoyama, T. (2020). Prediction of the onset of supersonic inlet buzz. Aerospace Science and Technology, 96, 105523. https://doi.org/10.1016/j.ast.2019.105523
Zhang, J., Yuan, H., Wang, Y., & Huang, G. (2020). Experiment and numerical investigation of flow control on a supersonic inlet diffuser. Aerospace and Science Technology, 106, 106182. https://doi.org/10.1016/j.ast.2020.106182
Zhang, Y., Tan, H., Du, M., & Wang, D. (2015). Control of shock/ boundary-layer interaction for hypersonic inlets by highly swept microramps. Journal of Propulsion and Power, 31(1), 133-143. https://doi.org/10.2514/1.B35299
Zhang, Y., Tan, H., Li, J., & Yin, N. (2019). Control of cowl-shock/boundary-layer interactions by deformable shape-memory alloy bump. AIAA Journal, 57(2), 696–705. https://doi.org/10.2514/1.J057409
Zhang, Y., Wang, S., Yang, D., & Dong, B. (2025). Numerical Study on the Influence of Suction near Expansion Corner on Separation Bubble. Aerospace, 12(2), 89. https://doi.org/10.3390/aerospace12020089
Zhou, Y., Zhao, Y., & Zhao, Y. (2019). A study on the separation length of shock wave/turbulent boundary layer interaction. International Journal of Aerospace Engineering, 2019(1), 8323787. https://doi.org/10.1155/2019/8323787
Zuo, F., & Huang, G. (2018). Numerical investigation of bleeding control method onsection-controllable wave-catcher intakes. Acta Astronaut, 151, 572–584. https://doi.org/10.1016/j.actaastro.2018.06.059