Multi-bubble Formation and Pressure Characterization under Mixed Injection Conditions

Document Type : Regular Article

Authors

1 College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China

2 Beijing Key Laboratory of Flow and Heat Transfer of Phase Changing in Micro and Small Scale, Beijing 100044, China

10.47176/jafm.19.1.3568

Abstract

This study investigates the bubble formation process and the associated pressure fluctuation characteristics under mixed injection conditions. The experimental findings demonstrate distinct bubble generation modes depending on the syringe size. Specifically, when employing a syringe with an inner diameter (I.D.) of 0.6 mm, no significant liquid level lowering is observed in the syringe, and bubble formation occurs exclusively in a dripping type. In contrast, when utilizing a 0.9-mm I.D. syringe, the bubble formation process exhibits a transitional behavior, initiating in a jetting type before transitioning to a dripping type. This transitional behavior, termed the jetting-to-dripping type, is characterized by an obvious lowering of the gas-liquid interface in the syringe. This study presents the development and validation of two distinct theoretical models to elucidate the pressure variations associated with bubble generation modes: the drip model and the jet model. The drip model demonstrated exceptional predictive accuracy in describing pressure characteristics during dripping-type bubble formation, showing remarkable congruence with experimental observations. In contrast, the jet model effectively captured the pressure fluctuation patterns associated with jetting-type bubble formation. Both models underwent validations across diverse experimental conditions, including variations in gas and liquid types, consistently demonstrating good predictive performance. Furthermore, the investigation systematically evaluated the influences of various parameters, specifically the gas chamber volume and gas supply rate, on the pressure dynamics during bubble formation. These findings provide valuable insights for the precise control and optimization of bubble generation processes in various scientific and industrial applications.

Keywords

Main Subjects


Ambravaneswaran, B., Subramani, H. J., Phillips, S. D., & Basaran, O. A. (2004). Dripping-Jetting Transitions in a Dripping Faucet. Physical Review Letters, 93(3), 034501. https://doi.org/10.1103/PhysRevLett.93.034501
Babu, R., & Das, M. K. (2018). Effects of surface-active agents on bubble growth and detachment from submerged orifice. Chemical Engineering Science, 179, 172–184. https://doi.org/10.1016/j.ces.2018.01.028
Boubendir, L., Chikh, S., & Tadrist, L. (2020). On the surface tension role in bubble growth and detachment in a micro-tube. International Journal of Multiphase Flow, 124, 103196. https://doi.org/10.1016/j.ijmultiphaseflow.2019.103196
Cano-Lozano, J. C., Bolaños-Jiménez, R., Gutiérrez-Montes, C., & Martínez-Bazán, C. (2017). On the bubble formation under mixed injection conditions from a vertical needle. International Journal of Multiphase Flow, 97, 23–32. https://doi.org/10.1016/j.ijmultiphaseflow.2017.07.016
Chen, W., Huang, G., Hu, Y., Yin, J., & Wang, D. (2022). Experimental study on continuous spectrum bubble generator with a new overlapping bubbles image processing technique. Chemical Engineering Science, 254, 117613. https://doi.org/10.1016/j.ces.2022.117613
Davidson, J. F., & Schüler, B. O. G. (1997). Bubble formation at an orifice in a viscous liquid. Chemical Engineering Research and Design, 75, S105–S115. https://doi.org/10.1016/S0263-8762(97)80008-1
Dzienis, P., & Mosdorf, R. (2023). Liquid pressure fluctuations around a needle during bubble departures. Meccanica, 58(7), 1307–1313. https://doi.org/10.1007/s11012-023-01678-x
Dzienis, P., Mosdorf, R., & Augustyniak, J. (2016). Liquid penetration inside glass nozzle during bubble departures in water. Journal of Physics: Conference Series, 745, 032048. https://doi.org/10.1088/1742-6596/745/3/032048
Fu, J., Liu, Y., Zhang, C., Wang, C., Sun, S., Dong, H., She, Y., & Zhang, F. (2025). Microbial in-situ foam generation for enhanced oil recovery. Physics of Fluids, 37(1), 017175. https://doi.org/10.1063/5.0251406
González-Sierra, N. E., Perez-Corte, J. M., Padilla-Martinez, J. P., Cruz-Vanegas, S., Bonfadini, S., Storti, F., Criante, L., & Ramos-García, R. (2023). Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation. Journal of Biomedical Optics, 28(07). https://doi.org/10.1117/1.JBO.28.7.075004
Goshima, T., Tsuji, Y., Mizuta, K., & Nii, S. (2022). Development of a fine bubble generator through the active control of gas chamber pressure. Chemical Engineering Journal Advances, 11, 100350. https://doi.org/10.1016/j.ceja.2022.100350
Guo, W., He, B., Mao, H., Zhang, M., Hua, L., & Meng, Z. (2019). Mechanism of Bubble Formation in a Combined In-Mold Decoration and Microcellular Foaming Injection Molding Process. Fibers and Polymers, 20(7), 1526–1537. https://doi.org/10.1007/s12221-019-8777-3
Haas, T., Schubert, C., Eickhoff, M., & Pfeifer, H. (2021). A Review of Bubble Dynamics in Liquid Metals. Metals, 11(4), 664. https://doi.org/10.3390/met11040664
Ho, W.-S., Lin, W.-H., Verpoort, F., Hong, K.-L., Ou, J.-H., & Kao, C.-M. (2023). Application of novel nanobubble-contained electrolyzed catalytic water to cleanup petroleum-hydrocarbon contaminated soils and groundwater: A pilot-scale and performance evaluation study. Journal of Environmental Management, 347, 119058. https://doi.org/10.1016/j.jenvman.2023.119058
Krishnamurthi, S., Kumar, R., & Kuloor, N. R. (1968). Bubble Formation in Viscous Liquids under Constant Flow Conditions. Industrial & Engineering Chemistry Fundamentals, 7(4), 549–554. https://doi.org/10.1021/i160028a004
Kulkarni, A. A., & Joshi, J. B. (2005). Bubble Formation and Bubble Rise Velocity in Gas−Liquid Systems: A Review. Industrial & Engineering Chemistry Research, 44(16), 5873–5931. https://doi.org/10.1021/ie049131p
Li, J., Bulusu, V., & Gupta, N. R. (2008). Buoyancy-driven motion of bubbles in square channels. Chemical Engineering Science, 63(14), 3766–3774. https://doi.org/10.1016/j.ces.2008.04.041
Li, M., Li, W., & Hu, L. (2020). Jet formation and breakup inside highly deformed bubbles. International Journal of Heat and Mass Transfer, 163, 120507. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120507
Li, X., Shi, H., Wang, X., Hu, X., Xu, C., & Shao, W. (2022). Direct synthesis of graphene by blowing CO2 bubble in Mg melt for the seawater/oil pollution. Journal of Alloys and Compounds, 921, 165938. https://doi.org/10.1016/j.jallcom.2022.165938
Mei, L., Chen, X., Liu, B., Zhang, Z., Hu, T., Liang, J., Wei, X., & Wang, L. (2023). Experimental Study on Bubble Dynamics and Mass Transfer Characteristics of Coaxial Bubbles in Petroleum-Based Liquids. ACS Omega, 8(19), 17159–17170. https://doi.org/10.1021/acsomega.3c01526
Mi, S., Weldetsadik, N. T., Hayat, Z., Fu, T., Zhu, C., Jiang, S., & Ma, Y. (2019). Effects of the Gas Feed on Bubble Formation in a Microfluidic T-Junction: Constant-Pressure versus Constant-Flow-Rate Injection. Industrial & Engineering Chemistry Research, 58(23), 10092–10105. https://doi.org/10.1021/acs.iecr.9b01262
Mirsandi, H., Smit, W. J., Kong, G., Baltussen, M. W., Peters, E. A. J. F., & Kuipers, J. A. M. (2020). Influence of wetting conditions on bubble formation from a submerged orifice. Experiments in Fluids, 61(3), 83. https://doi.org/10.1007/s00348-020-2919-7
Mohseni, E., Chiamulera, M. E., Reinecke, S. F., & Hampel, U. (2022). Bubble formation from sub-millimeter orifices: Experimental analysis and modeling. Chemical Engineering and Processing - Process Intensification, 173, 108809. https://doi.org/10.1016/j.cep.2022.108809
Mohseni, E., Reinecke, S. F., & Hampel, U. (2023). Controlled bubble formation from an orifice through harmonic gas pressure modulation. Chemical Engineering Journal, 470, 143953. https://doi.org/10.1016/j.cej.2023.143953
Mohseni, E., Ziegenhein, T., Reinecke, S. F., & Hampel, U. (2021). Bubble formation from sub-millimeter orifices under variable gas flow conditions. Chemical Engineering Science, 242, 116698. https://doi.org/10.1016/j.ces.2021.116698
Oguz, H. N., & Prosperetti, A. (1993). Dynamics of bubble growth and detachment from a needle. Journal of Fluid Mechanics, 257(1), 111. https://doi.org/10.1017/S0022112093003015
Park, Y., Lamont Tyler, A., & De Nevers, N. (1977). The chamber orifice interaction in the formation of bubbles. Chemical Engineering Science, 32(8), 907–916. https://doi.org/10.1016/0009-2509(77)80077-8
Quan, H., Li, J., Sun, J., Shi, G., Li, Y., Li, Y., Qiao, J., & Li, Y. (2025). Gas–liquid separation mechanisms and bubble dynamics in a helical axial multiphase flow pump. Physics of Fluids, 37(2), 023334. https://doi.org/10.1063/5.0251497
Ruiz-Rus, J., Bolaños-Jiménez, R., Sevilla, A., & Martínez-Bazán, C. (2020). Bubble pressure requirements to control the bubbling process in forced co-axial air-water jets. International Journal of Multiphase Flow, 133, 103467. https://doi.org/10.1016/j.ijmultiphaseflow.2020.103467
Shahidani, A., Mokhtari-Dizaji, M., & Shankayi, Z. (2024). The effect of dual-frequency sonication parameters on the oscillatory behavior of microbubble in blood fluid. Physics of Fluids, 36(11), 111912. https://doi.org/10.1063/5.0236627
Wei, C., Hao, R., Zhu, D., Khudayberdi, N., & Liu, C. (2025). Improving the hydraulic performance of aerated irrigation pipeline. Physics of Fluids, 37(2), 023333. https://doi.org/10.1063/5.0249475
Xiang, S., Jian, Z., Kherbeche, A., & Thoraval, M. J. (2022). Experimental study of single bubble rising near vertical wall in hele-shaw cell. Chemical Engineering Science, 255, 117647. https://doi.org/10.1016/j.ces.2022.117647
Yang, B., Jafarian, M., Freidoonimehr, N., & Arjomandi, M. (2023). Controlled Bubble Formation From a Microelectrode Single Bubble Generator. Journal of Fluids Engineering, 145(11), 111401. https://doi.org/10.1115/1.4062962
Yang, Y., Shan, M., Kan, X., Duan, K., Han, Q., & Juan, Y. (2023). Thermodynamic effects of gas adiabatic index on cavitation bubble collapse. Heliyon, 9(10), e20532. https://doi.org/10.1016/j.heliyon.2023.e20532
Yu, X., Wu, Y., Li, Y., Yang, Z., & Ma, Y. (2020). The formation of satellite droplets in micro-devices due to the rupture of neck filament. Chemical Engineering Research and Design, 153, 435–442. https://doi.org/10.1016/j.cherd.2019.11.016
Zhang, J., Yu, Y., Qu, C., & Zhang, Y. (2017). Experimental study and numerical simulation of periodic bubble formation at submerged micron-sized nozzles with constant gas flow rate. Chemical Engineering Science, 168, 1–10. https://doi.org/10.1016/j.ces.2017.04.012
Zhao, K., & Sun, L. (2024). Superwetting Capillary Tubes: Surface Science under Confined Space. Langmuir, 40(18), 9319–9327. https://doi.org/10.1021/acs.langmuir.3c04044
Zhou, Y., Yang, Y., Zhu, X., Ye, D., Chen, R., & Liao, Q. (2021). Bubble-trap layer for effective removing gas bubbles and stabilizing power generation in direct liquid fuel cell. Journal of Power Sources, 507, 230260. https://doi.org/10.1016/j.jpowsour.2021.230260