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ABSTRACT 

An approximate analysis based on standard perturbation technique together with an application of Green’s 
integral theorem is used in this paper to study the problem of scattering of water waves by a two dimensional 
thin plate submerged in deep ocean with ice cover. The reflection and transmission coefficients upto first order 
are obtained in terms of the shape function describing the plate and are studied graphically for different shapes 
of the plate. 

Keywords: Water wave scattering; Two dimensional thin plate; Nearly vertical plate; Reflection coefficient; 
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1. INTRODUCTION

The study of ocean wave interactions with a thin, 
floating elastic plate has gained immense 
importance since last decade as it can be used to 
model a wide range of physical systems. One of its 
important applications consists in modelling a very 
large floating structure (VLFS), that is used in ocean 
space utilization for the construction of megafloats 
such as floating airports, offsh ore runways, floating 
restaurant etc. It is a technology that allows these 
megafloats, which are considered to be artificial 
lands to float on rising sea level and has a minimal 
effect on marine habitat, natural and tidal current 
flow (cf Wang et al. 2010; Wadhams 1978). Owing 
to the large surface area and relatively small depth, 
VLFS behaves elastically under wave action (cf 
Wang et al. 2010). In the polar region, surface 
gravity waves propagate from the open ocean into 
ice-covered seas. Understanding the modus 
operandi of formation of sea ice and its distribution 
is imperative to explain the geophysical phenomena 
occurring in the polar regions and in the marginal 
ice zone. A precinct between ocean and atmosphere, 
the sea ice arrests the escape of heat from the ocean 
to the air above. Consequently it plays a crucial role 
in conservation of marine life. An uninterrupted 
expanse of unbroken ice over a vast stretch in the 
polar region often encounters waves propagating at 
free surface. It is well known that waves may 

weaken and rupture the continuous sea ice causing 
fissures which may lead to melting of sea ice. This 
phenomena is an indicator of global climatic 
change. The amplitude of the waves travelling 
beneath the ice needs to be studied as it causes the 
ice-cover to bend. The bending of ice-cover is 
attributed to its elastic property. A mathematical 
model for treating the ice sheet as floating thin 
elastic plate is well known and a significant research 
has been carried out using this model to study the 
problems related to ocean wave interaction with sea 
ice (cf. Fox and Squire 1994; Squire 2007; Chung 
and Fox 2002; Linton and Chung 2003; Chakrabarti 
2000; Gayen et al. 2005). In order to minimize the 
impact of wave action on a VLFS or ice sheet, 
various anti motion structures and devices such as 
break-waters, submerged plates, oscillating water 
column breakwater, air cushion, curtain pile 
breakwater are designed (cf Wang 2010; Tari and 
Ohkubo 2000). Also, a number of experiments 
measuring wave propagation through marginal ice 
zone have been reported of which first measurement 
was carried out by a ship borne wave recorder (cf 
Kohout and Meylan 2008). Later, measurements 
were carried out by a echo sounder from a 
submerged hovering submarine, acoustic Doppler 
Current Profiler mounted on an autonomous under 
water vehicle (cf Kohout and Meylan 2008, 
Wadhams 1978). Thus the study of the waves in 
presence of thin plate under ice cover or VLFS is 
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important. Mathematically, the boundary value 
problem (BVP) related to study of water waves in 
ocean with ice-cover, involves fifth order derivative 
of the potential function in the boundary condition 
on ice cover whereas the governing partial 
differential equation is of second order. The 
literature concerning the study of ocean wave 
interaction in ocean with ice-cover in the presence 
of a body submerged beneath the ice-cover floating 
in a deep water is rather limited, although the study 
of ocean wave interaction with structures present in 
the ocean with free surface under linearised theory 
has been a subject of interest since early twentieth 
century. A number of researchers contributed 
significantly to this topic, although the closed form 
solution to these problems are available only when 
the structure is in form of a thin rigid vertical plate 
and that too for the two dimensional motion in 
water. Diffraction problems involving nearly 
vertical barriers are more general than vertical 
barrier. One such problem of water waves scattering 
by a nearly vertical plate partially immersed in deep 
water was considered by Shaw (1985). He used a 
perturbation analysis that involved solution of 
singular integral equation. Later Mandal and 
Chakrabarti (1989) and Mandal and Kundu (1990) 
considered the problems of water waves scattering 
by a nearly vertical barrier and utilized a 
perturbation analysis different from Shaw (1985) to 
handle the problems. The problem of water wave 
diffraction by a symmetric two dimensional thin 
slender was plate mentioned briefly by Shaw (1985) 
although the first order correction to reflection and 
transmission coefficients are not given there 
explicitly. Later Kundu (1997), Kundu and Saha 
(1998) considered the problem of water wave 
scattering by a thin two dimensional slender body 
either partially immersed or completely submerged 
or submerged in deep water. They used the 
perturbation technique described in Mandal and 
Chakrabarti (1989) to obtain first order correction to 
reflection and transmission coefficients in terms of 
the shape functions of two sides of the slender 
barrier. All the above mentioned wave structure 
interaction problems were considered when the 
water region is covered by a free surface. In recent 
past Das and Mandal (2007) investigated the 
problem of ocean water and sea ice interaction in 
presence of a long horizontal cylinder. Maiti and 
Mandal (2010), Maiti et al. (2011) studied the ocean 
wave interaction with a thin vertical barrier present 
in ocean with ice cover. They used Green’s integral 
theorem to reduce the corresponding boundary 
value problem to a hyper-singuler integral equation 
which was then solved by collocation method. In 
the present paper we have studied the problem of 
scattering of ocean waves by two dimensional thin 
plate submerged in ocean with ice cover. Using the 
perturbation analysis as given by Mandal and 
Chakrabarti (1989), together with application of 
Green’s integral theorem, the first order correction 
to the reflection and transmission coefficient are 
obtained in terms of the shape function describing 
the shape of two sides of the plate, which are then 
studied graphically for various values of wave 
number and different values of ice cover parameter. 
The reflection and transmission coefficients up to 

first order due to the two dimensional thin barrier 
are compared with those due to one dimensional 
nearly vertical barrier submerged in ocean with ice-
cover. It was also observed that when the value of 
ice-cover parameters are small, the reflection and 
transmission coefficients matches with the results in 
1998 when the ocean is covered by a free surface. It 
is observed that unlike nearly vertical plate, the 
thickness of the symmetric two dimensional plate 
has some effect on the reflection and transmission 
coefficient. From the graph it is noted that in 
presence of a symmetric two dimensional plate, the 
long waves do not feel the presence of ice-cover as 
they are confined towards the bottom of the ocean. 
However, the short waves which are confined near 
the ice-cover surface are affected by the presence of 
ice-cover. It is observed that long plate induces 
more reflection of wave energy and less 
transmission. Also for a particular length of the 
plate, the increase in ice cover parameter induces 
more transmission of wave energy. 

 

 
Fig. 1. Schematic sketch of two dimensional thin 

plate. 
 

2. FORMULATION OF THE 
PROBLEM 

We consider two dimensional irrotational motion in 
ocean with ice cover due to scattering of time 
harmonic incident wave by a two dimensional thin 
barrier submerged in infinitely deep ocean. We 
choose a rectangular cartesian coordinate system in 
which y axis is vertically downwards into fluid 
region y ≥ 0 and x axis is along rest position of lower 
part of ice-cover. Ice-cover is modelled as a thin 
elastic plate of thickness 1h  and density 1  with 

flexural rigidity 
3
1

212(1 )

Eh
L





 where E is the 
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Young’s modulus, ν is the Poisson ratio of the elastic 
material of the ice-cover. A thin two dimensional 
rigid plate described by 1 2S S S   where 1S  and 

2S  denote two sides of two dimensional thin plate 

given respectively by 1ε ( )x C y and

2ε ( ),x C y a y b    (cf figure 1). 

Here ε is a non dimensional small parameter which 
can be regarded as a measure of thinness of the plate 
and ( )iC y , 1, 2i   are bounded continuous 

function of y with ( ) ( ) 0, 1,2.i iC a C b i   . A train 

of time harmonic waves represented by velocity 

potential  Re ( , )inc i tx y e    where σ is the circular 

frequency, is incident upon the barrier from negative 
infinity and is partially reflected by the barrier and 
partially transmitted over and below the barrier. 

 

 
Fig. 2. |R| versus Kb for different values of D′ (u 

= 0.01 and ε = 0.005). 

 

 
Fig. 3. |T| versus Kb for different values of D′ (u 

= 0.01 and ε = 0.005). 
 

Assuming linearised theory, the motion is described 

by the velocity potential  Re ( , ) i tx y e   where φ 

satisfies, 

2 0,  y 0,                                                    (1) 

the linearised ice cover condition (cf Landau and 
Lipschitz (1970) pp 44), 

4

4
( 1) 0  on y=0,yD K K

x
  

   


             (2) 

the condition on the barrier, 

1

2

( , ) 0 on  ( ),    

( , ) 0 on  ( )   ,

x y x C y a y b
n

x y x C y a y b
n

 

 


   




   


           (3) 

where 
n




 denotes the normal derivative to the 

barrier, 

the edge condition, 

1

2r  is bounded as 0,r                                   (4) 

the bottom condition 

0    as y                                                 (5) 

Also ϕ(x,y) satisfies the far field conditions given 

by 

( , ) ( , ) as ,
( , )~

( , )                      as .

inc inc

inc

x y R x y x
x y

T x y x

 




    


 
  (6) 

Here R and T are the reflection and transmission 
coefficients. Also, 

( , ) ,inc Ky i Kxx y e                                           (7) 

where k = λK is the unique positive root of the 
dispersion relation 

 4 1 0,Dk K k K                                        (8) 

Here 
2

,  K g
g


   acceleration due to gravity, 

,  L
ρg

L
D   is the flexural rigidity of ice-cover as 

mentioned before, ρ is the density of fluid and 

1
1.h




 . 

The other roots of (2) are 1 1 2,  ,  K K K   and 2K  

with  1Re  > 0 and  2Re  < 0. A detailed 

discussion on the roots of dispersion relation (2)is 
given in Chakrabarti et al. (2003). 

Assuming that the parameter ε > 0 is very small and 
neglecting o (ε^2) terms, the boundary condition (3) 
can be approximately written as  
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 

 

1
( 0, )

2
( 0, )

ε ( ) ( 0, )

                                      ,
( , )

ε ( ) ( 0, )

                                      .

y
y

y
y

d
C y y

x dy

a y b
x y

d
C y y

x dy

a y b

 


 






  

  

   


  

        (9) 

3. METHOD OF SOLUTION 

The form of the approximate boundary condition 
given by (9) suggest that we may expand the function 

( , )x y  and the two unknown physical constant R 
and T in terms of the small parameter ε as 

0 1
^( , ) ( , ) ε ( , ) (ε 2),x y x y x y o                        (10) 

2
0 1ε (ε ),R R R o                                             (11) 

2
0 1ε (ε ).T T T o                                              (12) 

Substituting  , R, T from (10), (11), (12) into 

(1),(2), (5) to (7) and equating the coefficients of 0ε  

and 1ε  from both sides of the equations we find that 

0  and 1  satisfies the following two boundary 

value problems(BVPs). 

BVP − 0: The function 0  satisfies 

2
0 0,   0,y                                                    (13) 

4

0 04
( δ 1) 0   on   0,yD K K y

x
 

    


       (14) 

0 0,     on  0,    ,x x a y b                              (15) 

1

2
0  is bounded as 0,r r                                 (16) 

0 0   as  ,y                                            (17) 

0
0

0

( , ) ( , ) as 
( , )~

( , )                         as .

inc inc

inc

x y R x y x
x y

T x y x

 




    



 

(18) 

BVP − 1: The function 1  satisfies 

2
1 0,   0,y                                                    (19) 

4

1 14
( δ 1) 0   on   0,yD K K y

x
 

    


        (20) 

1
1 0

( 0, )

{ ( ) ( 0, )} ,y
y

d
C y y a y b

x dy

 



   


      

1
2 0

( 0, )

{ ( ) ( 0, )} y
y

d
C y y a y b

x dy

 



   


  (21) 

1

2
1 is bounded as 0,r r                                (22) 

1 0   as  ,y                                            (23) 

1
1

1

( , )          as ,
( , )~

( , )              as .

inc

inc

R x y x
x y

T x y x






   



         (24) 

The function 0( , )x y  satisfying BVP-0 which 

describes the problem of scattering of time harmonic 
wave by a thin rigid vertical barrier submerged in 
ocean with ice-cover. The explicit solution of BVP-
0 is known from Maiti et al. (2011) and is given by 

0(ξ,η) (ξ,η)

1
                  ( ) (0, ;ξ,η) ,

2

inc

b

a

G
y y dy

x

 



 





            (25) 

0 0( ) ( 0, ) ( 0, ),y y y                                  (26) 

with  ( ) ( ) 0a b                                           (27) 

and ( , ;ξ,η)G x y is the source potential due to 
presence of a line source at point (ξ,η), where G 
satisfies the following BVP: 

2 0 except at (ξ,η),G                                      (28) 

~ lnρ as ρ (ξ,η) 0,G                                      (29) 

4

4
{ (1 ε )} 0   on 0,yD K G KG y

x


    


        (30) 

0 as ,G y                                                 (31) 

G behaves as outgoing waves as |x − ξ| → ∞. The 
expression for G(x,y;ξ,η) is given by (cf. Maiti et al. 
(2011)) 

1 1

1 1

ξ
2 4 20

λ( η) λ ξ
4 4

λ ( η) λ ξ
4 4

1 1

λ ( η) λ ξ
4 4

1 1

^

( , ;ξ,η)

( , ) ( ,η)
2

{ (1 δ ) }

1
2

λ(5 λ δ 1)

1
2

λ (5 λ δ 1)

1
2 .

λ (5 λ δ 1)

k x

K y i k x

K y i k x

K y i k x

G x y

L k y L k
e dk

k k K DK K

i e
DK K

i e
DK K

i e
DK K







  

   

   

   




  


 


 


 



(32) 

Here ( )y is unknown function which satisfies a 
hypersingular integral equation. The detailed 
derivation of the hypersingular integral equation in 

( )y and its solution is given in the Appendix A. 

The physical quantities 1R  and 1T  can be obtained 

from BVP-1 by a judicious application of Green’s 
integral theorem described below. 

Determination of 1R : To find 1R  applying Green’s  
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Table 1 FR and R vs u for for Kb=1.4, Ɛ=0.001 

u D′ = 10−4, ′ = 10−4 D′ = 0, ′ = 0 
 |R| (NVP) |R| (S2DTP) |RF | (NVP) |RF| (S2DTP) 

0.01 0.655315 0.654387 0.66893 0.655811 
0.02 0.586879 0.586307 0.593985 0.586969 
0.05 0.466643 0.466492 0.46955 0.466607 
0.1 0.349997 0.350059 0.351313 0.349903  

0.25 0.170384 0.17045 0.170689 0.170291 
0.5 0.0489999 0.0490209 0.0490455 0.0489674 

0.75 0.00837073 0.0083743 0.00837353 0.00836262 

 
Table 2 R vs u for Kb = 1.4, D′ = 1, δ′ = 0.01 

u  = 0.001, = 0.005 |R| (NVP), |R| (S2DTP) 

 |R| (NVP) |R| (S2DTP) |RF | (NVP) |RF| (S2DTP) 
0.01 0.655262 0.651633 0.655263 0.637301 
0.02 0.586716 0.584379 0.586717 0.575092 
0.05 0.46599 0.465225 0.465991 0.462174 
0.1 0.347933 0.347909 0.347938 0.347793 
0.25 0.158326  0.158385 0.158326 0.153954 
0.5 0.0320719 0.0320925 0.0320719 0.0294683 

0.75 0.00416634 0.00407001 0.00416634 0.00384524 

 
Table 3 R  vs u for Kb = 1, D′ = 1.5, δ′ = 0.01 

u = 0.001,= 0.005 |R| (NVP), |R| (S2DTP) 

 |R| (NVP) |R| (S2DTP) |RF | (NVP) |RF| (S2DTP) 
0.01 0.655231 0.649617 0.655232 0.627587 
0.02 0.586643 0.58301 0.586644 0.56862 
0.05 0.465706 0.464499 0.465707 0.459684 
0.1 0.347071 0.346976 0.347071 0.347793 
0.25 0.153695 0.153747 0.153695 0.153954 
0.5 0.029366 0.0293865 0.029366 0.0294683 

0.75 0.00382713 0.00383075 0.00382713 0.00384524 

 
 

 

integral theorem to the function 0( , )x y and 

1( , )x y in the region Ω bounded by the lines 

y = 0, − X ≤ x ≤ X; x = −X, 0 ≤ y ≤ Y ; y = Y, − X ≤ 
x ≤ X; 

x = X, 0 ≤ y ≤Y ; x = 0+, a < y < b; x = 0−, a < y < 
b; 

and circles 1 2,  c c of small radius 0δ  with center at 

(0,a) and (0,b) where X,Y > 0 . Making X,Y →∞, δ0 
→ 0 and noting that ( ) ( ) 0,j jC a C b   j = 1,2 we 

have 

2 2
1 0 1 0 2[ (0 , ) ( ) (0 , ) ( )] .

b
y ya

iR y C y y C y dy     (33) 

For nearly vertical plate 1 2( ) ( ) ( )C y C y C y   

2 2
1 0 1 0( )( (0 , ) ( ) (0 , )) .

b
y ya

R i C y y C y y dy      

(34) 

For symmetric two dimensional thin plate 

1 2( ) ( ) ( ),C y C y C y   so that 

2 2
1 0 0[ (0 , )( ) (0 , )( )] ( ) .

b
y ya

R i y y y y C y dy      
(35) 

Determination of T1: Applying Green’s theorem to 
the functions 0( , )x y  and 1( , )x y in the region Ω, 

after simplifying we have 

1 0 0 1 2(0 , ) (0 , )[ ( ) ( )] .
b

y ya
iT y y C y C y dy     (36) 

For nearly vertical plate 1 2( ) ( ) ( ),C y C y C y   

1 0.T                                                                   (37) 

For symmetric two dimensional thin plate 

1 2( ) ( ) ( )C y C y C y    

1 0 0-2i (0 , ) (0 , ) ( ) .
b

y ya
T y y C y dy                       (38) 

4. NUMERICAL RESULTS 

The interaction of surface waves with a two 

+
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dimensional thin plate submerged in deep ocean with 
ice-cover is characterised by reflection and 
transmission coefficients. The reflection coefficient 

0 1εR R R   and transmission coefficient 

0 1εT T T  are computed up to first order of ε for 

different values of non dimensional ice cover 

parameter 
δ

,  δ =
D

D
a a

   and wave number Kb and 

the ratio .
a

u
b

  The different integrals in the 

numerical computation are evaluated by using 
Mathematica. 

In Tables 1-3, |R| is presented against u for a nearly 
vertical plate (NVP) described by 

1 2( ) ( ) ( )C y C y C y   and for a symmetric two 

dimensional thin plate (S2DP) described by 

1 2( ) ( ) ( )C y C y C y   where 

( )( )
( ) , .

( )

y a b y
C y a y b

b a

 
  


 

In figures 2-11, |R| and |T| up to first order of ε are 
presented graphically for a symmetric two 
dimensional plate described by the shape function 

1 2
( )

( ) ( ) ( ) sin ,
( )

y a
C y C y C y a

b a

 
   


.a y b   

In figures 2 and 3 |R| and |T| are presented 
respectively against wave number Kb for u = 0.1, ε = 
0.005 and for various values of ice-cover parameter 
D′. It is observed that for u = 0.1 |R| almost coincide 
for different values of D′ for wave number Kb < 1.2. 
However for Kb > 1.2, for any fixed value of Kb, |R| 
diminishes as D′ increases although this change in |R| 
for different values of D′ is not very significant. From 
figure 3, it is observed that increase of ice-cover 
parameter increases |T| for a fixed length of plate 
although the change in |T| is not much significant. 

 

Fig. 4. |R| versus Kb for different values of D′ (u 
= 0.25 and ε = 0.005). 

 
Figures 4 and 5 shows the behavior of |R| and 
|T|against Kb for u = 0.25, ε = 0.005 and the different 
values of D′. It is observed from figure 4, that |R| 

coincides for different values of ice-cover parameter 
D′ when Kb < 0.7. However, for Kb > 0.7, for any 
fixed Kb, |R| decreases as D′ increases.  

From figure 5 it is found that |T| increases as 
D′increases. The change in |R| and |T| for Kb > 0.7 is 
significant. Also, it is observed from figures 4 and 5 
that |R| and |T| shows oscillatory behaviour for 0.8 < 
Kb < 1.2, for D′ = 1,1.5. However, for smaller values 
of D′ this oscillation in |R| and |T| is not significant. 

 

 
Fig. 5. |T| versus Kb for different values of D′ (u 

= 0.25 and ε = 0.005). 
 

 
Fig. 6. |R| versus Kb for different values of D′ (u 

= 0.5 and ε = 0.005). 

 
Again from figures 6 and 7, |R| and |T| are plotted 
against Kb for u = 0.5, ε = 0.005 for different values 
D′. It is seen that for Kb > 0.5, |R| decreases and |T| 
increases for a particular Kb as D′ increases. 

Thus it is observed from figures 2-7, that for a 
particular length of plates, the long waves, which 
corresponds to small wave number, do not feel the 
presence of ice-cover as they are confined towards 
the bottom of the ocean. However, the short waves 
which are confined near the ice-cover surface are 
affected by the presence of ice-cover. It is observed 
that as the ice-cover parameter D′ increases, |R| 
diminishes and |T| increases for a particular length of 
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the plate. This may be attributed to the elastic 
property of the ice cover. Also, this change in |R| and 
|T| is significant as the length of the plate diminishes. 

 

 
Fig. 7. |T| versus Kb for different values of D′ (u 

= 0.5 and ε = 0.005). 
 

 
Fig. 8. |R| versus Kb for small values of u (D′ = 

1.5, δ′ = 0.01). 

 

 
Fig. 9. |R| versus Kb for large values of of u (D′ = 

1.5, δ′ = 0.01). 

 
Fig. 10. |R| versus Kb for small values of u (D′ = 

1.5, δ′ = 0.01). 

 

 
Fig. 11. |T| versus Kb for large values of u (D′ = 

1.5, δ′ = 0.01.). 
 

In figures 8-11, |R| and |T| are plotted against Kb for 
D′ = 1.5, ε = 0.005 for various lengths of the plate. It 
is observed from figures 8 and 9 that |R| decreases as 
the length of the plate decreases while figures 10 and 
11 show that |T| increases with the decrease in the 
length of the plate for a fixed value of D′ and ε. Thus 
long plate induces more reflection of wave energy. 
Also for a particular length of the plate, the increase 
in ice cover parameter induces more transmission of 
wave energy. 

5. CONCLUSION 

The problem of scattering of water waves by a two 
dimensional thin plate submerged in deep ocean with 
ice cover is observed. The reflection and 
transmission coefficients up to first order are 
compared with those due to one dimensional nearly 
vertical barrier submerged in ocean with ice-cover. 
From numerical results it is noted that in presence of 
a symmetric two dimensional plate, the long waves 
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do not feel the presence of ice-cover as they are 
confined towards the bottom of the ocean. However, 
the short waves which are confined near the ice-
cover surface are affected by the presence of ice-
cover. It is observed that long plate induces more 
reflection of wave energy and less transmission. Also 
for a particular length of the plate, the increase in ice 
cover parameter induces more transmission of wave 
energy. 

ACKNOWLEDGMENTS 

SB and DM is thankful to UGC for financial support. 
PM is thankful to Department of Science and 
Technology, Government of India for their financial 
support of this work through the SERC Fast Track 
Scheme for Young Scientist (no. SR/FTP/MS-
037/2011). 

REFERENCES 

Chakrabarti, A. (2000). On the solution of the prob-
lem of scattering of surface water waves by the 
edge of an ice-cover. Proc. R. Soc. Lond. 456, 
1087-1099. 

Chakrabarti, A., D. S. Ahluwalia and S. R. Manam 
(2003). Surface water waves involving a 
vertical barrier in the presence of an ice-cover. 
Internat. J. Engng. Sci. 41, 11451162. 

Chung, H. and C. Fox (2002). Calculation of wave-
ice interaction using the Wiener-Hopf 
technique. New Zealand J. Math. 31, 1-18. 

Chung, H. and C. Fox (2002). Calculation of wave-
ice interaction using the Wiener-Hopf 
technique. New Zealand J. Math. 31, 1-18. 

Das, D. and B. N. Mandal (2007). Wave scattering 
by a horizontal circular cylinder in a two-layer 
fluid with an ice-cover. Inter. J. Eng. Sci. 45, 
842-872. 

Fox, C. and V. A. Squire (1994). On the oblique 
reflection and transmission of ocean waves at 
shore fast seaice. Phil. Trans. R. Soc. Lond. 347, 
185-218. 

Gayen, R., B. N. Mandal and A. Chakrabarti, (2005). 
Water wave scattering by an ice-strip. J. Eng. 
Math. 53, 21-37. 

Kohout, A. L. and M. H. Meylan (2008). An elastic 
plate model for wave attenuation and ice floe 
breaking in the marginal ice zone. Jour. of 
Geophys. Res. 113. 

Kundu, P. K. (1997). Diffraction of water waves by 
slender barriers. Journal of Engineering 
Mathematics 32, 87-100. 

Kundu, P. K. and N. K. Saha (1998). On the 
scattering of water waves by a submerged 
sledder barrier. The Journal of Australian 
Mathematical Society. Series B. Applied 
Mathematics 40, 171-189. 

Landau, L. D. and E. M. Lifshitz (1970). Theory of 
Elasticity. Pergamon Press 7. 

Linton, C. M. and H. Chung (2003). Reflection and 
transmission at the ocean/sea-ice boundary. 
Wave Motion 38, 43-52. 

Maiti, P. and B. N. Mandal (2010). Wave scattering 
by a thin vertical barrier submerged beneath an 
ice-cover in deep water. Applied Ocean 
Research 32, 367-373. 

Maiti, P., P. Rakshit and S. Banerjea (2011). 
Scattering of water waves by thin vertical plate 
submerged below ice-cover surface. Applied 
Mathematics and Mechanics 32, 635-644. 

Mandal, B. N. and A. Chakrabarti (1989). A note on 
diffraction of water waves by a nearly vertical 
barrier. IMA J. Appl. Math. 43, 157-165. 

Mandal, B. N. and P. K. Kundu (1990). Scattering of 
water waves by a submerged nearly vertical 
plate. SIAM J. Appl. Math. 50, 1221-1231. 

Parsons, N. F. and P. A. Martin (1992). Scattering of 
water waves by submerged plates using 
hypersingular integral equations. Applied 
Ocean Research 14, 313-321. 

Shaw, D. C. (1985). Perturbational results for 
diffration of water waves by nearly vertical 
barrier. IMA J. Appl. Math. 34, 99-117. 

Squire, V. A. (2007). Review of ocean and sea ice 
revisited. Cold Regions Science and Technology 
49, 110-133. 

Torri, T., H. Ohkubo, N. Hayashi, K. Matsuoka, and 
H. Kanai (2000). Development of a very large 
floating structure. Nippon Steel Technical 
Report 82, 23-34. 

Wadhams, P. (1978). Wave decay in the marginal ice 
zone measured from submarine. Deep-sea Res. 
25, 23-40. 

Wang, C. M., Z. Y. Tay, K. Takagi and T. 
Utsunomiya (2010). Review of Methods for 
Mitigating Hydroelastic Response of VLFS 
Under Wave Action. Appl. Mech. Reviews 63, 
030802-18. 

APPENDIX A 

Equation (27) involves the unknown function 

0 0( ) ( 0, ) ( 0, ),y y y      where 0 ( , )x y  is the 

velocity potential describing the wave motion due to 
scattering of an incident wave by a thin vertical plate 
submerged in deep ocean with ice cover. This 
problem was studied by Maiti et al. (2011). Here we 
present in brief the methodology used in Maiti et al . 
(2011) to find 0( , ).x y  

Let us consider the function ( , )x y as 

0( , ) ( , ) ( , )incx y x y x y                                  A1 

where 0 ( , )x y satisfies BVP0 and ( , )inc x y is 

given by (7). 

Then ( , )x y satisfies 
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2 0  on  0y                                                   A2 

4

4
{ (1 δ )} 0  on =0yD K K y

x


     


            A3 

(0, ),       inc
x y a y b

x


    


                       A4 

1

2  is bounded as 0r r                                    A5 

Also 

( , )                   as ,
( , )

( 1) ( , )              as .

inc

inc

R x y x
x y

T x y x





     
  

A6 

Let G(x,y;ξ,η) be the source potential which de-
scribes the motion in water covered with ice due to 
presence of a line source at (ξ,η). The expression for 
G(x,y;ξ,η) is given by (32). 

We now use Green’s integral theorem to the 
harmonic function G(x,y;ξ,η) and Ψ(x,y) in the 
region bounded by the lines y = 0, −X ≤ x ≤ X; x 
=±X, 0 ≤ y ≤ Y; y = Y, −X ≤ x ≤ X; x = 0±, a ≤ y ≤ b 
and a circle of radius 0ε  with centre at (ξ,η) and 

ultimately we make X, Y → ∞ and 0ε  → 0 to get 

2 (ξ,η) ( ) (0, ;ξ,η) .
b

a

G
y y dy

x
 
   

                   A7 

Noting (A1), Eq. (A7) transforms to 

0
1

(ξ,η) (ξ,η) ( ) (0, ;ξ,η) .
2

binc
a

G
y y dy

x
 




  
 A8 

Now using the third condition in BVP-0 in (A8) and 
using the relation (7), we obtain the following 
hypersingular integral equation after some 
simplifications 

2 λ ( η)

2 2 4

λ ( η)λ

40

2

λ
21

4 4 4 4 50

λ η

1 1 2 λ
[
( η) ( η) 5 (λ ) 1 δ

        -2K
( 1 δ )

                      2 (λ )

( η)
] ( )

λ ( λ δ )

      2 λ     η .

K yb

a

k yK

k

x

K

K i e
X

y y D K K

ke
dk

k Dk K K

K K

e y x
dx y dy

K D k x Kx Kx

i Ke a b





 

 





 
   

  






  

   







  A9 

To solve the above hypersingular integral equation 
we put 

2 2

η .
2 2

b a b a
y t

b a b a
u

    
   


                                           A10 

into (A9), to obtain 

1

21

1
( , ) ( ) ( ),     1 1

( )
X L u t F t dt h u u

t u

 
     

  


A11 

Where 

2

2

2 2 2 2 2

2 2 λ ( )

4

2 λ

40

λ
2

2
4 4 4

                                ( , )

( )

4( ) 4( )( ) ( ) ( )

( ) λ
            

2 5 (λ ) 1 δ

( ) 2
        

4 ( 1 δ )

( )
(λ )

2 λ ( λ

K y

kK

K
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x

L u t

b a

b a b a t u b a t u

b a K i e

D K K

b a Kk

k Dk K K

b a e
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K D k x Kx







  









      


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 


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


 



1

50 )


 A12 

( )
2

b a
b a t u 

                                         A13 

( ) ,     1 1,
2 2

b a b a
F t t t

        
 

           A14 

( 1) 0,F                                                             A15 

and 

λ( )
2 2( ) 2 λ ( )    1 1.

2

b a b a
K ub a

h u i K e u
 

 
    

A16 

Following the methodology used by Parson’s and 
Martin (1992) we assume 

2( ) (1 ) ( )F t t H t                                                     A17 

so that ( 1) 0.F    

We now approximate H(t) as 

0

( ) ( ),     1 1,
N

n n
n

H t a U t u


                          A18 

where Un(t) is a Chebyshev polynomial of the 
second kind and ( 0,1,2,... )na a n N   are 

unknown constants. Using the expansion (A18) in 
(A17) and substituting in (A11) we obtain 

0

( ) ( ),     1 1
N

n n
n

a A u h u u


                           A19 

Where 

1
1 2 2
1

( ) ( 1) ( ) (1 ) ( ) ( , ) .n n nA u n U u t U t L u t dt


    
A 20 

To find the unknown constants 
( 0,1,2,... ),na a n N   we put 

( 0,1,..., ),ju u j N  − 1 < uj < 1 in the relation 

(A19) to obtain the linear system 
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0

,  0,1,2,...,
N

n nj j
n

a A h j N


                              A21 

Where 

( ),    ( )nj n j j jA A u h h u                                   A22 

The collocation points ju  can be chosen suitably. 

Here we have chosen 

( 1)
cos ,    0,1,2,..., .

2j
j

u j N
N


 


                       A23 

The linear system (A22) is solved by any standard 
method to obtain the constants 

( 0,1,2,... ).na a n N   Knowing , ,na s H(t) can be 

obtained from (A18) and hence F(t) from (A17). 
Knowing F(t), ( )t can be obtained from (A14). 

Using ( )t from (A14) to (A8) we find the general 

expression for 0 (ξ,η).  

 


