Babu, R., & Das, M. K. (2018). Effects of surface-active agents on bubble growth and detachment from submerged orifice.
Chemical Engineering Science,
179, 172–184.
https://doi.org/10.1016/j.ces.2018.01.028
Cano-Lozano, J. C., Bolaños-Jiménez, R., Gutiérrez-Montes, C., & Martínez-Bazán, C. (2017). On the bubble formation under mixed injection conditions from a vertical needle.
International Journal of Multiphase Flow,
97, 23–32.
https://doi.org/10.1016/j.ijmultiphaseflow.2017.07.016
Chen, W., Huang, G., Hu, Y., Yin, J., & Wang, D. (2022). Experimental study on continuous spectrum bubble generator with a new overlapping bubbles image processing technique. Chemical Engineering Science, 254, 117613. https://doi.org/10.1016/j.ces.2022.117613
Fu, J., Liu, Y., Zhang, C., Wang, C., Sun, S., Dong, H., She, Y., & Zhang, F. (2025). Microbial
in-situ foam generation for enhanced oil recovery.
Physics of Fluids,
37(1), 017175.
https://doi.org/10.1063/5.0251406
González-Sierra, N. E., Perez-Corte, J. M., Padilla-Martinez, J. P., Cruz-Vanegas, S., Bonfadini, S., Storti, F., Criante, L., & Ramos-García, R. (2023). Bubble dynamics and speed of jets for needle-free injections produced by thermocavitation.
Journal of Biomedical Optics,
28(07).
https://doi.org/10.1117/1.JBO.28.7.075004
Goshima, T., Tsuji, Y., Mizuta, K., & Nii, S. (2022). Development of a fine bubble generator through the active control of gas chamber pressure.
Chemical Engineering Journal Advances,
11, 100350.
https://doi.org/10.1016/j.ceja.2022.100350
Guo, W., He, B., Mao, H., Zhang, M., Hua, L., & Meng, Z. (2019). Mechanism of Bubble Formation in a Combined In-Mold Decoration and Microcellular Foaming Injection Molding Process.
Fibers and Polymers,
20(7), 1526–1537.
https://doi.org/10.1007/s12221-019-8777-3
Ho, W.-S., Lin, W.-H., Verpoort, F., Hong, K.-L., Ou, J.-H., & Kao, C.-M. (2023). Application of novel nanobubble-contained electrolyzed catalytic water to cleanup petroleum-hydrocarbon contaminated soils and groundwater: A pilot-scale and performance evaluation study.
Journal of Environmental Management,
347, 119058.
https://doi.org/10.1016/j.jenvman.2023.119058
Krishnamurthi, S., Kumar, R., & Kuloor, N. R. (1968). Bubble Formation in Viscous Liquids under Constant Flow Conditions.
Industrial & Engineering Chemistry Fundamentals,
7(4), 549–554.
https://doi.org/10.1021/i160028a004
Kulkarni, A. A., & Joshi, J. B. (2005). Bubble Formation and Bubble Rise Velocity in Gas−Liquid Systems: A Review.
Industrial & Engineering Chemistry Research,
44(16), 5873–5931.
https://doi.org/10.1021/ie049131p
Li, X., Shi, H., Wang, X., Hu, X., Xu, C., & Shao, W. (2022). Direct synthesis of graphene by blowing CO2 bubble in Mg melt for the seawater/oil pollution.
Journal of Alloys and Compounds,
921, 165938.
https://doi.org/10.1016/j.jallcom.2022.165938
Mei, L., Chen, X., Liu, B., Zhang, Z., Hu, T., Liang, J., Wei, X., & Wang, L. (2023). Experimental Study on Bubble Dynamics and Mass Transfer Characteristics of Coaxial Bubbles in Petroleum-Based Liquids.
ACS Omega,
8(19), 17159–17170.
https://doi.org/10.1021/acsomega.3c01526
Mi, S., Weldetsadik, N. T., Hayat, Z., Fu, T., Zhu, C., Jiang, S., & Ma, Y. (2019). Effects of the Gas Feed on Bubble Formation in a Microfluidic T-Junction: Constant-Pressure versus Constant-Flow-Rate Injection.
Industrial & Engineering Chemistry Research,
58(23), 10092–10105.
https://doi.org/10.1021/acs.iecr.9b01262
Mirsandi, H., Smit, W. J., Kong, G., Baltussen, M. W., Peters, E. A. J. F., & Kuipers, J. A. M. (2020). Influence of wetting conditions on bubble formation from a submerged orifice.
Experiments in Fluids,
61(3), 83.
https://doi.org/10.1007/s00348-020-2919-7
Mohseni, E., Chiamulera, M. E., Reinecke, S. F., & Hampel, U. (2022). Bubble formation from sub-millimeter orifices: Experimental analysis and modeling.
Chemical Engineering and Processing - Process Intensification,
173, 108809.
https://doi.org/10.1016/j.cep.2022.108809
Mohseni, E., Reinecke, S. F., & Hampel, U. (2023). Controlled bubble formation from an orifice through harmonic gas pressure modulation.
Chemical Engineering Journal,
470, 143953.
https://doi.org/10.1016/j.cej.2023.143953
Mohseni, E., Ziegenhein, T., Reinecke, S. F., & Hampel, U. (2021). Bubble formation from sub-millimeter orifices under variable gas flow conditions.
Chemical Engineering Science,
242, 116698.
https://doi.org/10.1016/j.ces.2021.116698
Quan, H., Li, J., Sun, J., Shi, G., Li, Y., Li, Y., Qiao, J., & Li, Y. (2025). Gas–liquid separation mechanisms and bubble dynamics in a helical axial multiphase flow pump.
Physics of Fluids,
37(2), 023334.
https://doi.org/10.1063/5.0251497
Ruiz-Rus, J., Bolaños-Jiménez, R., Sevilla, A., & Martínez-Bazán, C. (2020). Bubble pressure requirements to control the bubbling process in forced co-axial air-water jets.
International Journal of Multiphase Flow,
133, 103467.
https://doi.org/10.1016/j.ijmultiphaseflow.2020.103467
Shahidani, A., Mokhtari-Dizaji, M., & Shankayi, Z. (2024). The effect of dual-frequency sonication parameters on the oscillatory behavior of microbubble in blood fluid.
Physics of Fluids,
36(11), 111912.
https://doi.org/10.1063/5.0236627
Wei, C., Hao, R., Zhu, D., Khudayberdi, N., & Liu, C. (2025). Improving the hydraulic performance of aerated irrigation pipeline.
Physics of Fluids,
37(2), 023333.
https://doi.org/10.1063/5.0249475
Xiang, S., Jian, Z., Kherbeche, A., & Thoraval, M. J. (2022). Experimental study of single bubble rising near vertical wall in hele-shaw cell.
Chemical Engineering Science,
255, 117647.
https://doi.org/10.1016/j.ces.2022.117647
Yang, B., Jafarian, M., Freidoonimehr, N., & Arjomandi, M. (2023). Controlled Bubble Formation From a Microelectrode Single Bubble Generator.
Journal of Fluids Engineering,
145(11), 111401.
https://doi.org/10.1115/1.4062962
Yang, Y., Shan, M., Kan, X., Duan, K., Han, Q., & Juan, Y. (2023). Thermodynamic effects of gas adiabatic index on cavitation bubble collapse.
Heliyon,
9(10), e20532.
https://doi.org/10.1016/j.heliyon.2023.e20532
Yu, X., Wu, Y., Li, Y., Yang, Z., & Ma, Y. (2020). The formation of satellite droplets in micro-devices due to the rupture of neck filament.
Chemical Engineering Research and Design,
153, 435–442.
https://doi.org/10.1016/j.cherd.2019.11.016
Zhang, J., Yu, Y., Qu, C., & Zhang, Y. (2017). Experimental study and numerical simulation of periodic bubble formation at submerged micron-sized nozzles with constant gas flow rate.
Chemical Engineering Science,
168, 1–10.
https://doi.org/10.1016/j.ces.2017.04.012
Zhou, Y., Yang, Y., Zhu, X., Ye, D., Chen, R., & Liao, Q. (2021). Bubble-trap layer for effective removing gas bubbles and stabilizing power generation in direct liquid fuel cell.
Journal of Power Sources,
507, 230260.
https://doi.org/10.1016/j.jpowsour.2021.230260