Dehghan, A. A., & Shojaeefard, M. H. (2022). Experimental and numerical optimization of a centrifugal pump volute and its effect on head and hydraulic efficiency at the best efficiency point.
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science,
236(9), 4577–4598.
https://doi.org/10.1177/09544062211056019
Dehghan, A. A., Shojaeefard, M. H., & Roshanaei, M. (2024). Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from an energy-saving standpoint; experimental and numerical investigation.
Energy,
293, 130681.
https://doi.org/10.1016/j.energy.2024.130681
Laberteaux, K. R., Ceccio, S. L., Mastrocola, V. J., & Lowrance, J. L. (1998). High speed digital imaging of cavitating vortices.
Experiments in Fluids,
24(5–6), 489–498.
https://doi.org/10.1007/s003480050198
Li, D., Fu, X., Zuo, Z., Wang, H., Li, Z., Liu, S., & Wei, X. (2019). Investigation methods for analysis of transient phenomena concerning design and operation of hydraulic-machine systems—A review.
Renewable and Sustainable Energy Reviews,
101, 26–46.
https://doi.org/10.1016/j.rser.2018.10.023
Liu, H. L., Liu, D. X., Wang, Y., Du, H., & Xu, H. (2011). Numerical research status and prospects of cavitating flow in a pump.
Fluid Machinery,
39(9), 38–44.
https://doi.org/10.3969/j.issn.1005-0329.2011.09.009
Long, Y., An, C., Zhu, R., & Chen, J. (2021). Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions.
Physics of Fluids,
33(4), 045124.
https://doi.org/10.1063/5.0040618
Pan, Z., & Yuan, S. (2013). Fundamentals of cavitation in pumps [in Chinese]. Zhenjiang, China: Jiangsu University Press.
Pearsall, I. S. (1974). Cavitation. The Chartered Mechanical Engineer, 21(7), 79–85.
Rains, D. A. (1954). Tip clearance flows in axial flow compressors and pumps (Ph.D. dissertation). California Institute of Technology, Pasadena, CA, USA.
https://doi.org/10.7907/MR84-WZ87
Shi, L. (2016). Research on tip leakage vortex structure and cavitation mechanism in three-dimensional hydrofoil and axial flow pump (Doctoral dissertation). Jiangsu University, Zhenjiang, China.
Tan, D., Li, Y., Wilkes, I., Vagnoni, E., Miorini, R. L., & Katz, J. (2015). Experimental investigation of the role of large scale cavitating vortical structures in performance breakdown of an axial waterjet pump.
Journal of Fluids Engineering,
137(11), 111301.
https://doi.org/10.1115/1.4030614
Tong, Z., Liu, H., Cao, X. E., Westerdahl, D., & Jin, X. (2023). Cavitation diagnosis for water distribution pumps: An early-stage approach combining vibration signal-based neural network with high-speed photography.
Sustainable Energy Technologies and Assessments,
55, 102919.
https://doi.org/10.1016/j.seta.2022.102919
Westra, R. W., Broersma, L., van Andel, K., & Kruyt, N. P. (2010). PIV measurements and CFD computations of secondary flow in a centrifugal pump impeller.
Journal of Fluids Engineering,
132(6), 061104.
https://doi.org/10.1115/1.4001803
Willard, G. W. (1953). Ultrasonically induced cavitation in water: A step‐by‐step process.
The Journal of the Acoustical Society of America,
25(4), 669–686.
https://doi.org/10.1121/1.1907161
Wu, Y., Liu, S., Yuan, H., & Shao, J. (2011). PIV measurement on internal instantaneous flows of a centrifugal pump.
Science China Technological Sciences,
54, 270–276.
https://doi.org/10.1007/s11431-010-4262-3
Zhang, N., Liu, X., Gao, B., Wang, X., & Xia, B. (2019). Effects of modifying the blade trailing edge profile on unsteady pressure pulsations and flow structures in a centrifugal pump.
International Journal of Heat and Fluid Flow,
75, 227–238.
https://doi.org/10.1016/j.ijheatfluidflow.2019.01.009
Zhao, X., Shen, X., Geng, L., Zhang, D., & van Esch, B. B. (2022). Effects of cavitation on the hydrodynamic loading and wake vortex evolution of a pre-swirl pump-jet propulsor.
Ocean Engineering,
266, 113069.
https://doi.org/10.1016/j.oceaneng.2022.113069