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ABSTRACT 

Conventional hydraulic design methodologies for reversible counter-rotating 

axial flow pumps predominantly adhere to traditional axial flow pump design 

principles. However, existing optimization approaches inadequately analyze the 

individual design parameters, their synergistic interactions, and relative 

contributions, leading to suboptimal pump efficiency and compromised bi-

directional multi-objective operational performance. To overcome these 

limitations, this study proposes a surrogate model-based framework integrated 

with an automated optimization platform developed in Isight software. A 

comprehensive evaluation of 120 simulated sample points is conducted to 

quantify the effects of geometric parameters on hydraulic performance. The 
adaptive modified genetic algorithm (AMGA) is employed to maximize 

operational efficiency through systematic impeller parameter optimization 

within the design space, while satisfying predefined pump specifications. 

Sensitivity analysis identified the angle of attack as the most influential 

parameter, accounting for 51.28% and 56.2% of the total variance in head and 

efficiency, respectively. Post-optimization results demonstrated a 3% increase 

in simulated efficiency at the design operating point, accompanied by a 14.5 kW 

reduction in shaft power consumption. These findings establish a robust 

foundation for advancing the multi-objective design optimization of reversible 

counter-rotating axial flow pumps. 
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1. INTRODUCTION 

Axial flow pumps are critical components in 

hydraulic engineering systems, including agricultural 

irrigation and urban water management, owing to their 

high volumetric flow capacity. Nevertheless, when 

operating in reverse-rotation mode, these pumps 

demonstrate suboptimal efficiency accompanied by 

substantial energy dissipation. To address the demand for 

bidirectional fluid transfer, reversible counter-rotating 
axial flow pumps have been introduced. Featuring a 

symmetrically designed impeller, these pumps enable 

dual-directional operation through motor rotation reversal 

(Harris et al., 2020), rendering them ideal for riverine and 

coastal pumping stations requiring alternating irrigation 

and drainage cycles. Distinct from conventional axial flow 

pumps, reversible counter-rotating axial flow pumps 

exhibit multifunctional advantages: structural 

compactness, minimized spatial footprint, cost-effective 

construction, extended efficiency ranges, operational 

stability, and simplified maintenance protocols. These 

attributes have driven their widespread adoption in tidal 

energy systems, marine propulsion, and hydraulic 

infrastructure. Furthermore, their unique bidirectional 

capability – efficient operation in both pump and turbine 

modes – has positioned reversible counter-rotating axial 

flow pumps as a prominent research focus in fluid 

machinery. Despite these advancements, emerging 

challenges persist. Current hydraulic design 

methodologies for reversible counter-rotating axial flow 

pumps predominantly replicate conventional axial flow 
pump frameworks (Hoffstaedt et al., 2022), leading to 

frequently observed discrepancies between achieved and 

anticipated operational efficiencies. 

Reversible counter-rotating axial flow pumps 

represent an advanced variant of axial flow pumps. Unlike 

conventional designs utilizing fixed guide vanes (Ma & 

Wang, 2017; Shi et al., 2015), these pumps incorporate S- 
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NOMENCLATURE 

α attack angle  P shaft power 

LT cascade density at the impeller rim  DOE Design of Experiment 

N root and cascade density multiplier  NPSHr Net Positive Suction Head Required 

S axial interstage gap  Eff efficiency of the pump 

LT@high/low LT at a high/low level  ρ the density of water 

N@high/low N at a high/low level  iS
 the regression coefficients 

S@high/low S at a high/low level    

 

shaped impellers with bidirectional functionality, enabling 

equivalent hydraulic performance in both forward and 

reverse operational modes (Xie et al., 2022; Fahlbeck et 

al., 2021; Vashahi et al., 2017). The distinctive two-stage 

impeller configuration directs fluid sequentially through 

the primary and secondary impellers. While this 

architecture enhances pump head and cavitation resistance 

(Zhang et al., 2020a), the absence of systematic hydraulic 

optimization for inter-stage flow dynamics and parametric 

design frequently results in suboptimal overall efficiency, 

ultimately compromising practical performance. Recent 

investigations have advanced understanding of these 
systems. An et al. (2023) performed computational fluid 

dynamics (CFD) simulations to evaluate blade count 

effects on pump-mode performance, elucidating 

mechanisms governing tip leakage vortices, wake 

interactions, and leading-edge flow impacts on 

downstream impellers. Chen et al. (2023) demonstrated 

that blade angle modifications substantially alter internal 

flow patterns and hydraulic characteristics, particularly 

vortex formation at trailing impellers. Xiuli et al. (2020) 

established correlations between inter-stage clearance 

dimensions and critical performance metrics (head, 
efficiency) through parametric hydraulic design of S-blade 

configurations. The inherent complexity of reversible 

counter-rotating axial flow pump design necessitates 

comprehensive consideration of inter-stage matching and 

hydrodynamic interference (Kan et al., 2021). 

Consequently, single-objective optimization approaches 

prove inadequate. To achieve further efficiency 

improvements, a systematic optimization framework must 

be implemented that accounts for parameter interactions, 

relative contribution weights, and multi-objective 

operational constraints. 

The evolution of turbomachinery design optimization 

has progressed substantially with advances in 

computational technology and maturation of optimization 

theory, evolving from conventional gradient-based 

approaches to advanced machine learning (ML) 

methodologies. This paradigm shift has been propelled by 

enhanced computational power and refined understanding 

of fluid-structure interactions. Modern frameworks 

effectively coordinate multiple design parameters and 

constraints while optimizing critical performance metrics, 

including efficiency, pressure ratio, and structural 

integrity. The research paradigm has consequently shifted 
from single to multi-objective optimization, which enables 

concurrent resolution of conflicting objectives through 

Pareto-optimal solution sets. Dominance criteria serve as 

principal evaluators of solution quality, exemplified by 

Sharma & Kumar (2022) application of the elite non-

dominated sorting genetic algorithm-II (NSGA-II) to 

optimize a two-stage LNG cryogenic submerged pump. 

Wang et al. (2022), aiming to minimize energy loss and 

optimize suction performance under the 0.7 Q operating 

condition. Post-optimization, the active suppression of 

impinging flow, diverging flow, and rotating stall in the 

two-stage impeller reduced the total entropy generation 

rate by 6.18%, while the pump head decreased by only 

1.25%. Kim et al. (2016) combined a hybrid multi-

objective genetic algorithm with an agent model based on 

Latin Hypercube Sampling, optimizing the hub and tip 

blade angles of the two-stage impeller, resulting in pump 

efficiency improvements of 0.80% and 1.02%, and turbine 
efficiency improvements of 0.50% and 0.27%, 

respectively. Zhang et al. (2020b) proposed a rotational 

speed control method for the front and rear rotors, 

significantly enhancing the performance of counter-

rotating axial flow pumps across a wide flow rate range 

and optimizing energy efficiency through a fast and 

effective performance prediction model. Kim et al. (2018) 

used the hub and tip blade angles of the rear impeller in 

the counter-rotating pump turbine as design variables, 

combining efficiency and weighting factors into a single 

objective function, and optimized using Latin Hypercube 
Sampling and radial basis neural network agent models. 

Post-optimization, the pump and turbine mode efficiencies 

increased by 1.01% and 0.52%, respectively, though the 

turbine mode flow rate is reduced. Hu et al. (2023) 

proposed a multi-objective optimization strategy for 

impellers with a broader operating range, optimizing blade 

control parameters and revealing the relationship between 

rotor geometric characteristics and performance, 

particularly the effects of blade loading and blade tilt angle 

on efficiency, cavitation resistance, and stability. Post-

optimization, the peak pump efficiency increased by 
0.45%, the NPSHr by 0.36 m, and the rated turbine 

efficiency increased by 0.12%. Gao et al. (2018) applied 

bi-objective and tri-objective optimization methods for 

hydraulic optimization of the inlet and outlet diffusion 

sections of a pumped storage plant, generating an 

approximation function through Response Surface 

Methodology (RSM) and using the Non-dominated 

Sorting Genetic Algorithm (NSGA-II) to perform 

optimization (Xu et al., 2019; Huang et al., 2023). The 

head loss is reduced by 2.71%, the velocity non-

uniformity by 21.05%, and the discharge non-uniformity 

by 2.24%. Qin et al. (2022) introduced the concepts of 
‘swept’, ‘curved (inclined)’, and ‘twisted’, proposing nine 

parameters to control the geometry of the high-pressure 

side and establishing a multi-objective optimal design 

system based on the DOE (Design of Experiment) process. 

The efficiency of the optimized impeller increased by 

1.17% and 0.46% in pump mode and turbine mode, 
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respectively. Mansour et al. (2022) employed a multi-

objective optimization approach to determine the optimal 

configuration of two mixed-phase liquids flowing in a 

spiral tube, utilizing the Flow Optimization Library 

(OPAL) to automate the numerical simulation process and 

derive a correlation between the predicted pressure drop 

and mixing coefficients, achieving optimal simultaneous 

optimization of mixing efficiency and minimum pump 

power. 

Current multi-objective optimization studies for 

reversible counter-rotating axial flow pumps exhibit two 

critical limitations: (1) insufficient systematic analysis of 

individual parameter impacts, synergistic interactions, and 

relative contribution weights on hydraulic performance, 

leading to constrained efficiency gains post-optimization. 

(2) inadequate experimental validation of pre- and post-

optimization impeller configurations. To bridge these 

gaps, this study establishes an integrated framework 

combining parametric optimization with experimental 

verification. To meet the design requirements of the pump 
and maximize the efficiency, this study is based on the 

DOE design, selecting four parameterized variables: 

attack angle (α), cascade density at the impeller rim (LT), 

root and cascade density multiplier (N), axial interstage 

gap (S), These variables are analyzed in terms of their 

main effects, interaction effects, and contribution rates to 

reveal their influence on performance characteristics. 

Employing computational fluid dynamics (CFD) 

simulations coupled with the adaptive multi-objective 

genetic algorithm (AMGA), we executed global 

optimization within the design space under constrained 
head requirements. Finally, the performance improvement 

before and after optimization is validated through 

experiments. This systematic approach demonstrates 

significant potential for advancing the hydraulic 

performance ceiling of bidirectional pump systems. 

2. MODEL AND METHODS 

2.1 Geometric Modeling 

The reversible counter-rotating axial flow pump 

distinguishes itself from conventional reversible axial 
flow pumps through its innovative dual-stage impeller 

configuration. While traditional reversible pumps achieve 

reverse operation by inverting a unidirectional impeller, 

the present design replaces the rear guide vane with a 

second-stage counter-rotating impeller. This study focuses 

on a blade profile featuring a symmetrically reversed S-

shaped airfoil, engineered to maintain consistent hydraulic 

performance across bidirectional flow conditions. 

Parametric modelling is achieved by using MATLAB 

outputs and is modelled by CFturbo. As shown in Fig. 1, 

the computational domain encompasses five critical 
components to enable precise characterization of 

parametric effects on hydraulic performance and internal 

flow dynamics: inlet section, first-stage impeller, 

interstage gap, second-stage impeller, and outlet section. 

The inlet and outlet sections are configured with  

4D pipe lengths to ensure flow field stabilization  

and computational accuracy at boundary conditions. Key  

 

Fig. 1 3D model of reversible counter-rotating axial 

flow pump 

 

Table 1 Main parameters of the impeller 

Parameter Symbol Value 

Flow rate (m³/h) Q 21600 

Design head (m) 𝐻𝑑 5.3 

Rotational speed (r/min) 𝑛𝑑 300 

Hub diameter (mm) dh 416 

Number of blades z 3 

Impeller diameter (mm) D 1300 

Design interstage gap 

(mm) 
𝑆𝑑  220 

 

 
Fig. 2 Parameter modelling variables 

geometric parameters governing impeller performance are 

specified in Table 1. 

As shown in Fig. 2, the 4 parameterized variables of 

the reversible counter-rotating axial flow pump are 

marked in the figure. 

2.2 Numerical Simulation 

2.2.1 Numerical Schemes and Boundary Conditions 

The controlling equations of fluid motion include the 

continuity equation, energy conservation equation, and 

momentum conservation equation. As the medium in the 

hydraulic machinery is incompressible water, generally, 

the energy conservation equation is not considered. 

Control equations by Reynolds time averaged processing 

become: 
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where 𝜌𝑣𝑖
′𝑣𝑗

′ is the Reynolds stress term due to turbulent 

motion, 𝑣̄ is the time-averaged velocity, m/s, 𝜌 is the fluid 

density, kg/m3, and 𝜇 is the dynamic viscosity, Pa·s. 

In this study, ANSYS CFX – a finite volume method-

based solver – is employed for numerical simulations, 

with the RNG k-ε turbulence model selected to resolve 

turbulent flow characteristics. This turbulence model 

represents an industry-standard approach that has been 

extensively validated for practical engineering 

applications, particularly in accurately capturing vortex 

formation under high strain rate conditions (Shao & Zhao, 

2019). 

For the forward operation mode of the pump, the 

rotational speed is initially set to 300 r/min, with the first-

stage and second-stage impellers rotating in opposite 
directions. The dynamic-static interface between rotating 

and stationary domains is treated using the frozen rotor 

method. The reference pressure is defined as 0 Pa, while 

the inlet boundary condition is specified as a pressure inlet 

with atmospheric pressure (101.325 kPa). The outlet 

boundary condition is configured as a mass flow outlet 

with a fixed value of 6000 kg/s. Wall boundaries adopt 

standard wall functions with no-slip conditions. The 

solution convergence criteria require all residual values to 

reach below 1×10⁻⁶. The convection term of the 

momentum equation is discretized using the upwind 
scheme, while the turbulent transport equations employ 

first-order spatial discretization. These numerical settings 

ensure solution stability while maintaining acceptable 

computational efficiency for the complex bidirectional 

flow simulations. 

2.2.2 Grid Division and Independence Verification 

The computational domain is meshed using ANSYS 

ICEM with a multi-zone strategy. Refined grids are 

applied to the impeller blades and axial interstage gap to 

resolve complex flow features, while coarser grids are 

adopted for the inlet and outlet sections to optimize 

computational efficiency. To validate grid independence 
without compromising simulation accuracy or incurring 

excessive computational costs, a systematic grid 

convergence analysis is performed. The test results are 

presented in Fig. 3, where Eff denotes pump efficiency. 

By observing Fig. 3, it can be found that when the 

grid count increases from 6.91 million to 8.08 million 

elements, the head and efficiency curves exhibit steep 

gradients with significant amplitude fluctuations. Beyond 

8.08 million elements, these curves stabilize with minimal 

variation (<0.5%) under increasing grid density, 

indicating achieved mesh independence. Consequently, 
the optimal grid count is determined as 8.08 million 

elements. The meshing scheme uses a 23 mm element size 

for the impellers and interstage regions, and 30 mm for  

 
Fig. 3 Grid independence verification 

 
Fig. 4 Grid diagram of reversible counter-rotating 

axial flow pump 

 

other components. The final adopted mesh comprises 8.08 

million elements, distributed with 3.22 million in the inlet 

section, 2.56 million in the outlet section, 1.02 million for 

the first-stage impeller, 1.02 million for the second-stage 
impeller, and 260,000 in the interstage region, as 

visualized in Fig. 4. 

2.3 Optimal Design Method 

2.3.1 Isight Platform Building 

This study establishes an automated simulation 

workflow through the Isight integration platform, building 

upon the previously developed parametric modeling 

framework. As illustrated in Fig. 5, Isight orchestrates the 

sequential execution of all required numerical simulation 

tools through predefined process chains (Nyein et al., 

2016). 

After the post-flow field analysis, the hydraulic head 
and operational efficiency of the pump are systematically 

extracted as output metrics, subsequently mapped to 

predefined response variables within the Isight 

framework. 
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Fig. 5 Isight platform 

 

 

Fig. 6 Proxy model process 
 

A Latin hypercube sampling (LHS) strategy (Cui et 

al., 2018) is implemented for input parameter 

optimization, ensuring design space uniformity and result 

reliability. This study employs 120 strategically 

distributed sample points (see Schedule A) to 
comprehensively characterize the parameter-performance 

relationship. 

2.3.2 Proxy Model 

The experimental design yields 120 constrained 

parameter sets, which are utilized to construct surrogate 

models through response surface methodology (RSM) 

(Kim et al., 2021). These models establish continuous 

functional relationships between input factors and output 

responses (Bahrami & James, 2023), enabling the 

identification of optimal design configurations within the 

parameter space. The workflow for the surrogate modeling 

is shown in Fig. 6. 

The surrogate modeling process utilizes the 120 

experimental sample points obtained from the preceding 

design phase, with 90 datasets allocated for model 

construction and the remaining 30 reserved for error 

quantification. A comparative analysis of polynomial 

response surface models (second to fourth-order) is 

conducted for hydraulic head, efficiency, and shaft power 

parameters. Evaluation metrics revealed that second-order 

polynomial models demonstrated superior fitting accuracy 

with R² values of 0.99828 (head), 0.99491 (efficiency), 

and 0.99862 (shaft power), all exceeding the 

predetermined threshold of 0.9. Consequently, second-
order response surface approximations are adopted for 

subsequent optimization iterations to balance numerical 

precision with operational efficiency. 

2.3.3 Multi-objective Optimal Design 

At present, The Multi-Objective Genetic Algorithm 

(MOGA) implements the Pareto optimality criterion for 

fitness evaluation (May et al., 2015), and if a solution is 

more improved than the previous generation in the sense 

of Pareto optimum, then it is considered that the fitness has 

been improved, and this is used as a criterion to evaluate 

the merit of an individual (Zolpakar et al., 2020). The 

Adaptive Mutation Genetic Algorithm (AMGA) improves 
the ability of global search by automatically adjusting the 

selection strategy (Zăvoianu et al., 2015; Sarro et al., 

2017). To ensure the accuracy of the search, AMGA based 

on improved genetic algorithm is used in this paper. 

Among them, mutation coefficient and crossover 

probability are two very important parameters in genetic 

algorithm, which directly affect the search performance 

and convergence nature of the algorithm. The crossover 

operation combines the genes of two parents to create new 

individuals, thereby enhancing the population’s diversity 

and search capability. Meanwhile, mutation helps 
maintain diversity and prevents the population from 

getting trapped in local optima by randomly modifying 

individual genes. To increase the algorithm’s adaptability, 

the crossover probability and mutation rate are 

dynamically adjusted based on the state of the population. 

The objective of this paper is to optimize a reversible 

axial flow pump with a head of not less than 5.3 m, 

minimizing the shaft power while maximizing the pump 

efficiency. We determined the approximate range of 

parameters by referring to the design process of a common 

axial flow pump. The specific objective function, 
constraints, and ranges of the design parameters are 

presented in Eqs. (3) - (5). 

( ) ( )Objective function : maxEff minPx x    (3) 

Constrained conditions : H 5.3  (4) 

0 4

0.67 0.75
Design variable :

1.3 1.4

220 300

LT

N

S

 


 


 
  

 (5) 
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where: 𝑥 = [𝛼, 𝐿𝑇, 𝑁, 𝑆]𝑇. 

2.4 Experimental Methods 

2.4.1 Experimental Platform Construction 

The experimental test rig, as depicted in Fig. 7, 

comprises the following key components: model pump 

unit, water tank, dual-gate valve system (Valve I & II), and 

interconnecting piping network. Critical measurement 

instrumentation includes an electromagnetic flowmeter, 

piezoresistive pressure transducers, a digital multimeter, 

and a tachometer. 

Figure 7(a) illustrates the 3D-printed impeller mold 

with peripheral reinforcement rings to ensure dimensional 

fidelity during casting processes. The finalized impeller 

assembly, shown in Fig. 7(b), is manufactured through 
precision casting using cast iron. The pump's counter-

rotating impeller configuration employs a cantilevered 

mounting architecture on dual coaxial drive shafts, each 

independently powered by dedicated servo motors to 

enable bidirectional operation. 

2.4.2 Uncertainty Analysis 

The multifunctional test bench integrates precision 

instrumentation with the following metrological 

specifications: 

(1) Flowmeter 

A KEFC-series electromagnetic flowmeter is 
installed upstream of the control valve to measure 

volumetric flow rate, and its measurement accuracy is 

0.5%.  

(2) Pressure transmitter 

Differential pressure measurements are acquired 

using WT3000 transmitters (Wiltek Technologies) 

mounted on upstream and downstream pressure taps to 

measure hydraulic head. Its measurement accuracy is 

0.2%. 

(3) Digital Multimeter 

Three-phase power parameters are monitored using a 
BK8E digital multimeter (Voltage: 100-400 V, Current: 1-

5 A) with ±0.5% reading accuracy. 

(4) Tachometer 

The DT2243C photoelectric tachometer is used to 

measure the rotational speed of each rotor shaft after the 

pump is running stably, and its accuracy is 0.05%. The 

overall measurement error is estimated from the 

measurement accuracy of each measurement unit 

described above. 

2 2 2 22
0.5 3 0.2 0.05 0.5 0.79e =  +  + + =  %  (6) 

The uncertainty of the test bench is ±0.79%. 

3. RESULTS AND DISCUSSIONS 

3.1 Law of Influence of Parameters on Performance 

Using the automatic optimization platform developed 

with Isight, the 120 sample points of design parameters in 

Schedule A are simulated, resulting in the heads and 

efficiencies of the pumps corresponding to various design 

parameter combinations, as shown in Schedule B. 

Experimental evaluation of the 120 parametric 

configurations demonstrates hydraulic head variations 

between 3.46 m and 6.88 m, with corresponding 

efficiencies ranging from 67.7% to 72.8%. Sensitivity 

analysis reveals that design parameters exert more 

pronounced effects on head modulation compared to 

efficiency optimization. Figure 8 presents the iterative 

curves, which, based on optimized Latin hypercube 

sampling, confirm a uniform distribution within the design 

space and effectively illustrate the relationship between 

design parameters and pump performance. 

To further understand the impact of design 

parameters and their interactions on the performance of the 

pump, a multiple quadratic regression model is established 

in Isight, as shown in Eq. (7). 

2
0

1 1 1

i jm m

i i i i ij i j

i i i

Y b b x b x b x x



= = =

= + + +  
                  (7) 

 

where 𝑏0 , 𝑏𝑖 , and 𝑏𝑖𝑗  denote the regression coefficients, 

and m denotes the number of factors. The regression 

model coefficients of the design parameters fitted by the 

test data with pump head and efficiency are shown in 

Table 2. 

 

 

Fig. 7 Schematic of the experimental setup 
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Fig. 8 Iteration curve chart 

Table 2 Regression model coefficients 

iS    LT N S 2  2LT  2N  2S   -LT  -N  -S LT-N LT-S N-S 

Head -0.04 4.13 -2.70 7.63 -0.06 -6.36 0.33 -36.24 0.56 0.20 0.93 0.91 20.03 5.81 

Eff -0.01 0.10 0.14 0.09  -0.06 -0.03 -0.51   0.01 -0.07 0.30 0.08 

 

Table 3 ANOVA output results of head 

Head 

 DF SS V F *p*-value R2 

Model 14.00 92.21 6.59 8544.10 < 0.001 0.99 

Error 96.00 0.07 / / / / 

Total 110.00 92.29 / / / / 

 

Table 4 ANOVA output results of efficiency 

Eff 

 DF SS V F *p*-value R2 

Model 14.00 0.03 0.02 2430.05 < 0.001 0.99 

Error 96.00 0.01 / / / / 

Total 110.00 0.04 / / / / 

 

As shown in the table, the hydraulic performance of 

axial flow pumps is influenced not only by the linear 

terms of the design parameters but also by second-order 

main effects and the interaction effects among different 

design parameters. To test the significance of the 

regression equation, this paper employs analysis of 

variance (ANOVA). The results of the ANOVA are 

presented in Tables 3 and 4 (Liao et al. 2020; Betchem et 

al. 2023). 

As shown in Tables 3 and 4, DF represents the degree 
of freedom, SS denotes the sum of squared deviations 

from the mean, V is the mean square, and R² indicates the 

fitting accuracy. The closer R² is to 1, the higher the fitting 

accuracy. ANOVA directly reveals whether the main and 

interaction effects of the design parameters are significant. 

3.1.1 Study of the Main Effect of Design Parameters on 

Pump Performance 

The main effect of a factor pair response is the 

average response of the factor across all trials at a specific 

level. This averages the effects on the results by varying 

the level of a single factor while considering all possible 
combinations of each level and the other factors. The main 

effects of the design parameters of the reversible counter-

rotating axial flow pump on pump performance are shown 

in Fig. 9. 

As illustrated in the figure, the attack angle exhibits a 
linear and positive correlation with head in the first half 

and a nonlinear positive correlation in the second half. The 

vane placement angle increases with the attack angle, 

resulting in enhanced pump work capacity. The 

relationship between axial interstage gap and head is 

nonlinear, they are positively correlated in the first half 

and negatively correlated in the second half, indicating the 

existence of an optimal threshold value. When this 

threshold is exceeded, losses along the stroke between the 

two-stage impeller increase, leading to a reduction in the 

pump's power generation capacity. The L and N are 

linearly and positively correlated with head. 

In terms of efficiency, the main effect of the attack 

angle is negatively correlated with the head. As the attack 

angle increases, it can lead to flow separation, reducing 

efficiency. In reversible axial flow pumps, the first 

impeller's inlet precession requires an increased attack 

angle to maintain flow. However, since the reversible 

counter-rotating axial flow pumps analyzed in this paper 
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Fig. 9 Main effect diagram 

maintain the same impeller blade placement angle in both 

stages to accommodate both forward and reverse 

operating conditions, an increased attack angle in the 

second-stage impeller may decrease efficiency. Therefore, 

selecting an appropriate attack angle is essential to balance 

both head and efficiency. The main effect of the LT and N 

on efficiency is positive but not significant. Similarly, the 

effect of axial interstage gap on efficiency mirrors that of 

the head, with an initial positive correlation in the first half 
followed by a negative correlation in the second half after 

a certain cutoff point. 

3.1.2 Design Parameter Interaction Effects Analysis 

The interaction effect represents the interdependence 

and mutual constraints among two or more factors, which 

together influence changes in the response variable. The 

interaction effect plot, derived from the main effect 

analysis, illustrates how two factors jointly affect the 

response. It depicts the relationship and strength of the 

interaction by showing the main effect of the first factor at 

different levels of the second factor. In the experimental 
design, there are four design variables, which ultimately 

constitute 12 interaction pairs affecting the two response 

variables. The interaction effects of the design parameters 

on head and efficiency are presented in Figs. 10 and 11, 

respectively. 

For the head, Fig. 10 shows that the interaction effect 

between the attack angle and the axial interstage gap is the 

most significant, as indicated by the crossing curves. In 

contrast, the interaction effects between N and axial 

interstage gap, as well as between LT and axial interstage 

gap, are negligible. The interaction effect curves for the 
attack angle and N, and for LT and N, are parallel, 

indicating no interaction. Together with the main effect 

analysis, these results suggest that the attack angle has the 

most significant main effect on the head, while the axial 

interstage gap exhibits a threshold effect, confirming the 

reliability of the main effect conclusions. The interaction 

between attack angle and axial interstage gap mainly 

reflects the working capacity of the second-stage impeller. 

Moreover, the axial interstage gap length influences the 

inlet precession of the second-stage impeller, implying an 

optimal parameter range for these two factors. 

For efficiency, Fig. 11 illustrates that the interaction 
effects are essentially the same as those observed for head. 

The most significant interaction occurs between the attack 

angle and the axial interstage gap, while the interactions 

 

Fig. 10 Graph of the interaction effect of design 

parameters on head 

 
between the axial interstage gap and LT, as well as the N, 

are insignificant. No interaction effects are observed 

among the other parameters. Combined with the main 

effect analysis, the attack angle remains the most 

influential factor, indicating an optimal relationship 

between the axial interstage gap and the attack angle. 

Notably, changes in the attack angle affect the blade inlet 

flow angle, which subsequently alters the flow path and 

velocity distribution within the impeller. It can induce 

localized flow separation and vortex formation, 

influencing the leakage flow in the interstage gap. The 
characteristics of this leakage flow significantly impact 

pump efficiency, as changes in the attack angle modify the  
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Fig. 11 Graph of the interaction effect of design 

parameters on efficiency 

 

pressure gradient and rotational behavior of the leakage 

flow. The combined effect of these factors can either 

enhance or suppress vortex structures, leading to nonlinear 

energy losses and fluctuations in performance. 

3.1.3 Analysis of the Contribution Rate of Design 

Parameters 

By fitting the input variables using least squares after 

normalizing them to the range of [-1, 1], a new set of 

model coefficients is obtained, which more accurately 

reflects the contribution of each input variable to the 

response. These values are presented in Table 5. To clarify 

the percentage contribution of each factor, the normalized 

model coefficients are transformed according to Eq. (8). 

100
i

i

i

x

X

x
j

S
N

S
=


                   (8) 

After removing the factors with low contribution 
rates, the adjusted contribution rates are shown in Fig. 12, 

sorted by the absolute value of their percentage 

contributions. Blue indicates a positive effect, while red 

indicates a negative effect. Pump performance is 

influenced not only by the linear effects of individual 

factors but also by their second-order terms and interaction 

effects. 

For the head, the linear contribution of the attack angle is 

the largest at 51.28%, consistent with the main effect 

analysis. The contributions of the other individual factors 

rank as follows: LT > S > N, each contributing less than 

10%, with N accounting for only 2.74%. Notably, the 
interaction effect between the attack angle and the axial 

interstage gap contributes 5.66%, exceeding the linear 

contributions of both the axial interstage gap and the N. It 

highlights the significant influence of these two factors on 

the head, in agreement with the interaction effect analysis. 

For efficiency, the linear contribution of the attack angle 

reaches a maximum of 56.2%, but it has a negative effect. 

The same design parameters significantly influence both 

the head and efficiency of the pump, though in opposite 

directions. The contribution rates of the other individual 

factors are ranked as follows: LT > N > S, with the axial 
interstage gap contributing the least at only 0.24%. 

Regarding interaction effects, the combined contribution 

of LT and axial interstage gap to efficiency is 2.62%, 

compared to 3% for head. It highlights that LT is an 

important design parameter, affecting performance both 

individually and through interactions with other factors. 

 

Table 5 Table of normalized coefficients 

𝑆𝑖 𝛼 LT N S 𝛼2 𝐿𝑇2 𝑁2 𝑆2  -LT  -N  -S LT-N LT-S N-S 

Head 1.51 0.29 0.08 0.15 -0.25 -0.02 / -0.29 0.06 0.02 0.17 / 0.09 0.03 

Eff -0.01 / / / -0.01 / / / / / / / / / 

 

Fig. 12 Contribution of design parameters 
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Table 6 Objective function Pareto solution set 

  LT N S Eff Head P 

1504 iterations of calculation 

1.72516 0.73171 1.34360 312.40053 0.71470 5.32252 438.14742 

1.70659 0.73851 1.31215 315.67677 0.71438 5.30042 436.46567 

1.69857 0.73171 1.39222 291.97781 0.71614 5.33395 438.20873 

1.60987 0.73863 1.39863 314.72672 0.71799 5.35380 438.93105 

9004 iterations calculated 

1.46865 0.74996 1.40000 316.26414 0.72028 5.30002 433.21824 

1.46865 0.74996 1.40000 316.26414 0.72028 5.30002 433.21824 

1.46865 0.75000 1.40000 316.26498 0.72028 5.30026 433.23758 

1.46865 0.74999 1.40000 316.14848 0.72028 5.30005 433.21930 

15004 iterations of calculation 

1.46577 0.75000 1.40000 318.27298 0.72031 5.30000 433.21091 

1.46464 0.75000 1.40000 319.26212 0.72032 5.30000 433.21157 

1.46464 0.75000 1.40000 319.26642 0.72032 5.30003 433.21373 

1.46464 0.75000 1.40000 319.26642 0.72032 5.30003 433.21377 

1.46464 0.75000 1.40000 319.26212 0.72032 5.30002 433.21273 

 

Table 7 Comparison of parameters before and after optimization 

   LT N S Eff Head P 

Initial value 2.40 0.67 1.30 386.00 0.69 5.31 447.70 

Optimization value 1.46 0.75 1.40 319.26 0.72 5.30 433.21 

 

3.2 Multi-objective Optimization Analysis 

The final Pareto solution sets for the objective 

functions under constrained conditions are obtained using 

the Adaptive Multi-Objective Genetic Algorithm 

(AMGA) after 1,504, 9,004, and 15,004 iterations for 

head, efficiency, and shaft power, respectively, as shown 

in Table 6. 

According to Table 6, the AMGA optimization 
identifies the pump design parameters and performance 

indicators at their optimal values within the design space. 

The results before and after optimization are summarized 

in Table 7, showing a 3% increase in efficiency and a 

reduction in shaft power by 14.5 kW, while maintaining 

the same head. After optimization, the vane attack angle 

decreases, while LT and N reach their maximum 

constraint limits, resulting in increased cascade density 

and impeller blade area, along with reduced differential 

pressure and relative velocity. For axial pumps, hydraulic 

losses are proportional to the geometric mean of the 
relative velocities. Therefore, minimizing this geometric 

mean reduces losses. The optimized axial interstage gap 

values are moderate rather than extreme, suggesting that 

very small or very large clearances are suboptimal. 

The hydraulic performance of the reversible counter-

rotating axial flow pump is predicted through numerical 

simulation both before and after optimization. The pump 

head efficiency and shaft power are calculated using Eqs. 

(9) ~ (11), respectively, to derive the flow-head and flow-

efficiency curves shown in Fig. 13. Here, Head-1 and Eff-

1 represent the head and efficiency of the optimized pump, 

while Head-0 and Eff-0 denote the head and efficiency of 

the initial pump. 

out inP P
H

g

−
=  (9) 

 
Fig. 13 External characteristic curve before and after 

optimization 

 

gQH
Eff

P


=  (10) 

2

60

nT
P


=   (11) 

where: outP - pump outlet pressure, Pa. inP - pump inlet 

pressure, Pa. T- Torque, N·m. 

From the figure, it can be seen that the difference in 

head between the optimized and initial pumps is negligible 

before reaching the design flow condition. However, 
beyond this point, the head of the optimized model 

declines more rapidly than that of the initial model (Shi et 

al. 2020). This behavior is attributed to the reduced attack 

angle after optimization. Under high flow conditions, the 

smaller attack angle leads to insufficient pre-rotation at the 

vane inlet, thereby reducing work capacity of the pump. 

The efficiency curve shows that the optimal operating 

points of both pumps shift toward lower flow rates after 

optimization. Near the design operating point, the 



Q. Xiang et al. / JAFM, Vol. 19, No. 1, pp. x-x, 2026.  

 

 
3408 

optimized pump achieves significantly higher efficiency 

than the initial model. 

3.3 Internal Flow Analysis 

Figs. 14 and15 present velocity distribution contour 

plots at different radial coefficients and at the inlet of the 

second-stage impeller before and after optimization under 

the design flow condition. Figs. 16 and 17, meanwhile, 

show their pressure distribution contour plots. To support 
the following analysis, the span normalization (sn) is 

defined as follows: 

h

D h

R r
sn

R r

−
=

−
                                                                (12) 

where: R-radius of the calculated section, mm, 𝑅𝐷-radius 

at the wheel rim, mm, 𝑟ℎ- radius at the wheel hub, mm. 

3.3.1 Variation of Velocity 

Figure 14 demonstrates that the high-velocity region 

A on the optimized blade suction surface substantially 

exceeds region B of the initial model at sn = 0.2, 

confirming enhanced energy transfer capability near the 
impeller hub post-optimization. Both pre- and post-

optimization configurations exhibit concentrated high-

velocity zones at the second-stage impeller leading edge 

(sn = 0.2), and progressively expanding across the entire 

suction surface as sn increases. This distribution stems 

from greater airfoil curvature and thickness near the hub 

versus gradual profile transitions at the rim, promoting 

velocity uniformity. Crucially, the high-velocity region 

development on the second-stage suction surface 

influences the first-stage pressure surface, an effect most 
pronounced in the initial model that impairs energy 

conversion efficiency. Post-optimization, increased hub 

and rim cascade densities (indicative of extended chord 

length) yield more uniform blade surface velocity and 

pressure distributions, thereby mitigating adverse inter-

stage interactions. 

To analyze the effect of the axial interstage gap on 

pump performance, Figs. 15 and 18 show the velocity and 

pressure distributions at the inlet of the second-stage 

impeller before and after optimization. Since the impeller 

has three blades, Fig. 15 displays three high-pressure and 

three low-pressure zones distributed in phase. After 
optimization, in regions C and D, the gap between the two 

impellers is reduced, theoretically increasing the 

interference between them and making the periodicity of 

the velocity distribution more pronounced. 

 

 
Fig. 14 Velocity distribution of the reversible counter-rotating impeller before and after optimization at different 

radial coefficients 

 

 
Fig. 15 Second-stage impeller inlet velocity distribution 
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Fig. 16 Pressure distribution of the reversible counter-rotating impeller before and after optimization at 

different radial coefficients 
 

 
Fig. 17 Second-stage impeller inlet pressure distribution 

 

3.3.2 Variation of Pressure 

As observed in Fig. 16, the initial model's excessive 

attack angle concentrates pressure differentials near the 

leading edge (sn = 0.2-0.8). It accelerates flow separation 

at the trailing edge due to impeller inflow impact and blade 

leading edge geometry, degrading efficiency. 

Optimization reduces attack angles for both impellers, 

distributing pressure uniformly from the leading to the 

trailing edges. This modification improves flow transition 

from the first-stage outlet to the second-stage inlet, 
particularly critical in counter-rotating designs where first-

stage outflow directly governs second-stage energy 

transfer capacity. Consequently, attack angle reduction 

significantly enhances overall pump efficiency. 

As illustrated in Fig. 15 and Fig. 17, the pressure 

distribution characteristics at the inlet section of the 

second-stage impeller before and after optimization 

closely resemble the velocity distribution. In the pressure 

cloud depicted in Fig. 17, the initial model exhibits a low-

pressure zone E near the blade head that extends from the 

hub to the rim. In contrast, the optimized model features 
a low-pressure region F that does not extend near the rim. 

This difference arises because, in the optimized design, 

the rim side of the second-stage impeller blade is 

positioned further away from the intersection surface 

when the fluid from the first-stage impeller has not yet 

reached the blade head, preventing the formation of a 

low-pressure area.  

3.3.3 Experimental Verification 

Figure 18 compares experimentally measured and 

numerically simulated pump performance characteristics. 

In Fig. 19(a), test-derived head and efficiency curves 

demonstrate close alignment. While the numerical 

simulation results in slightly higher efficiency values than 

the test results for flow rates above 100 m³/h, the 

discrepancy remains within 2%. Between 50-80 m³/h, 

head calculations exhibit a maximum 4% deviation. 

Confidence intervals confirm measurement reliability, 
with head at 5.3 m [4.84, 5.76] and efficiency at 72% 

[69.58, 74.18]. 

Figure 18(b) depicts flow rate versus shaft power (𝑄 

- 𝑃𝑒 ), where 𝑃𝑓  and 𝑃𝑟  denote first and second-stage 

impeller shaft power, respectively. Both experimentally 

and numerically derived 𝑄  - 𝑃𝑒 curves show smooth 

monotonic reduction. Although stage-specific power 

magnitudes differ across operating conditions, both stages 
maintain consistent power reduction trends throughout the 

flow range, with experimental and numerical results 

exhibiting strong agreement. 

Significant rotor-rotor interactions and complex internal 

flows in reversible counter-rotating impellers increase 

flow field instability. This complexity contributes to 

steady-state numerical head prediction errors. Full-flow 

conditions demonstrate excellent experimental-numerical  
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(a) Total head and efficiency                       (b) Shaft power of two-stage impeller 

Fig. 18 Test verification 

 

consistency, confirming the simulation's reliability for 

design optimization. 

4. CONCLUSIONS 

This paper uses the DOE to analyze how the main 

design parameters of a reversible counter-rotating axial 

flow pump influence its hydraulic performance. It shows 
both the primary and secondary relationships among these 

parameters and their effects on performance. Utilizing the 

Isight platform, we developed an optimization process to 

simulate scenarios derived from the experimental design. 

A response surface model is established to correlate the 

main design parameters with pump performance. Finally, 

a multi-objective optimization algorithm is employed for 

a global search of the optimal combination of the 

mathematical model, leading to the best design parameter 

set, which is validated through numerical simulations and 

tests. The key findings are as follows: 

(1) For head and efficiency, the main and interaction 

effects are nearly identical. Notably, the attack angle has 

the most significant impact on both head and efficiency, 

with contribution rates of 51.28% and 56.2%, 

respectively; however, efficiency exhibits a negative 

contribution rate. Among all parameters, the interaction 

effects between the axial interstage gap and attack angle 

are most pronounced. 

(2) It shows that the density increases at the hub and 

rim of the impeller at different radial coefficients. The 

velocity and pressure variations are more uniform on the 
blade surface, and the influence of the high-speed zone of 

the second-stage impeller on the first-stage impeller is 

mitigated. 

(3) It indicates that reducing the attack angle of the 

first-stage impeller leads to a more uniform pressure 

distribution across the blade surface from head to tail. The 

adjustment enhances flow conditions in the second-stage 

impeller, increasing the operational efficiency of the 

pump. 

(4) The simulation efficiency of the optimized 

reversible counter-rotating axial flow pump at the design 

operating point is 3% higher than pre-optimization, with a 
reduction in shaft power by 14.5 kW. Experimental results 

further validate the consistency between numerical 

simulations and practical outcomes. 
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APPENDIX 

Schedule A  

Optimal Latin Hypercube Design Matrix 

Sample 

Points 
 /(°) S/(mm) LT N 

1 1.513 282 0.71387 1.33866 

2 3.16 374.3 0.72899 1.39748 

3 0.605 310.8 0.66849 1.38403 

4 3.899 377.3 0.70294 1.37311 

5 0.37 372.8 0.73487 1.34958 

6 3.933 344 0.67689 1.3437 

7 0.84 389.4 0.67857 1.31345 

8 0.706 328.9 0.71891 1.33193 

9 2.756 368.2 0.68445 1.3605 

10 0.37 372.8 0.73487 1.34958 

11 3.933 344 0.67689 1.3437 

12 0.84 389.4 0.67857 1.31345 

13 0.706 328.9 0.71891 1.33193 

14 2.756 368.2 0.68445 1.3605 

15 3.832 390.9 0.66597 1.36639 

16 3.597 316.8 0.73235 1.31597 

17 2.622 357.6 0.74328 1.34202 

18 3.798 313.8 0.69286 1.37899 

19 1.849 341 0.66008 1.35462 

20 0.303 253.3 0.70714 1.35294 

21 2.017 378.8 0.7105 1.38487 

22 2.218 242.7 0.73739 1.34034 

23 0.101 272.9 0.72311 1.32269 

24 3.664 295.6 0.68697 1.31849 

25 0.269 318.3 0.74748 1.31513 

26 1.647 233.6 0.66429 1.31176 

27 3.462 383.4 0.73151 1.32185 

28 1.311 297.1 0.67437 1.30336 

29 3.126 244.2 0.69538 1.3 

30 2.655 322.9 0.70042 1.4 

31 0.336 327.4 0.72143 1.38908 

32 2.387 386.4 0.67269 1.30504 

33 1.143 262.4 0.74664 1.31933 

34 1.109 250.3 0.65084 1.3521 

35 1.782 229.1 0.70546 1.35546 

36 1.345 324.4 0.68529 1.33361 

37 2.689 268.4 0.72983 1.39832 
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38 3.966 276 0.68361 1.35042 

39 1.681 359.2 0.7021 1.3084 

40 3.63 248.7 0.73992 1.34454 

41 0.504 241.2 0.72731 1.38992 

42 3.261 331.9 0.65672 1.36723 

43 2.118 397 0.72395 1.32437 

44 1.445 338 0.72563 1.36218 

45 0.202 279 0.6979 1.3916 

46 1.378 356.1 0.7458 1.32353 

47 0.034 260.8 0.67353 1.36303 

48 0.235 335 0.66345 1.31681 

49 3.092 257.8 0.74412 1.31092 

50 0.067 300.2 0.73067 1.35882 

51 3.361 298.7 0.65252 1.32857 

52 3.731 371.3 0.73824 1.36555 

53 2.017 342.5 0.66765 1.39328 

54 0.908 256.3 0.69958 1.30672 

55 2.824 398.5 0.71639 1.3563 

56 1.546 351.6 0.65336 1.32101 

57 0.471 266.9 0.65756 1.32017 

58 3.294 362.2 0.67773 1.39412 

59 1.21 380.3 0.70462 1.34286 

60 2.084 245.7 0.71975 1.31008 

61 1.748 330.4 0.69202 1.36891 

62 0.773 224.5 0.69118 1.37983 

63 2.151 236.6 0.67185 1.38151 

64 1.076 347.1 0.69454 1.39916 

65 3.025 223 0.70798 1.33277 

66 3.866 269.9 0.71807 1.36975 

67 1.983 232.1 0.7063 1.39244 

68 2.252 265.4 0.68782 1.32521 

69 1.95 286.6 0.65588 1.33109 

70 2.42 350.1 0.74916 1.37731 

71 1.244 280.5 0.71471 1.37395 

72 2.487 325.9 0.67605 1.31429 

73 4 259.3 0.71723 1.31765 

74 0.975 220 0.72059 1.32773 

75 2.723 307.7 0.68109 1.3479 

76 1.882 291.1 0.65168 1.37479 

77 2.992 263.9 0.6584 1.35798 

78 2.319 339.5 0.70966 1.33697 

79 3.697 353.1 0.66681 1.30924 

80 0.874 251.8 0.65924 1.38824 

81 1.176 306.2 0.75 1.34622 

82 0.807 247.2 0.74076 1.35378 

83 3.496 235.1 0.66176 1.38655 

84 0.639 384.9 0.71218 1.37647 

85 1.008 363.7 0.65 1.38067 

86 1.58 283.5 0.68613 1.39496 

87 0.672 375.8 0.66513 1.34706 

88 3.193 393.9 0.6895 1.33025 

89 0.941 294.1 0.74832 1.38319 

90 3.395 254.8 0.69874 1.39664 

91 0.571 309.2 0.66092 1.34874 

92 3.563 310.8 0.7416 1.35042 

93 2.185 221.5 0.67101 1.34538 

94 2.353 288.1 0.73571 1.36471 

95 0.437 333.4 0.69706 1.3042 

96 2.555 277.5 0.70042 1.37143 

97 1.277 304.7 0.72479 1.30252 

98 1.613 400 0.73403 1.35966 

99 0.168 289.6 0.68866 1.32941 

100 0.403 319.8 0.69622 1.36134 

101 0 360.7 0.6937 1.33529 

102 2.454 348.6 0.73319 1.30168 

103 2.857 227.6 0.72647 1.37059 

104 2.79 271.4 0.66261 1.30084 

105 3.765 345.5 0.71134 1.34118 

106 3.227 226.1 0.69034 1.36387 

107 1.042 366.7 0.74496 1.38571 

108 0.538 381.8 0.72227 1.31261 

109 1.916 395.5 0.67521 1.33782 

110 2.958 292.6 0.66933 1.39076 

111 2.924 365.2 0.65504 1.33613 

112 3.529 315.3 0.73655 1.38739 

113 0.134 369.7 0.67941 1.37815 

114 2.286 303.2 0.73908 1.32605 

115 0.739 230.6 0.68277 1.33445 

116 2.588 301.7 0.70882 1.30588 

117 3.429 238.2 0.67017 1.32689 

118 3.328 354.6 0.70378 1.30756 

119 3.059 285 0.71303 1.3395 

120 1.815 321.3 0.72815 1.3958 

 

Schedule B 

Optimal Latin hypercube design matrix calculation 

results 

Sample 

Points 

Head/ 

(m) 

Eff Sample 

Points 

Head/ 

(m) 

Eff 

1 5.012 0.7177 61 5.157 0.7132 

2 6.496 0.6887 62 4.063 0.7198 

3 4.06 0.7252 63 5.082 0.7036 

4 6.721 0.6711 64 4.63 0.7212 

5 4.037 0.7244 65 5.534 0.6856 

6 6.487 0.6690 66 6.539 0.6733 

7 4.097 0.7174 67 5.078 0.7067 

8 4.339 0.7246 68 5.336 0.7032 

9 5.808 0.6937 69 5.003 0.7077 

10 4.037 0.7244 70 6.077 0.7042 

11 6.487 0.6690  71 4.836 0.7210 

12 4.097 0.7174  72 5.514 0.6986 

13 4.339 0.7246  73 6.412 0.6675 

14 5.808 0.6936  74 4.244 0.7167 

15 6.338 0.6696  75 5.775 0.6958 

16 6.623 0.6794  76 5 0.7100 

17 6.109 0.6993  77 5.678 0.6888 

18 6.593 0.6743  78 5.658 0.7034 

19 4.982 0.7083  79 6.181 0.6718 

20 3.829 0.7244  80 4.17 0.7218 

21 5.459 0.7080  81 4.962 0.7222 

22 5.395 0.7037  82 4.384 0.7227 

23 3.723 0.7258  83 5.783 0.6778 

24 6.299 0.6749  84 4.206 0.7229 

25 4.026 0.7264  85 4.228 0.7171 

26 4.608 0.7102  86 4.999 0.7159 

27 6.527 0.6802  87 3.945 0.7204 

28 4.583 0.7156  88 6.035 0.6837 

29 5.727 0.6853  89 4.768 0.7254 

30 5.969 0.6990  90 6.102 0.6819 
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31 4.072 0.7284  91 3.937 0.7234 

32 5.309 0.6973  92 6.716 0.6810 

33 4.745 0.7204  93 4.94 0.7013 

34 4.27 0.7176  94 5.823 0.7047 

35 4.879 0.7089  95 3.91 0.7230 

36 4.72 0.7177  96 5.729 0.6995 

37 5.953 0.6984  97 4.848 0.7199 

38 6.406 0.6689  98 5.176 0.7134 

39 5.025 0.7123  99 3.666 0.7246 

40 6.252 0.6764  100 3.972 0.7255 

41 4.058 0.7233  101 3.458 0.7210 

42 5.991 0.6835  102 5.84 0.7011 

43 5.467 0.7045  103 5.586 0.6900 

44 5.1 0.7190  104 5.512 0.6906 

45 3.804 0.7269  105 6.655 0.6748 

46 5.061 0.7181  106 5.643 0.6829 

47 3.465 0.7233  107 4.838 0.7231 

48 3.556 0.7205  108 4.068 0.7224 

49 6.05 0.6874  109 5.004 0.7046 

50 3.784 0.7257  110 5.889 0.6908 

51 5.912 0.6799  111 5.649 0.6878 

52 6.884 0.6769  112 6.742 0.6821 

53 5.238 0.7074  113 3.557 0.7217 

54 4.305 0.7208  114 5.782 0.7055 

55 6.025 0.6926  115 3.999 0.7200 

56 4.621 0.7113  116 5.776 0.6984 

57 3.772 0.7227  117 5.74 0.6773 

58 6.193 0.6832  118 6.24 0.6815 

59 4.647 0.7170  119 6.115 0.6899 

60 5.238 0.7061  120 5.493 0.7143 

 


