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ABSTRACT

The deposition behavior of fine sediment is an important phenomenon, and yet unclear to engineers concerned about
reservoir sedimentation. An elliptic relaxation turbulence model ( 2 fn -  model)  has  been  used  to  simulate  the  motion  of
turbid density currents laden with fine solid particles. During the last few years, the 2 fn -  turbulence model has become
increasingly popular due to its ability to account for near-wall damping without use of damping functions. The 2 fn -  model
has also proved to be superior to other RANS (Reynolds-Averaged Navier-Stokes) methods in many fluid flows where
complex flow features are present. This current becomes turbulent at low Reynolds number (order 1000). The k e-  model,
which was standardized for high Reynolds number and isotropic turbulence flow, cannot simulate the anisotropy and non-
homogenous behavior near the wall. In this study, the turbidity current with a uniform velocity and concentration enters the
channel via a sluice gate into a lighter ambient fluid and moves forward down-slope. The model has been validated by
available experimental data sets. Moreover, results have been compared with the standard k e-  turbulence model. The
deposition of particles and the effects of their fall velocity on concentration distribution, Richardson number, and the
deposition rate are also investigated. The results show that the coarse particles settle rapidly and make the deposition rate
higher.

Keywords: Density Current, Turbulence modeling, V2-f turbulence model.

NOMENCLATURE

b0                    width of the layer
C                    concentration

1 2, ,C C Cm e e empirical constants in the k - e

                       model
E water entrainment coefficient
f                      relaxation variable
f m                   damping function
g                     gravity
g’                    reduced gravity
h density currents height
H                    water depth
k                     turbulent kinetic energy
L                     length scale of turbulence
P                     pressure
Pk production term
Ri   bulk Richardson number
S                     S2=SijSij
Sij                    strain rate tensor

T                 time scale of turbulence
 Uave  layer-averaged velocity in the x

direction
u, v time-averaged velocity components in
                    the x and y directions, respectively;
u*                shear velocity
uiuj               Reynolds stresses
vf sediment particle fall velocity
y wall normal distance

wr density of water;
e                   energy dissipation rate

sr                 density of particles
q                   channel slope angle in degree.

2v                  turbulent velocity scale
k                  von Karman constant;
tu                   turbulence viscosity;
σk and εσ       turbulence constants
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1.  INTRODUCTION

Turbid water from river, into the reservoir often goes below
the strata of clear water and produces a phenomenon known
as “turbid density current”. These currents are quite
different from the free jet flows and river sediment
transportation. Such flows are only produced due to the
vertical density gradient. In fact, the magnitude of the
driving force and the corresponding velocity is directly
proportional to the density gradient (Firoozabadi et al.,
2003).

Turbidity currents are continuous flows, which move down
the slope because of the gravity due to the fact that, their
density is heavier than ambient water. Generally speaking,
density differences in these currents can arise from
temperature differences, different chemical species,
suspended solids, and etc.. Turbidity currents in the ocean
are known to be a maker of submarine canyons
(Fan and Morris, 1992; Salaheldin et al., 2000).
Thunderstorm and the winds are density currents in the
atmosphere formed by hot and cold air. Gulf Stream and oil
spillage represent other forms of density currents. Some of
experimental studies in the literatures on density or turbidity
currents are Ellison and Turner (1959), Rad (1976), Alavian
(1986), Parker et al. (1987), Garcia (1993), Altinakar et al.
(1996), and Lee and Yu (1997).

Mainly, there are two modeling techniques are available for
exploring density currents numerically, namely, the vertical
structure model, and the integral model. The vertical
structure model uses Reynolds equations as well as a
turbulence closure model to find the flow variables that are
non-uniform over the depth.

This approach widely can be found in the references, Stacey
and Bowen (1988a, b), who used a mixing length model for
the turbulence closure. Eidsvik and Brrs (1989) applied the

e-k  turbulence model to turbidity currents. Using the
Reynolds stress model the vertical structure of turbidity
currents has also been studied in Brors and Eidsvik (1992).
Density currents which occur in sedimentation tanks have
been simulated by the e-k turbulence model in Lyn et al.
(1992) and Lakehal et al. (1999). Low Reynolds number
turbulent model ( e-k  Launder-Sharma) was employed by
Firoozabadi et al. (2000) to investigate the structure of this
current.

In  all  the  efforts,  which  used e-k  or modified e-k
model  for  the  low  Reynolds  number  flows,  the  result
showed the poor agreement with the experimental data, and
if not, that work applied the experimental correlation, to
model the shear velocity or entrainment coefficient. This
weakness comes from the week points of the e-k  model,
which cannot simulate accurately the behavior near the wall
(e.g. over-prediction in eddy viscosity near the wall) and

lack of the ability to simulate the anisotropy effects in the
domain.

In the last few years, the 2 fn - turbulence model,
originally suggested by Durbin (1991), has become
increasingly popular due to its ability to correctly account
for near-wall damping without the use of damping
functions. The 2 fn - model has shown its strong ability in
many fluid flows where complex flow features are present
and be superior to other RANS (Reynolds-Averaged
Navier-Stokes) methods. For example, Parneix et al.
(1998) successfully computed the strong three-dimensional
flow around a wall-mounted appendage. Using the 2 fn -

model Hermanson et al. (2003) obtained improvements in
the predicted heat transfer rates as compared to the e-k
computations for a stator vane flow. Similar results were
also found in Sveningsson (2003). Another class of flows
where the 2 fn - model seems to work well is separated
flows. Cokljat et al. (2003) computed a set of recirculating
flows and found that the 2 fn - model in most cases
outperformed two-equation approaches. The same trend
was  seen  in Iaccarino (2001) where the flow in an
asymmetric diffuser was computed using the 2 fn - model
and the Launder–Sharma low-Reynolds number e-k
model. The separation bubble characteristic of this flow
was fairly accurately predicted with the 2 fn -  model
whereas the e-k  model produced no recirculation at
all. Due to the somewhat unstable formulation of the wall
boundary condition of the relaxation parameter, f , in the
original formulation of the 2 fn - model, Lien and
Kalitzin (2001) slightly redefined f in  order  to  have  a
numerically more attractive boundary condition. Due to
the improved numerical properties of the redefined model,
it has become more popular than the original, which in
most cases requires a coupled solution procedure (e.g.
Sveningsson, 2003). In the recent studying of
Sveningsson (2004), the behavior of two versions of the

2 fn - model is compared in an attempt to investigate in
what aspects they differ and also to improve the overall
understanding of the 2 fn - models performance.

In this study, the two-dimensional turbidity current was
simulated with improved 2 fn -  model (Lien et al. 2001)
to identify the ability of this model in these especial types
of currents.  This study, which is compared with the
different experimental data sets, involves an accurate
procedure that can accurately calculate the behaviors of
the turbidity current.

2. MATHEMATICAL MODELING

2.1 Governing equations
Figure 1 shows the schematic sketch of turbidity current.
The concentration of turbid-water is so small that
Bousinesq approximation can be used with this
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assumption; the effect of density difference are neglected in
the inertia term, but included in the buoyancy force term.
Thus, the governing equations for the steady state turbidity
current are
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where these equations are, continuity, momentum and mass
balances. C is the concentration of the dense fluid defined as

( ) /( )C w s wr r r r= - -  and r  is the density of the mixture. sr

and wr  are the particles and water density, respectively. u

and l  are the viscosity and diffusivity of fluid,
respectively. In the momentum equation, g¢  is the reduced
gravitational acceleration
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In the concentration equation, v
f is the particles fall

velocity and
sz  is the turbulence diffusivity. By using the

turbulent Schmidt number Sc, eddy diffusivity will be
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t

s
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While the Schmidt number, similar to the Prandtl number, is
affected by the buoyancy, there is assumed to be unity here
(Lyn et al. 1992). The particles in the current are assumed
dilute and non-cohesive with equal settling velocities. The
pressure term is defined as

( ) ( ) / w
w w

P P g H h g H y¢= - - +r - r
r r

o                             (7)

po  is the surface pressure and ,H h  are the water depth and
density current height, respectively. Due to entrainment in
the turbid density current, the height and the average density
of turbidity current change continuously. Therefore, the
pressure gradient cannot be omitted.

It's worth mentioning that in the laboratory, a gate valve
controls the feed rate, and the feed rate is fixed at a desired
rate. Thus, the current would be in a quasi-steady condition
and we considered a steady state condition in the present
work.

2.2 Turbulence modeling
Most of CFD packages use the standard or modified
versions of the e-k  turbulence model. Physical
phenomena involved in the turbidity current are
substantially different and have been considered as highly
challenging test cases for the validation of turbulence
models. Since near the wall region in this current is very
important, the turbidity current lies on the bed and has a

short height from the bed, thus causing a near bed
behavior to have the important effect on the characteristics
of the current, but the  standard e-k  model  showed  a
poor result in this region (Parneix 1998, Lander 1974).
Moreover, this current becomes turbulent at a low
Reynolds number (order 1000); hence, the e-k  model
which has been standardized for a high Reynolds number
and an isotropic turbulence flow, cannot simulate the
anisotropy and non-homogenous behavior near the wall as
well as shear layer (Durbin 1995, Parneix 1998). In order
to integrate e-k  into the wall, it is common practice to
introduce the low-Reynolds number damping functions.
These turn to mimic certain near-wall behaviors (Launder
and Sharma, 1974). However, all these models use a
single-point approach (Durbin and Pettersson 2001) that
cannot represent the non-local effects of pressure-
reflection that occur near solid boundaries. In many cases,
these damping functions involve an ill-defined normal
distance to the wall, which cannot be used in complex
geometries. They are also highly non-linear and
sometimes introduce numerical rigidity.

An attractive alternative to the e-k  model is the 2 fn -

turbulence model (Durbin et al. 1991). By considering the
exact transport equations for the Reynolds stresses in a
fully developed channel flow, it can readily be shown that
the production of uv  (the only Reynolds stress
component that affects the mean flow field) should be

proportional to 2n . In two-equation models, this velocity
scale (squared) is not explicitly available, but is replaced
by the turbulence kinetic energy k . As k  has a different

wall distance dependency (y2) from 2n (y4), this
modeling  is  expected  to  be  inaccurate  as  walls  are
approached. This deficiency can be controlled to some
extent by introducing a damping function that improves
the wall distance dependency of nu . Durbin (1991)

showed that by simply replacing k  with 2n  in the
definition of the eddy-viscosity, results were substantially
improved. Hence, an alternative interpretation, or
definition of the damping function, say mf , is 2 .f kmn =

The main problem with a damping function is that this
function can be tuned to only a limited number of test

cases. In f-2n   model, on the other hand, 2n  is
governed by a separate transport equation and thus, has a
potential of being applicable to a wider range of flow

situations. In general, 2n  should be regarded as a scale
for the velocity component responsible for turbulent
transport which is proportional to k far from solid walls.

While in the near-wall region, 2n becomes the velocity
fluctuation normal to the solid surface, regardless of the
orientation of the surface. One important feature of the 2n
equation is its ability to account for non-local effects (e.g.
kinematics blocking) by solving an elliptic relaxation
equation for f , a parameter closely related to the
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pressure strain redistribution term. A modified Helmholtz
operator introduces ellipticity, which is amenable to
numerical computations. It introduces wall effects by a
linear equation. This operator generates turbulence profiles
that evolve from the near-wall behavior to form suitable
areas far from the solid boundaries. Finally, a mathematical
constraint has been added to prevent non-reliability of the
eddy viscosity especially in the stagnation region (Durbin et
al. 1996).

For an extensive discussion on this subject, see
Manceau et al. (2001).  The model equations are outlined as

follows. The f-2n   model  could  be  thought  of  as  a
simplification of a full Second Moment Closure (SMC)
model (Durbin, 1993). For instance, the source terms in f
equation represent a return to isotropy and isotropization
models for energy redistribution. In this and other ways,
important effects of near-wall anisotropy are represented.

However, the f-2n   model has the advantage of solving
the mean flow with an eddy viscosity, which avoids some
computational stability problems encountered with the full
SMC models. It is a general geometry turbulence model,
valid right up to solid walls. It does not need wall functions
whose universality is increasingly being called into question
(Behnia et al. 1999).

In the modified f-2n  turbulence model the following
transport equations must be solved in order to estimate eddy
viscosity
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model requires values of k  ande . They are determined
by their equations, the only revision being to replace 1eC

either by
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ù

êë
é + 2/045.0141.1 nk  or  by

[ ]42)/15.0(1/25.03.1 Ld++  (Parneix et al. 1998).
Either one of these increases the dissipation near the wall
and improves the predictions of k .

2.3 Test case and boundary conditions

The computational domain was defined based on the two-
dimensional laboratory experiments of Choi and Garcia
(2002) and Akiyama et al. (1994). The boundary
conditions at the inlet are known. Similar to the
experimental models, the kaolin-laden flow with uniform
velocity and concentration enters the channel under the
still bodies of water passing through a sluice gate, on the
bed inclined at angleq . At the out-flow boundary, the
stream-wise gradients of all variables are set to zero. It is
expected that modeling of the outlet have only a local
effect on the flow field. When the effects of wind and
small ripples on the flow field can be neglected, at the free
surface, the rigid-lid approximation can be imposed
(Firoozabadi et al., 2003, Bournet et al., 1999). Then the
symmetry condition is applied that includes zero gradients
(zero shears) and zero fluxes perpendicular to the
boundary. At the rigid walls, due to the no-slip conditions
and a pure depositing assumption, the velocities and
concentration gradients are set to zero. For particles mass
balance equation, zero gradient conditions normal to the
vertical wall are applied. Also for the e-k and

modified f-2n  equations, at the free surface, no flux

conditions are imposed, i.e.,
2

0k v f
y y y y
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2.4 Solution procedure

The flow and the turbulent equations have to be accurately
resolved to obtain the concentration distribution predictions.
All computations were performed in Cartesian coordinates
with rectangular geometry. Cartesian grids were used, with a
high resolution near all solid boundaries.

In all  cases (for the f-2n model),  the first  grid point  was

at 1»+y  or  less  (Behnia et al. 1999). Therefore, the
solutions presented here are considered grid independent
(Behnia et al. 1999). However, for both models, the grid
independency study was utilized and some tests were
performed with different grid sizes to seek a grid
independent solution in each test case. The mesh points
were chosen as uniform in the streamwise direction,  but in
the vertical direction, because of high gradients in the near-
bed region, the grid points were distributed in a non-uniform
manner with a higher density of grids close to the bed.

2.5 Solver
A finite volume code was developed by using the pressure
correction scheme SIMPLEC and a collocated grid
arrangement with Rhie-Chow (1983) interpolation. The
hybrid scheme was used for discretizing the momentum,
turbulence and particles mass balance equations. Due to the
convergence  problems,  the  multi  grid  method  was  used  to
enhance numerical stability. The momentum and turbulence
equations were solved with a coupled tri-diagonal matrix
solver  (TDMA).  All  fluid  properties  were  treated  as  being
constant.

3. RESULTS AND DISCUSSION
At first, a model for the salt-water solution density current
was examined. Figure  3 shows the height of the steady
density current in comparison with the experimental data of
Akiyama (1994). The height of the turbidity current was
defined as the interface between the particle laden water and
the lighter ambient fluid. In this figure, it can be seen that
the f-2n  model has a very good agreement with the
experimental data. In the experimental efforts, it is common
to measure the height of this current via its brightness and
by optical instruments. Therefore, in this work, we assumed
that the current height is the place where the concentration is
equal to 1% of the inlet concentration (as in the boundary
layer approach).

Figure 4 shows the comparison between the standard e-k ,

and f-2n  model to predict the body height of the density
current. It can be seen that the e-k  model, has overshot
the current height. This model overestimates the eddy
viscosity near the wall, so the friction coefficient increases
and causes the growth of the current height to be
overshooting. Moreover, the e-k  model over predicts the
turbulence kinetic energy in the free shear layer and this
increases the entrainment as a result of which the height of

the current overshoots; however, the f-2n  model has a
good agreement with the experimental data (Fig. 3).

Figure 5 shows a typical  plot  of the velocity vectors and
concentration contours of computations. Figures  6 and 7
show the computed vertical structures of the dense
underflow, which develops on an inclined bed. In the
figures, the flow structures are given in a dimensionless
form. That is, the vertical axis is non-dimensionalized by
the local current thickness while and the horizontal axis
by the layer-averaged values. The layer-averaged
quantities can be calculated as follows

h

udy
U

h

ave

ò
= 0 (16)

h

Cdy
C

h

ave

ò
= 0 (17)

Figure  6 shows the dimensionless profiles of computed
fractional density. A fair collapse of the computed
solution is obtained for both models. Figure 7a shows a

comparison between the e-k  and f-2n  models in
the prediction of velocity profiles at some downstream
locations (dimensional form).  It  can be seen from Fig.7a
that the maximum velocity occurs quite close to the
channel bed, which is consistent with the experimental
observations of Garcia (1993). Also in Fig. 7b, the
velocity profiles in non-dimensional form have been
shown. It can be seen that the non-dimensional forms of
velocity profiles calculated by both fv -2  and e-k
models have roughly agreement with the experimental
data. These types of comparisons are very common in
numerical and experimental efforts, but in Fig. 4, it is seen
that the e-k  model has over-predicted the height of the
current. Then, probably, non-dimensionalizing by
dependent variables (Such as h and Uave) may change the
structure of the current.

Three dimensionless profiles of turbulent characteristic (at
x  =3  m)  were  given  in Fig.  8, respectively. The
dimensionless variables in this figure are defined as

*
*

* * 2; ; ;
( )

w u y u ku y u k
u u

+ + +t r
= = = =

r m
In this figure it is seen that the maximum turbulent kinetic
energy occurred at the free shear layer region; however,
the e-k  model has a larger estimation in the turbulent

kinetic energy than the f-2n  model.  Due to our mesh

generation, at the first five grids near the wall, +
y is equal

to
+

u and this fact shows that this model needs the denser
mesh (first mesh at 1»

+
y ) near the solid wall, in

comparison with the e-k  model, especially at the sub-
layer  of  the  boundary  layer  (the e-k  model requires
only one mesh in this region).

3.1 Entrainment concept

Due to the shear layer at the interface of turbidity current
and ambient fluid, it disturbs and entrains the surrounding
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fluid. Turbulence at this boundary entrains the stationary
ambient fluid immediately above it into the layer and dilutes
it. The turbulent region grows with distance downstream as
the non-turbulent fluid becomes entrained in it. Therefore, a
small mean vertical velocity perpendicular to the mean flow
is generated when the ambient fluid is initially at rest.
Ellison and Turner (1959) suggested that the velocity of the
inflow into the turbulent region must be proportional to the
velocity scale of the layer; the constant of the
proportionality is called the entrainment constant E.

If 2-D flow is considered and, therefore, if the lateral
entrainment is neglected, the entrainment coefficient E is
defined as

oavebEU
dx
UAd

=
)(                                                             (18)

Where A=area of cross section of the dense layer;
Uave=mean velocity of the layer; and ob =width of the layer.
Entrainment is governed by the bottom slope, friction, and
mixing at the interface of the dense layer. This mixing
mechanism is parameterized by the overall Richardson
number defined as

2
cos'

aveU
hgRi q

= (19)

where
wwgg rrr /)(' -= ; h =height of the dense layer;

and q  =angle of the bed slope.

Parker (1987) showed that this functional relationship could
be represented most accurately by
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In this study, the entrainment coefficient is derived by

)(1 hU
dx
d

U
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where h  is the local height of the current.

The entrainment coefficient and height of the turbidity

current, calculated with the f-2n  model  are  shown  in
Fig 9. over the length of channel for Rein= 3340. It can be
seen that E is maximum at the inlet, due to the highest shear
rate; then it decreases to a constant, as the flow becomes
established. Figure 10 shows the computed entrainment
coefficient (close diamond) as a function of bulk Richardson
number. In the figure, measured values by Parker et al.
(1987) and Ashida and Egashira (1977) are also given, and
those are represented by the open squares, respectively. The
curve in the figure comes from Eq. (18), which is the best fit
of the experimental results by Parker et al. (1987).
Moreover in the figure, computed values by
Choi and Garcia (2002) are also given, and those are
represented by the fill circles, respectively. It is seen that the
computed entrainment coefficient falls well within the range
of the measured values (the experimental data has a very
wide range).

3.2 Deposition rate
The deposition rate w is the rate of the particles deposition
and is calculated using the following concept. The mass
flow rate of particles in each cross section, is

dy
h

uxw wò -=
0

)()( rr                                            (22)

where h  is  the  height  of  turbidity  current.  This
integration can be altered to

dyCuxw
h

ws ))(()(
0
ò -= rr                                            (23)

Due to the concentration boundary condition, at the
bed 0/ =¶¶ yC , it is assumed that the particles deposit
and are removed from the computational area. Then, the
former integration can be related to the deposition rate in
each  cross-section  of  the  channel.   Thus,  the  mass  flow
rate of the removed particles (deposited) can be
determined as:

( )
.sec

dw kgdeposition rate
dx m

= -                          (24)

With this concept, the deposition rate in some different
particles’ settling velocities is illustrated in Fig. 11. In this
figure, it is seen that the bigger particles which provide
the greater source term in the concentration equation
increase the deposition rate. It can be seen that the
deposition rate is maximum near the inlet, and then, it
decreases to a constant as flow becomes established.
Similar results were examined experimentally, by
Garcia (1993) and Yu et al. (2000).

4. CONCLUSIONS

The f-2n  model has been applied to simulate the
structure of turbidity current. Momentums, continuity,
mass balance of particles and turbulence equations are
solved simultaneously, by the SIMPLEC method without
any limited or simplified assumptions. The computed
water entrainment coefficients, height of the dense fluid,
velocity and concentration profiles correspond well with
the  different  experimental  data  sets.  It  was,  also,  shown
that the settling velocity of particles has an important
influence on the vertical profile of concentration and
deposition rate components. Moreover, results have been
compared with the standard e-k  turbulence  model.  It
has been shown that the e-k  model has a poor result in
simulating this current especially in calculating
anisotropic effects in the near bed region and free shear
layer (entrainment) characteristics.
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Fig. 1. The schematic sketch of the turbidity current

Fig 2. The schematic sketch of grids and boundary conditions

Fig. 3. The steady density current height calculated by the 2 fn -  model, in comparison with the experimental data.
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Fig. 4. The height of density current computed by the present model and standard k e-
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Fig. 5. The velocity vectors (a) and contour lines of concentration (b) of the turbidity current.

Fig. 6. Similarity collapse of vertical concentration structure of dense underflow using the k e- and 2 fn - models;
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Fig. 8. Dimensionless profile of turbulent characteristic at x =3 (m) from the inlet

(a)

                                                            u/Uave                                                               u/Uave
(b)

 Fig. 7. Similarity collapse of vertical velocity structure using k e- and 2 fn - models;
  a: The velocity profiles (dimensional-form) b: Non-dimensional velocity profiles
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Fig. 9. The height and entrainment coefficient

Fig. 10. Comparison of the entrainment coefficient calculated by the present model with the experimental data, and e-k
model.

Fig. 11. Comparison of the deposition rate for two sizes of particle fall velocities
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