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ABSTRACT

Conventional hydraulic design methodologies for reversible counter-rotating
axial flow pumps predominantly adhere to traditional axial flow pump design
principles. However, existing optimization approaches inadequately analyze the
individual design parameters, their synergistic interactions, and relative
contributions, leading to suboptimal pump efficiency and compromised bi-
directional multi-objective operational performance. To overcome these
limitations, this study proposes a surrogate model-based framework integrated
with an automated optimization platform developed in Isight software. A
comprehensive evaluation of 120 simulated sample points is conducted to
quantify the effects of geometric parameters on hydraulic performance. The
adaptive modified genetic algorithm (AMGA) is employed to maximize
operational efficiency through systematic impeller parameter optimization
within the design space, while satisfying predefined pump specifications.
Sensitivity analysis identified the angle of attack as the most influential
parameter, accounting for 51.28% and 56.2% of the total variance in head and
efficiency, respectively. Post-optimization results demonstrated a 3% increase
in simulated efficiency at the design operating point, accompanied by a 14.5 kW
reduction in shaft power consumption. These findings establish a robust
foundation for advancing the multi-objective design optimization of reversible
counter-rotating axial flow pumps.

1. INTRODUCTION
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Axial flow pumps are critical components in
hydraulic engineering systems, including agricultural
irrigation and urban water management, owing to their
high volumetric flow capacity. Nevertheless, when
operating in reverse-rotation mode, these pumps
demonstrate suboptimal efficiency accompanied by
substantial energy dissipation. To address the demand for
bidirectional fluid transfer, reversible counter-rotating
axial flow pumps have been introduced. Featuring a
symmetrically designed impeller, these pumps enable
dual-directional operation through motor rotation reversal
(Harris et al., 2020), rendering them ideal for riverine and
coastal pumping stations requiring alternating irrigation
and drainage cycles. Distinct from conventional axial flow
pumps, reversible counter-rotating axial flow pumps
exhibit multifunctional advantages: structural
compactness, minimized spatial footprint, cost-effective

stability, and simplified maintenance protocols. These
attributes have driven their widespread adoption in tidal
energy systems, marine propulsion, and hydraulic
infrastructure. Furthermore, their unique bidirectional
capability — efficient operation in both pump and turbine
modes — has positioned reversible counter-rotating axial
flow pumps as a prominent research focus in fluid
machinery. Despite these advancements, emerging
challenges  persist. ~ Current  hydraulic  design
methodologies for reversible counter-rotating axial flow
pumps predominantly replicate conventional axial flow
pump frameworks (Hoffstaedt et al., 2022), leading to
frequently observed discrepancies between achieved and
anticipated operational efficiencies.

Reversible counter-rotating axial flow pumps
represent an advanced variant of axial flow pumps. Unlike
conventional designs utilizing fixed guide vanes (Ma &
Wang, 2017; Shi et al., 2015), these pumps incorporate S-
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NOMENCLATURE

o attack angle P shaft power

LT cascade density at the impeller rim DOE Design of Experiment

N root and cascade density multiplier NPSHr Net Positive Suction Head Required
S axial interstage gap Eff efficiency of the pump
LT@high/low LT at a high/low level p the density of water

N@high/low N at a high/low level S, the regression coefficients
S@high/low S at a high/low level

shaped impellers with bidirectional functionality, enabling
equivalent hydraulic performance in both forward and
reverse operational modes (Xie et al., 2022; Fahlbeck et
al., 2021; Vashahi et al., 2017). The distinctive two-stage
impeller configuration directs fluid sequentially through
the primary and secondary impellers. While this
architecture enhances pump head and cavitation resistance
(Zhang et al., 2020a), the absence of systematic hydraulic
optimization for inter-stage flow dynamics and parametric
design frequently results in suboptimal overall efficiency,
ultimately compromising practical performance. Recent
investigations have advanced understanding of these
systems. An et al. (2023) performed computational fluid
dynamics (CFD) simulations to evaluate blade count
effects on pump-mode performance, elucidating
mechanisms governing tip leakage vortices, wake
interactions, and leading-edge flow impacts on
downstream impellers. Chen et al. (2023) demonstrated
that blade angle modifications substantially alter internal
flow patterns and hydraulic characteristics, particularly
vortex formation at trailing impellers. Xiuli et al. (2020)
established correlations between inter-stage clearance
dimensions and critical performance metrics (head,
efficiency) through parametric hydraulic design of S-blade
configurations. The inherent complexity of reversible
counter-rotating axial flow pump design necessitates
comprehensive consideration of inter-stage matching and
hydrodynamic interference (Kan et al, 2021).
Consequently, single-objective optimization approaches
prove inadequate. To achieve further efficiency
improvements, a systematic optimization framework must
be implemented that accounts for parameter interactions,
relative contribution weights, and multi-objective
operational constraints.

The evolution of turbomachinery design optimization
has progressed substantially with advances in
computational technology and maturation of optimization
theory, evolving from conventional gradient-based
approaches to advanced machine learning (ML)
methodologies. This paradigm shift has been propelled by
enhanced computational power and refined understanding
of fluid-structure interactions. Modern frameworks
effectively coordinate multiple design parameters and
constraints while optimizing critical performance metrics,
including efficiency, pressure ratio, and structural
integrity. The research paradigm has consequently shifted
from single to multi-objective optimization, which enables
concurrent resolution of conflicting objectives through
Pareto-optimal solution sets. Dominance criteria serve as
principal evaluators of solution quality, exemplified by
Sharma & Kumar (2022) application of the elite non-
dominated sorting genetic algorithm-II (NSGA-II) to

optimize a two-stage LNG cryogenic submerged pump.
Wang et al. (2022), aiming to minimize energy loss and
optimize suction performance under the 0.7 Q operating
condition. Post-optimization, the active suppression of
impinging flow, diverging flow, and rotating stall in the
two-stage impeller reduced the total entropy generation
rate by 6.18%, while the pump head decreased by only
1.25%. Kim et al. (2016) combined a hybrid multi-
objective genetic algorithm with an agent model based on
Latin Hypercube Sampling, optimizing the hub and tip
blade angles of the two-stage impeller, resulting in pump
efficiency improvements of 0.80% and 1.02%, and turbine
efficiency improvements of 0.50% and 0.27%,
respectively. Zhang et al. (2020b) proposed a rotational
speed control method for the front and rear rotors,
significantly enhancing the performance of counter-
rotating axial flow pumps across a wide flow rate range
and optimizing energy efficiency through a fast and
effective performance prediction model. Kim et al. (2018)
used the hub and tip blade angles of the rear impeller in
the counter-rotating pump turbine as design variables,
combining efficiency and weighting factors into a single
objective function, and optimized using Latin Hypercube
Sampling and radial basis neural network agent models.
Post-optimization, the pump and turbine mode efficiencies
increased by 1.01% and 0.52%, respectively, though the
turbine mode flow rate is reduced. Hu et al. (2023)
proposed a multi-objective optimization strategy for
impellers with a broader operating range, optimizing blade
control parameters and revealing the relationship between
rotor geometric characteristics and performance,
particularly the effects of blade loading and blade tilt angle
on efficiency, cavitation resistance, and stability. Post-
optimization, the peak pump efficiency increased by
0.45%, the NPSHr by 0.36 m, and the rated turbine
efficiency increased by 0.12%. Gao et al. (2018) applied
bi-objective and tri-objective optimization methods for
hydraulic optimization of the inlet and outlet diffusion
sections of a pumped storage plant, generating an
approximation function through Response Surface
Methodology (RSM) and using the Non-dominated
Sorting Genetic Algorithm (NSGA-II) to perform
optimization (Xu et al., 2019; Huang et al., 2023). The
head loss is reduced by 2.71%, the wvelocity non-
uniformity by 21.05%, and the discharge non-uniformity
by 2.24%. Qin et al. (2022) introduced the concepts of
‘swept’, ‘curved (inclined)’, and ‘twisted’, proposing nine
parameters to control the geometry of the high-pressure
side and establishing a multi-objective optimal design
system based on the DOE (Design of Experiment) process.
The efficiency of the optimized impeller increased by
1.17% and 0.46% in pump mode and turbine mode,
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respectively. Mansour et al. (2022) employed a multi-
objective optimization approach to determine the optimal
configuration of two mixed-phase liquids flowing in a
spiral tube, utilizing the Flow Optimization Library
(OPAL) to automate the numerical simulation process and
derive a correlation between the predicted pressure drop
and mixing coefficients, achieving optimal simultaneous
optimization of mixing efficiency and minimum pump
power.

Current multi-objective optimization studies for
reversible counter-rotating axial flow pumps exhibit two
critical limitations: (1) insufficient systematic analysis of
individual parameter impacts, synergistic interactions, and
relative contribution weights on hydraulic performance,
leading to constrained efficiency gains post-optimization.
(2) inadequate experimental validation of pre- and post-
optimization impeller configurations. To bridge these
gaps, this study establishes an integrated framework
combining parametric optimization with experimental
verification. To meet the design requirements of the pump
and maximize the efficiency, this study is based on the
DOE design, selecting four parameterized variables:
attack angle (), cascade density at the impeller rim (LT),
root and cascade density multiplier (N), axial interstage
gap (S), These variables are analyzed in terms of their
main effects, interaction effects, and contribution rates to
reveal their influence on performance characteristics.
Employing computational fluid dynamics (CFD)
simulations coupled with the adaptive multi-objective
genetic  algorithm (AMGA), we executed global
optimization within the design space under constrained
head requirements. Finally, the performance improvement
before and after optimization is validated through
experiments. This systematic approach demonstrates
significant potential for advancing the hydraulic
performance ceiling of bidirectional pump systems.

2. MODEL AND METHODS

2.1 Geometric Modeling

The reversible counter-rotating axial flow pump
distinguishes itself from conventional reversible axial
flow pumps through its innovative dual-stage impeller
configuration. While traditional reversible pumps achieve
reverse operation by inverting a unidirectional impeller,
the present design replaces the rear guide vane with a
second-stage counter-rotating impeller. This study focuses
on a blade profile featuring a symmetrically reversed S-
shaped airfoil, engineered to maintain consistent hydraulic
performance across bidirectional flow conditions.

Parametric modelling is achieved by using MATLAB
outputs and is modelled by CFturbo. As shown in Fig. 1,
the computational domain encompasses five critical
components to enable precise characterization of
parametric effects on hydraulic performance and internal
flow dynamics: inlet section, first-stage impeller,
interstage gap, second-stage impeller, and outlet section.

The inlet and outlet sections are configured with
4D pipe lengths to ensure flow field stabilization
and computational accuracy at boundary conditions. Key

Inlet section Interstage gap  Outlet section

| | & i A | |
TR
e |
Al A
First-stage Second-stage
impeller  impeller

Fig. 1 3D model of reversible counter-rotating axial
flow pump

Table 1 Main parameters of the impeller

Parameter Symbol Value
Flow rate (m*h) 0 21600
Design head (m) H, 53
Rotational speed (r/min) ng 300
Hub diameter (mm) dh 416
Number of blades z 3
Impeller diameter (mm) D 1300
Design interstage gap
(mm) Sa 220
_z
13119(75 31
b
Blade Profile

Development Diagram

\\\\

NGNS

Blade Profile
Development Diagram

Fig. 2 Parameter modelling variables

geometric parameters governing impeller performance are
specified in Table 1.

As shown in Fig. 2, the 4 parameterized variables of
the reversible counter-rotating axial flow pump are
marked in the figure.

2.2 Numerical Simulation
2.2.1 Numerical Schemes and Boundary Conditions

The controlling equations of fluid motion include the
continuity equation, energy conservation equation, and
momentum conservation equation. As the medium in the
hydraulic machinery is incompressible water, generally,
the energy conservation equation is not considered.
Control equations by Reynolds time averaged processing
become:
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where pv; v;' is the Reynolds stress term due to turbulent
motion, ¥ is the time-averaged velocity, m/s, p is the fluid
density, kg/m?, and p is the dynamic viscosity, Pa-s.

In this study, ANSYS CFX — a finite volume method-
based solver — is employed for numerical simulations,
with the RNG k-¢ turbulence model selected to resolve
turbulent flow characteristics. This turbulence model
represents an industry-standard approach that has been
extensively  validated for practical engineering
applications, particularly in accurately capturing vortex
formation under high strain rate conditions (Shao & Zhao,
2019).

For the forward operation mode of the pump, the
rotational speed is initially set to 300 r/min, with the first-
stage and second-stage impellers rotating in opposite
directions. The dynamic-static interface between rotating
and stationary domains is treated using the frozen rotor
method. The reference pressure is defined as 0 Pa, while
the inlet boundary condition is specified as a pressure inlet
with atmospheric pressure (101.325 kPa). The outlet
boundary condition is configured as a mass flow outlet
with a fixed value of 6000 kg/s. Wall boundaries adopt
standard wall functions with no-slip conditions. The
solution convergence criteria require all residual values to
reach below 1x107° The convection term of the
momentum equation is discretized using the upwind
scheme, while the turbulent transport equations employ
first-order spatial discretization. These numerical settings
ensure solution stability while maintaining acceptable
computational efficiency for the complex bidirectional
flow simulations.

2.2.2 Grid Division and Independence Verification

The computational domain is meshed using ANSYS
ICEM with a multi-zone strategy. Refined grids are
applied to the impeller blades and axial interstage gap to
resolve complex flow features, while coarser grids are
adopted for the inlet and outlet sections to optimize
computational efficiency. To validate grid independence
without compromising simulation accuracy or incurring
excessive computational costs, a systematic grid
convergence analysis is performed. The test results are
presented in Fig. 3, where Eff denotes pump efficiency.

By observing Fig. 3, it can be found that when the
grid count increases from 6.91 million to 8.08 million
elements, the head and efficiency curves exhibit steep
gradients with significant amplitude fluctuations. Beyond
8.08 million elements, these curves stabilize with minimal
variation (<0.5%) under increasing grid density,
indicating achieved mesh independence. Consequently,
the optimal grid count is determined as 8.08 million
elements. The meshing scheme uses a 23 mm element size
for the impellers and interstage regions, and 30 mm for
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Fig. 3 Grid independence verification
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impeller

Inlet section

Outlet section

Fig. 4 Grid diagram of reversible counter-rotating
axial flow pump

other components. The final adopted mesh comprises 8.08
million elements, distributed with 3.22 million in the inlet
section, 2.56 million in the outlet section, 1.02 million for
the first-stage impeller, 1.02 million for the second-stage
impeller, and 260,000 in the interstage region, as
visualized in Fig. 4.

2.3 Optimal Design Method
2.3.1 Isight Platform Building

This study establishes an automated simulation
workflow through the Isight integration platform, building
upon the previously developed parametric modeling
framework. As illustrated in Fig. 5, Isight orchestrates the
sequential execution of all required numerical simulation
tools through predefined process chains (Nyein et al.,
2016).

After the post-flow field analysis, the hydraulic head
and operational efficiency of the pump are systematically
extracted as output metrics, subsequently mapped to
predefined response variables within the Isight
framework.
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Fig. 6 Proxy model process

A Latin hypercube sampling (LHS) strategy (Cui et
al., 2018) is implemented for input parameter
optimization, ensuring design space uniformity and result
reliability. This study employs 120 strategically
distributed sample points (see Schedule A) to
comprehensively characterize the parameter-performance
relationship.

2.3.2 Proxy Model

The experimental design yields 120 constrained
parameter sets, which are utilized to construct surrogate
models through response surface methodology (RSM)
(Kim et al., 2021). These models establish continuous
functional relationships between input factors and output
responses (Bahrami & James, 2023), enabling the
identification of optimal design configurations within the
parameter space. The workflow for the surrogate modeling
is shown in Fig. 6.

The surrogate modeling process utilizes the 120
experimental sample points obtained from the preceding
design phase, with 90 datasets allocated for model
construction and the remaining 30 reserved for error
quantification. A comparative analysis of polynomial
response surface models (second to fourth-order) is
conducted for hydraulic head, efficiency, and shaft power
parameters. Evaluation metrics revealed that second-order
polynomial models demonstrated superior fitting accuracy
with R? values of 0.99828 (head), 0.99491 (efficiency),
and 0.99862 (shaft power), all exceeding the
predetermined threshold of 0.9. Consequently, second-
order response surface approximations are adopted for
subsequent optimization iterations to balance numerical
precision with operational efficiency.

2.3.3 Multi-objective Optimal Design

At present, The Multi-Objective Genetic Algorithm
(MOGA) implements the Pareto optimality criterion for
fitness evaluation (May et al., 2015), and if a solution is

more improved than the previous generation in the sense
of Pareto optimum, then it is considered that the fitness has
been improved, and this is used as a criterion to evaluate
the merit of an individual (Zolpakar et al., 2020). The
Adaptive Mutation Genetic Algorithm (AMGA) improves
the ability of global search by automatically adjusting the
selection strategy (Zavoianu et al., 2015; Sarro et al.,
2017). To ensure the accuracy of the search, AMGA based
on improved genetic algorithm is used in this paper.
Among them, mutation coefficient and crossover
probability are two very important parameters in genetic
algorithm, which directly affect the search performance
and convergence nature of the algorithm. The crossover
operation combines the genes of two parents to create new
individuals, thereby enhancing the population’s diversity
and search capability. Meanwhile, mutation helps
maintain diversity and prevents the population from
getting trapped in local optima by randomly modifying
individual genes. To increase the algorithm’s adaptability,
the crossover probability and mutation rate are
dynamically adjusted based on the state of the population.

The objective of this paper is to optimize a reversible
axial flow pump with a head of not less than 5.3 m,
minimizing the shaft power while maximizing the pump
efficiency. We determined the approximate range of
parameters by referring to the design process of a common
axial flow pump. The specific objective function,
constraints, and ranges of the design parameters are
presented in Egs. (3) - (5).

Objective function : maxEff (x) minP (x) 3)
Constrained conditions : H > 5.3 4)
0<a<4
. . 0.67<LT <0.75
Design variable : )
1.3<N<14
220< 85 <300
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where: x = [a, LT, N, S]".
2.4 Experimental Methods
2.4.1 Experimental Platform Construction

The experimental test rig, as depicted in Fig. 7,
comprises the following key components: model pump
unit, water tank, dual-gate valve system (Valve I & IT), and
interconnecting piping network. Critical measurement
instrumentation includes an electromagnetic flowmeter,
piezoresistive pressure transducers, a digital multimeter,
and a tachometer.

Figure 7(a) illustrates the 3D-printed impeller mold
with peripheral reinforcement rings to ensure dimensional
fidelity during casting processes. The finalized impeller
assembly, shown in Fig. 7(b), is manufactured through
precision casting using cast iron. The pump's counter-
rotating impeller configuration employs a cantilevered
mounting architecture on dual coaxial drive shafts, each
independently powered by dedicated servo motors to
enable bidirectional operation.

2.4.2 Uncertainty Analysis

The multifunctional test bench integrates precision
instrumentation  with the following metrological
specifications:

(1) Flowmeter

A  KEFC-series electromagnetic flowmeter is
installed upstream of the control valve to measure
volumetric flow rate, and its measurement accuracy is
0.5%.

(2) Pressure transmitter

Differential pressure measurements are acquired
using WT3000 transmitters (Wiltek Technologies)
mounted on upstream and downstream pressure taps to
measure hydraulic head. Its measurement accuracy is
0.2%.

(3) Digital Multimeter

Three-phase power parameters are monitored using a
BKSE digital multimeter (Voltage: 100-400 V, Current: 1-
5 A) with +0.5% reading accuracy.

(4) Tachometer

FY
L

L]
P

£q == " '.

The DT2243C photoelectric tachometer is used to
measure the rotational speed of each rotor shaft after the
pump is running stably, and its accuracy is 0.05%. The
overall measurement error is estimated from the
measurement accuracy of each measurement unit
described above.

e=+40.5> +3x022 +0.05° +0.5> =+0.79%  (6)
The uncertainty of the test bench is £0.79%.

3. RESULTS AND DISCUSSIONS

3.1 Law of Influence of Parameters on Performance

Using the automatic optimization platform developed
with Isight, the 120 sample points of design parameters in
Schedule A are simulated, resulting in the heads and
efficiencies of the pumps corresponding to various design
parameter combinations, as shown in Schedule B.

Experimental evaluation of the 120 parametric
configurations demonstrates hydraulic head variations
between 3.46 m and 6.88 m, with corresponding
efficiencies ranging from 67.7% to 72.8%. Sensitivity
analysis reveals that design parameters exert more
pronounced effects on head modulation compared to
efficiency optimization. Figure 8 presents the iterative
curves, which, based on optimized Latin hypercube
sampling, confirm a uniform distribution within the design
space and effectively illustrate the relationship between
design parameters and pump performance.

To further understand the impact of design
parameters and their interactions on the performance of the
pump, a multiple quadratic regression model is established
in Isight, as shown in Eq. (7).

m m i#j
2
Y =b, +Zbixi +Zbixi + ) byxx;
i=1 i=1

i ™

where b, b;, and b;; denote the regression coefficients,
and m denotes the number of factors. The regression
model coefficients of the design parameters fitted by the
test data with pump head and efficiency are shown in
Table 2.

: 9
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Fig. 7 Schematic of the experimental setup
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Table 2 Regression model coefficients
S, a LT | N N a’ | LT* | N? S* |a-LT| a-N| a-S | LT-N | LT-S | N-S
Head | -0.04 | 4.13 | -2.70 | 7.63 | -0.06 | -6.36 | 0.33 |-36.24| 0.56 | 0.20 | 0.93 | 0.91 | 20.03 | 5.81
Eff | -0.01 | 0.10 | 0.14 | 0.09 -0.06 | -0.03 | -0.51 0.01 | -0.07 | 0.30 | 0.08
Table 3 ANOVA output results of head
Head
DF SS \Y% F *p*-value R?
Model 14.00 92.21 6.59 8544.10 <0.001 0.99
Error 96.00 0.07 / / / /
Total 110.00 92.29 / / / /
Table 4 ANOVA output results of efficiency
Eff
DF SS \Y% F *p*-value R?
Model 14.00 0.03 0.02 2430.05 <0.001 0.99
Error 96.00 0.01 / / / /
Total 110.00 0.04 / / / /

As shown in the table, the hydraulic performance of
axial flow pumps is influenced not only by the linear
terms of the design parameters but also by second-order
main effects and the interaction effects among different
design parameters. To test the significance of the
regression equation, this paper employs analysis of
variance (ANOVA). The results of the ANOVA are
presented in Tables 3 and 4 (Liao et al. 2020; Betchem et
al. 2023).

As shown in Tables 3 and 4, DF represents the degree
of freedom, SS denotes the sum of squared deviations
from the mean, V is the mean square, and R? indicates the
fitting accuracy. The closer R? is to 1, the higher the fitting
accuracy. ANOVA directly reveals whether the main and
interaction effects of the design parameters are significant.

3.1.1 Study of the Main Effect of Design Parameters on
Pump Performance

The main effect of a factor pair response is the
average response of the factor across all trials at a specific
level. This averages the effects on the results by varying
the level of a single factor while considering all possible
combinations of each level and the other factors. The main

effects of the design parameters of the reversible counter-
rotating axial flow pump on pump performance are shown
in Fig. 9.

As illustrated in the figure, the attack angle exhibits a
linear and positive correlation with head in the first half
and a nonlinear positive correlation in the second half. The
vane placement angle increases with the attack angle,
resulting in enhanced pump work capacity. The
relationship between axial interstage gap and head is
nonlinear, they are positively correlated in the first half
and negatively correlated in the second half, indicating the
existence of an optimal threshold value. When this
threshold is exceeded, losses along the stroke between the
two-stage impeller increase, leading to a reduction in the
pump's power generation capacity. The L and N are
linearly and positively correlated with head.

In terms of efficiency, the main effect of the attack
angle is negatively correlated with the head. As the attack
angle increases, it can lead to flow separation, reducing
efficiency. In reversible axial flow pumps, the first
impeller's inlet precession requires an increased attack
angle to maintain flow. However, since the reversible
counter-rotating axial flow pumps analyzed in this paper
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Fig. 9 Main effect diagram

maintain the same impeller blade placement angle in both
stages to accommodate both forward and reverse
operating conditions, an increased attack angle in the
second-stage impeller may decrease efficiency. Therefore,
selecting an appropriate attack angle is essential to balance
both head and efficiency. The main effect of the LT and N
on efficiency is positive but not significant. Similarly, the
effect of axial interstage gap on efficiency mirrors that of
the head, with an initial positive correlation in the first half
followed by a negative correlation in the second half after
a certain cutoff point.

3.1.2 Design Parameter Interaction Effects Analysis

The interaction effect represents the interdependence
and mutual constraints among two or more factors, which
together influence changes in the response variable. The
interaction effect plot, derived from the main effect
analysis, illustrates how two factors jointly affect the
response. It depicts the relationship and strength of the
interaction by showing the main effect of the first factor at
different levels of the second factor. In the experimental
design, there are four design variables, which ultimately
constitute 12 interaction pairs affecting the two response
variables. The interaction effects of the design parameters
on head and efficiency are presented in Figs. 10 and 11,
respectively.

For the head, Fig. 10 shows that the interaction effect
between the attack angle and the axial interstage gap is the
most significant, as indicated by the crossing curves. In
contrast, the interaction effects between N and axial
interstage gap, as well as between LT and axial interstage
gap, are negligible. The interaction effect curves for the
attack angle and N, and for LT and N, are parallel,
indicating no interaction. Together with the main effect
analysis, these results suggest that the attack angle has the
most significant main effect on the head, while the axial
interstage gap exhibits a threshold effect, confirming the
reliability of the main effect conclusions. The interaction
between attack angle and axial interstage gap mainly
reflects the working capacity of the second-stage impeller.
Moreover, the axial interstage gap length influences the
inlet precession of the second-stage impeller, implying an
optimal parameter range for these two factors.

For efficiency, Fig. 11 illustrates that the interaction
effects are essentially the same as those observed for head.
The most significant interaction occurs between the attack
angle and the axial interstage gap, while the interactions
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between the axial interstage gap and LT, as well as the N,
are insignificant. No interaction effects are observed
among the other parameters. Combined with the main
effect analysis, the attack angle remains the most
influential factor, indicating an optimal relationship
between the axial interstage gap and the attack angle.
Notably, changes in the attack angle affect the blade inlet
flow angle, which subsequently alters the flow path and
velocity distribution within the impeller. It can induce
localized flow separation and vortex formation,
influencing the leakage flow in the interstage gap. The
characteristics of this leakage flow significantly impact
pump efficiency, as changes in the attack angle modify the



Q. Xiang et al. / JAFM, Vol. 19, No. 1, pp. 3398-3414, 2026.

—— S@low —8— S@high

0.68

0.66

2

o

-
v

w
=

a
(a) Interaction effects of & and §

—— LT@low —s—LT@high ——N@low —s—N@high

0.72 0.72
— 0 =07
8 5
0.68 0.68
0.66 0.66
0 3 4 0 1 2 3 4
a a
(b) Interaction effects of a (c) Interaction effects of a
and LT and N
——N@low —=—N@high
) ——LT@low —=—LT@high alox ot
0 0.71
0.72 0.71
g o7t 2071
& &
o o
0.70 0.70 =
0.32 0.37 0.42 0.47 0.52 032 0.37 042 0.47 0.52
S
(d) Interaction effects of §  (¢) Interaction effects of S
and LT and N
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pressure gradient and rotational behavior of the leakage
flow. The combined effect of these factors can either
enhance or suppress vortex structures, leading to nonlinear
energy losses and fluctuations in performance.

3.1.3 Analysis of the Contribution Rate of Design
Parameters

By fitting the input variables using least squares after
normalizing them to the range of [-1, 1], a new set of

model coefficients is obtained, which more accurately
reflects the contribution of each input variable to the
response. These values are presented in Table 5. To clarify
the percentage contribution of each factor, the normalized
model coefficients are transformed according to Eq. (8).

1005,
S

R
J

)

Xi

After removing the factors with low contribution
rates, the adjusted contribution rates are shown in Fig. 12,
sorted by the absolute value of their percentage
contributions. Blue indicates a positive effect, while red
indicates a negative effect. Pump performance is
influenced not only by the linear effects of individual
factors but also by their second-order terms and interaction
effects.

For the head, the linear contribution of the attack angle is
the largest at 51.28%, consistent with the main effect
analysis. The contributions of the other individual factors
rank as follows: LT > S > N, each contributing less than
10%, with N accounting for only 2.74%. Notably, the
interaction effect between the attack angle and the axial
interstage gap contributes 5.66%, exceeding the linear
contributions of both the axial interstage gap and the N. It
highlights the significant influence of these two factors on
the head, in agreement with the interaction effect analysis.
For efficiency, the linear contribution of the attack angle
reaches a maximum of 56.2%, but it has a negative effect.
The same design parameters significantly influence both
the head and efficiency of the pump, though in opposite
directions. The contribution rates of the other individual
factors are ranked as follows: LT > N > S, with the axial
interstage gap contributing the least at only 0.24%.
Regarding interaction effects, the combined contribution
of LT and axial interstage gap to efficiency is 2.62%,
compared to 3% for head. It highlights that LT is an
important design parameter, affecting performance both
individually and through interactions with other factors.

Table 5 Table of normalized coefficients

Parameters

30
Eff (%)

40 50

60

S; @« | LT | N | S | a* | LT*> |[N?| S | a-LT | a-N | a-S | LN | LT-S | N-S
Head | 1.51 |0.29 | 0.08 | 0.15 | -0.25 | -0.02 | / [-029 | 0.06 | 002 | 017 | / | 0.09 | 0.03
Eff | -0.01 | / / /o001 /| /] / / / / / /

51.28

Parameters

20 30 50 60

Head (%)

40

Fig. 12 Contribution of design parameters
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Table 6 Objective function Pareto solution set

P LT N | S | Eff | Head | P
1504 iterations of calculation
1.72516 0.73171 1.34360 312.40053 0.71470 5.32252 438.14742
1.70659 0.73851 1.31215 315.67677 0.71438 5.30042 436.46567
1.69857 0.73171 1.39222 291.97781 0.71614 5.33395 438.20873
1.60987 0.73863 1.39863 314.72672 0.71799 5.35380 438.93105
9004 iterations calculated
1.46865 0.74996 1.40000 316.26414 0.72028 5.30002 433.21824
1.46865 0.74996 1.40000 316.26414 0.72028 5.30002 433.21824
1.46865 0.75000 1.40000 316.26498 0.72028 5.30026 433.23758
1.46865 0.74999 1.40000 316.14848 0.72028 5.30005 433.21930
15004 iterations of calculation
1.46577 0.75000 1.40000 318.27298 0.72031 5.30000 433.21091
1.46464 0.75000 1.40000 319.26212 0.72032 5.30000 433.21157
1.46464 0.75000 1.40000 319.26642 0.72032 5.30003 433.21373
1.46464 0.75000 1.40000 319.26642 0.72032 5.30003 433.21377
1.46464 0.75000 1.40000 319.26212 0.72032 5.30002 433.21273
Table 7 Comparison of parameters before and after optimization
a LT N S Eff Head P
Initial value 2.40 0.67 1.30 386.00 0.69 5.31 447.70
Optimization value 1.46 0.75 1.40 319.26 0.72 5.30 433.21
8 r 75
3.2 Multi-objective Optimization Analysis 7 | Ry | s
The final Pareto solution sets for the objective 6 F &
functions under constrained conditions are obtained using =5 / ol 1 P
the Adaptive Multi-Objective Genetic ~ Algorithm S 4 | i 160 &
(AMGA) after 1,504, 9,004, and 15,004 iterations for 3 . i | -
head, efficiency, and shaft power, respectively, as shown ol i kgl
in Table 6. 2t s—Ef-0 150
According to Table 6, the AMGA optimization : 48 51 54 57 6 63 66 69 712 ®
identifies the pump design parameters and performance O/(/s)
indicators at their optimal values within the design space. Fig. 13 External characteristic curve before and after
The results before and after optimization are summarized optimization
in Table 7, showing a 3% increase in efficiency and a
reduction in shaft power by 14.5 kW, while maintaining
the same head. After optimization, the vane attack angle OH
decreases, while LT and N reach their maximum Eff = PELT (10)
constraint limits, resulting in increased cascade density P
and impeller blade area, along with reduced differential 2unT
pressure and relative velocity. For axial pumps, hydraulic P= (11)
losses are proportional to the geometric mean of the 60
relative velocities. Therefore, minimizing this geometric where: P, - pump outlet pressure, Pa. P, - pump inlet

mean reduces losses. The optimized axial interstage gap
values are moderate rather than extreme, suggesting that
very small or very large clearances are suboptimal.

The hydraulic performance of the reversible counter-
rotating axial flow pump is predicted through numerical
simulation both before and after optimization. The pump
head efficiency and shaft power are calculated using Eqs.
(9) ~ (11), respectively, to derive the flow-head and flow-
efficiency curves shown in Fig. 13. Here, Head-1 and Eff
1 represent the head and efficiency of the optimized pump,
while Head-0 and Eff-0 denote the head and efficiency of
the initial pump.

P P

H = out __‘in (9)

PE

pressure, Pa. 7- Torque, N-m.

From the figure, it can be seen that the difference in
head between the optimized and initial pumps is negligible
before reaching the design flow condition. However,
beyond this point, the head of the optimized model
declines more rapidly than that of the initial model (Shi et
al. 2020). This behavior is attributed to the reduced attack
angle after optimization. Under high flow conditions, the
smaller attack angle leads to insufficient pre-rotation at the
vane inlet, thereby reducing work capacity of the pump.
The efficiency curve shows that the optimal operating
points of both pumps shift toward lower flow rates after
optimization. Near the design operating point, the

3407



Q. Xiang et al. / JAFM, Vol. 19, No. 1, pp. x-x, 2026.

optimized pump achieves significantly higher efficiency
than the initial model.

3.3 Internal Flow Analysis

Figs. 14 and15 present velocity distribution contour
plots at different radial coefficients and at the inlet of the
second-stage impeller before and after optimization under
the design flow condition. Figs. 16 and 17, meanwhile,
show their pressure distribution contour plots. To support
the following analysis, the span normalization (sn) is
defined as follows:
sn= R=n (12)

Rp =1,
where: R-radius of the calculated section, mm, Rj-radius
at the wheel rim, mm, 73,- radius at the wheel hub, mm.

3.3.1 Variation of Velocity

Figure 14 demonstrates that the high-velocity region
A on the optimized blade suction surface substantially
exceeds region B of the initial model at sn = 0.2,
confirming enhanced energy transfer capability near the
impeller hub post-optimization. Both pre- and post-
optimization configurations exhibit concentrated high-

sn=0.5

velocity zones at the second-stage impeller leading edge
(sn = 0.2), and progressively expanding across the entire
suction surface as sn increases. This distribution stems
from greater airfoil curvature and thickness near the hub
versus gradual profile transitions at the rim, promoting
velocity uniformity. Crucially, the high-velocity region
development on the second-stage suction surface
influences the first-stage pressure surface, an effect most
pronounced in the initial model that impairs energy
conversion efficiency. Post-optimization, increased hub
and rim cascade densities (indicative of extended chord
length) yield more uniform blade surface velocity and
pressure distributions, thereby mitigating adverse inter-
stage interactions.

To analyze the effect of the axial interstage gap on
pump performance, Figs. 15 and 18 show the velocity and
pressure distributions at the inlet of the second-stage
impeller before and after optimization. Since the impeller
has three blades, Fig. 15 displays three high-pressure and
three low-pressure zones distributed in phase. After
optimization, in regions C and D, the gap between the two
impellers is reduced, theoretically increasing the
interference between them and making the periodicity of
the velocity distribution more pronounced.

’

’

(a)The initial model

’

L
sn=0.2

sn=0.5

4

’

(b) The optimized model

Fig. 14 Velocity distribution of the reversible counter-rotating impeller before and after optimization at different
radial coefficients

(a) Initial model

Velocity

(b) Optimized model

Fig. 15 Second-stage impeller inlet velocity distribution
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Fig. 16 Pressure distribution of the reversible counter-rotating impeller before and after optimization at
different radial coefficients
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Fig. 17 Second-stage impeller inlet pressure distribution

3.3.2 Variation of Pressure

As observed in Fig. 16, the initial model's excessive
attack angle concentrates pressure differentials near the
leading edge (sn = 0.2-0.8). It accelerates flow separation
at the trailing edge due to impeller inflow impact and blade
leading edge geometry, degrading efficiency.
Optimization reduces attack angles for both impellers,
distributing pressure uniformly from the leading to the
trailing edges. This modification improves flow transition
from the first-stage outlet to the second-stage inlet,
particularly critical in counter-rotating designs where first-
stage outflow directly governs second-stage energy
transfer capacity. Consequently, attack angle reduction
significantly enhances overall pump efficiency.

As illustrated in Fig. 15 and Fig. 17, the pressure
distribution characteristics at the inlet section of the
second-stage impeller before and after optimization
closely resemble the velocity distribution. In the pressure
cloud depicted in Fig. 17, the initial model exhibits a low-
pressure zone E near the blade head that extends from the
hub to the rim. In contrast, the optimized model features
a low-pressure region F that does not extend near the rim.
This difference arises because, in the optimized design,
the rim side of the second-stage impeller blade is
positioned further away from the intersection surface
when the fluid from the first-stage impeller has not yet
reached the blade head, preventing the formation of a
low-pressure area.

3.3.3 Experimental Verification

Figure 18 compares experimentally measured and
numerically simulated pump performance characteristics.
In Fig. 19(a), test-derived head and efficiency curves
demonstrate close alignment. While the numerical
simulation results in slightly higher efficiency values than
the test results for flow rates above 100 m?/h, the
discrepancy remains within 2%. Between 50-80 m?®h,
head calculations exhibit a maximum 4% deviation.
Confidence intervals confirm measurement reliability,
with head at 5.3 m [4.84, 5.76] and efficiency at 72%
[69.58, 74.18].

Figure 18(b) depicts flow rate versus shaft power (Q
-P,), where P, and P, denote first and second-stage
impeller shaft power, respectively. Both experimentally
and numerically derived Q - P, curves show smooth
monotonic reduction. Although stage-specific power
magnitudes differ across operating conditions, both stages
maintain consistent power reduction trends throughout the
flow range, with experimental and numerical results
exhibiting strong agreement.

Significant rotor-rotor interactions and complex internal
flows in reversible counter-rotating impellers increase
flow field instability. This complexity contributes to
steady-state numerical head prediction errors. Full-flow
conditions demonstrate excellent experimental-numerical
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Fig. 18 Test verification

consistency, confirming the simulation's reliability for
design optimization.

4. CONCLUSIONS

This paper uses the DOE to analyze how the main
design parameters of a reversible counter-rotating axial
flow pump influence its hydraulic performance. It shows
both the primary and secondary relationships among these
parameters and their effects on performance. Utilizing the
Isight platform, we developed an optimization process to
simulate scenarios derived from the experimental design.
A response surface model is established to correlate the
main design parameters with pump performance. Finally,
a multi-objective optimization algorithm is employed for
a global search of the optimal combination of the
mathematical model, leading to the best design parameter
set, which is validated through numerical simulations and
tests. The key findings are as follows:

(1) For head and efficiency, the main and interaction
effects are nearly identical. Notably, the attack angle has
the most significant impact on both head and efficiency,
with contribution rates of 51.28% and 56.2%,
respectively; however, efficiency exhibits a negative
contribution rate. Among all parameters, the interaction
effects between the axial interstage gap and attack angle
are most pronounced.

(2) It shows that the density increases at the hub and
rim of the impeller at different radial coefficients. The
velocity and pressure variations are more uniform on the
blade surface, and the influence of the high-speed zone of
the second-stage impeller on the first-stage impeller is
mitigated.

(3) It indicates that reducing the attack angle of the
first-stage impeller leads to a more uniform pressure
distribution across the blade surface from head to tail. The
adjustment enhances flow conditions in the second-stage
impeller, increasing the operational efficiency of the

pump.

(4) The simulation efficiency of the optimized
reversible counter-rotating axial flow pump at the design
operating point is 3% higher than pre-optimization, with a
reduction in shaft power by 14.5 kW. Experimental results

further validate the consistency between numerical
simulations and practical outcomes.
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16 3.597 316.8 0.73235 | 1.31597
17 2.622 357.6 0.74328 | 1.34202
18 3.798 313.8 0.69286 | 1.37899
19 1.849 341 0.66008 | 1.35462
20 0.303 253.3 0.70714 | 1.35294
21 2.017 378.8 0.7105 1.38487
22 2.218 242.7 0.73739 | 1.34034
23 0.101 272.9 0.72311 | 1.32269
24 3.664 295.6 0.68697 | 1.31849
25 0.269 318.3 0.74748 | 1.31513
26 1.647 233.6 0.66429 | 1.31176
27 3.462 383.4 0.73151 | 1.32185
28 1.311 297.1 0.67437 | 1.30336
29 3.126 244.2 0.69538 | 1.3

30 2.655 3229 0.70042 | 1.4
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38 3.966 | 276 0.68361 | 1.35042 98 1613 | 400 0.73403 | 1.35966
39 1.681 _ [3592 | 0.7021 | 1.3084 99 0.168 | 289.6 | 0.68866 | 1.32941
40 3.63 2487 | 0.73992 | 1.34454 100 0403 [319.8 | 0.69622 | 1.36134
a1 0.504 [ 2412 | 0.72731 | 1.38992 101 0 360.7 | 0.6937 | 1.33529
42 3261|3319 | 0.65672 | 1.36723 102 2454|3486 | 0.73319 | 1.30168
43 2.118 | 397 0.72395 | 1.32437 103 2.857 | 227.6 | 0.72647 | 1.37059
44 1445|338 0.72563 | 136218 104 279 2714 | 0.66261 | 1.30084
45 0202|279 0.6979 | 1.3916 105 3.765 | 3455 | 0.71134 | 1.34118
46 1378 |356.1 | 0.7458 | 1.32353 106 3227|2261 | 0.69034 | 1.36387
47 0.034 | 260.8 | 0.67353 | 1.36303 107 1042 [366.7 | 0.74496 | 1.38571
48 0235 | 335 0.66345 | 1.31681 108 0.538 | 381.8 | 0.72227 | 1.31261
49 3.092[257.8 | 0.74412 | 1.31092 109 1916|3955 | 0.67521 | 1.33782
50 0.067 | 3002 | 0.73067 | 1.35882 110 2.958 | 292.6 | 0.66933 | 1.39076
51 3361|2987 | 0.65252 | 1.32857 111 2.924 | 3652 | 0.65504 | 1.33613
52 3.731 | 3713 | 0.73824 | 1.36555 112 3.529 [ 3153 | 0.73655 | 1.38739
53 2017|3425 | 0.66765 | 1.39328 113 0.134__[369.7 | 0.67941 | 1.37815
54 0.908 | 2563 | 0.69958 | 1.30672 114 2286|3032 | 0.73908 | 1.32605
55 2.824 3985 | 071639 | 1.3563 115 0.739 | 230.6 | 0.68277 | 1.33445
56 1546 | 351.6 | 0.65336 | 1.32101 116 2.588 3017 | 0.70882 | 1.30588
57 0471 | 2669 | 0.65756 | 1.32017 117 3.429 [ 2382 | 0.67017 | 1.32689
58 3294|3622 | 0.67773 | 1.39412 118 3.328 | 3546 | 0.70378 | 1.30756
59 121 |380.3 | 0.70462 | 1.34286 119 3.059 | 285 0.71303_| 13395
60 2.084 | 2457 | 071975 | 1.31008 120 1815 [3213 | 0.72815 | 1.3958
61 1748|3304 | 0.69202 | 1.36891

62 0773|2245 | 0.69118 | 137983 |  Schedule B

63 2151|2366 | 0.67185 | 1.38151

64 1.076 347.1 0.69454 | 1.39916 Optimal Latin hypercube design matrix calculation
65 3.005 [223 0.70798 | 1.33277 results

66 3.866 | 269.9 | 0.71807 | 1.36975 Sample | Head/ | Eff | Sample | Head | Eff

67 1983|2321 | 0.7063 | 1.39244 Points | (m) Points | (m)

68 2.252 | 2654 | 0.68782 | 1.32521 ] soiz 107177 Tel 5157 o715
69 195  1286.6 1 0.65588 | 1.33109 2 6.496 | 0.6887 | 62 4.063 | 0.7198
72 2487|3259 | 0.67605 | 1.31429 s 2037 107242 165 5532 106856
73 4 259.3 1071723 | 1.31765 6 6.487 | 0.6690 | 66 6.539 | 0.6733
4 0.975 | 220 0.72059 1 1.32773 7 4.097 [ 0.7174 | 67 5.078 | 0.7067
75 2.723 13077 | 0.68109 | 1.3479 8 4.339 | 0.7246 | 68 5.336_| 0.7032
76 1.882 | 291.1 | 0.65168 | 1.37479 5 5508 106937 T 69 5005 107077
7 2992 12639 106584 | 135798 10 4.037 | 0.7244 | 70 6.077_| 0.7042
’8 2319 13395 107096 |1.33697 11 6.487 | 0.6690 | 71 4.836_| 0.7210
Ia 3.607 13531 | 0.66681 | 130924 12 4.097 [0.7174 | 72 5.514_| 0.6986
80 0874 12518 | 0.65924 | 138824 13 4.339 | 0.7246 | 73 6.412 | 0.6675
81 L1761 3062 1075 1.34622 14 5.808 | 0.6936 | 74 4.244 [ 0.7167
82 0.807 12472 | 0.74076 | 1.35378 15 6.338 | 0.6696 | 75 5.775_| 0.6958
83 3.496 | 2351 | 0.66176 | 1.38655 T 23 106794 76 5 07100
84 069 13849 1071218 | 137647 17 6.109 | 0.6993 | 77 5.678 | 0.6888
85 1.008 | 363.7 106 1.38067 18 6.593 | 0.6743 | 78 5.658 | 0.7034
86 158 | 283.5 | 0.68613 | 1.3949% 19 4.982 | 0.7083 | 79 6.181 | 0.6718
88 3.193 13939 | 0.6895 | 13302 21 5.459 | 0.7080 | 81 4.962 [ 0.7222
89 0941 12041 1 0.74832 | 138319 22 5.395 | 0.7037 | 82 4384 [ 0.7227
20 3.395 12548 | 0.69874 | 1.39664 23 3.723 | 0.7258 | 83 5.783 | 0.6778
o1 0.571 13092 |0.66092 | 1.34874 24 6.299 | 0.6749 | 84 4.206_| 0.7229
92 3.563 13108 1 0.7416 | 1.35042 25 4.026 | 0.7264 | 85 4.228 | 0.7171
93 2.185 12215 1 0.67101 | 1.34538 26 4.608 | 0.7102 | 86 4.999 [ 0.7159
24 2.353 12881 1073571 | 1.3647] 27 6.527 | 0.6802 | 87 3.945_| 0.7204
25 0437 13334 |0.69706 | 1.3042 28 4.583 | 0.7156 | 88 6.035 | 0.6837
%6 2.555 1 277.5 1070042 | 1.37143 29 5.727 | 0.6853 | 89 4.768 | 0.7254
o7 1.277 13047 07247 | 130252 30 5.969 | 0.6990 | 90 6.102_| 0.6819
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31 4.072 | 0.7284 | 91 3.937 |0.7234
32 5.309 | 0.6973 | 92 6.716 | 0.6810
33 4.745 1 0.7204 | 93 4.94 0.7013
34 427 10.7176 | 94 5.823 | 0.7047
35 4.879 1 0.7089 | 95 3.91 0.7230
36 4.72 10.7177 | 96 5.729 | 0.6995
37 5.953 | 0.6984 | 97 4.848 | 0.7199
38 6.406 | 0.6689 | 98 5.176 | 0.7134
39 5.025 | 0.7123 | 99 3.666 | 0.7246
40 6.252 | 0.6764 | 100 3.972 | 0.7255
41 4.058 | 0.7233 | 101 3.458 |0.7210
42 5.991 | 0.6835 | 102 5.84 0.7011
43 5.467 | 0.7045 | 103 5.586 | 0.6900
44 5.1 0.7190 | 104 5.512 | 0.6906
45 3.804 | 0.7269 | 105 6.655 | 0.6748
46 5.061 | 0.7181 | 106 5.643 | 0.6829
47 3.465 | 0.7233 | 107 4.838 | 0.7231
48 3.556 | 0.7205 | 108 4.068 | 0.7224
49 6.05 | 0.6874 | 109 5.004 | 0.7046
50 3.784 | 0.7257 | 110 5.889 | 0.6908
51 5.912 1 0.6799 | 111 5.649 | 0.6878
52 6.884 | 0.6769 | 112 6.742 | 0.6821
53 5.238 | 0.7074 | 113 3.557 10.7217
54 4.305 | 0.7208 | 114 5.782 | 0.7055
55 6.025 | 0.6926 | 115 3.999 10.7200
56 4.621 | 0.7113 | 116 5.776 | 0.6984
57 3.772 1 0.7227 | 117 5.74 0.6773
58 6.193 | 0.6832 | 118 6.24 0.6815
59 4.647 |1 0.7170 | 119 6.115 | 0.6899
60 5.238 | 0.7061 | 120 5.493 |0.7143
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