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ABSTRACT 

An inverse analysis is conducted for the estimation of drag coefficient and wake’s width in incompressible 
turbulent flows over the moving underwater bodies. The inverse analysis uses the laws of momentum and 
mass conservation for a control volume to estimate the drag coefficient and the wake’s width from the 
measured velocity in the wake. The drag coefficient and wake’s width are determined as unknown parameters 
by the Levenberg–Marquardt algorithm. The proposed inverse method is applicable for an environment 
without boundaries (e.g., the sea). Several experiments are conducted to evaluate the developed inverse 
algorithm. The wake velocity behind a cylinder located in the flow field is measured by a calibrated pitot tube 
and is used as an input to the algorithm. The cylinder is selected as the test body, because its hydrodynamic 
information is available in the literature. The effects of the tunnel’s wall and the turbulence intensity are 
considered in the results of the algorithm. The estimated drag coefficient is validated by the values presented 
in the literature. The estimated wake-velocity profiles are fitted favorably with the measured velocities at the 
corresponding locations. It is shown that the proposed inverse method can be used to estimate the drag 
coefficient and wake’s width of the underwater vehicles with very good accuracy. 

Keywords: Inverse method; Drag force identification; Wake velocity profile.  

1. INTRODUCTION

Several new researches have been dedicated to 
study the hydrodynamic forces specially drag force, 
acting on the moving underwater bodies and some 
of them are devoted to develop the drag reduction 
methods (Jordan, 2014; Amromin, 2013; Yang and 
Ding, 2014; Akindoyo and Abdulbari, 2016; 
Ghassabi and Kahrom, 2015; Jafargholinejad et al. 
2011). Great attentions of scientists to identify 
hydrodynamic forces show the importance of 
development of force prediction methods. Due to 
the difficulties and high cost of direct measurement 
of hydrodynamic forces, they can be estimated by 
some indirect methods, such as the inverse 
algorithms. This study focuses on drag prediction 
by an Inverse method. 

Inverse problems have originated in the heat 
transfer community in connection with the 
estimation of surface heat flux histories from 
measured temperature histories inside a heat 
conducting body. Inverse heat-conduction problems 
have been studied mostly for the estimation of 
unknown boundaries or initial conditions, thermo-
physical properties, the strength of heat sources, and 
geometrical configurations (Alifanov, 1994; Ozisik, 
and Orlande, 2000). To date, a variety of numerical 

and analytical techniques, such as Tikhonov 
regularization method, the function specification 
method and the mollification, has been developed 
for solving inverse heat conduction problems. 
Despite many potential applications, it only has 
been in recent years that inverse heat convection 
problems have received some attention. 

Inverse problems of laminar forced convection in 
ducts have been studied for estimation of initial 
temperature profile, wall heat flux and thermo-
physical properties (Grysa et al. 2014; Helcio, 
2012). Su et al. (2000) used the Levenberg-
Marquardt method to estimate non-uniform wall 
heat fluxes in steady-state, thermally-developing, 
hydro-dynamically-developed turbulent flow in a 
circular pipe by using the temperature 
measurements obtained at several different 
locations in the stream. Later, Su and Silva (2001) 
solved an inverse heat convection problem to 
estimate simultaneously the inlet temperature 
profile and the wall’s heat flux distribution in a 
steady-state, thermally-developing, hydro-
dynamically-developed turbulent flow in a circular 
pipe by using the Levenberg-Marquardt method and 
the temperature measurements taken at different 
locations in the stream. Sakly et al. (2011) 
developed an Inverse method for Estimation of the 
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Effective Thermal Properties in a Metallic Medium. 
They used an iterative procedure, based on 
minimizing a sum of squares norm with the 
Levenberg-Marquardt method, to solve the inverse 
problem. 

Recently Inverse problem have been used as a 
useful method to study different fields such as 
optimization design of turbo-machines (Yang and 
Xiao 2013), studying the internal flows 
(Ahmadabadi et al. 2010), measurements (Xiongjun 
et al. 2014) and vibrational systems (Cho and 
Udwadia 2012). This shows that inverse method has 
widespread range of application and can be used for 
solving many problems. However to date no one 
has developed an Inverse method for drag 
prediction by means of wake information.   

The purpose of the present work is to solve an 
inverse problem involving the estimation of drag 
coefficient and wake’s width (as unknown 
parameters) for an incompressible turbulent flow 
over the underwater bodies by measuring the water 
velocity in the region of the downstream wake. 

Wake of underwater bodies include much 
information about the flow and body conditions. 
Several investigations have been done recently for 
studying the wake of different bodies (Wosnik and  
Arndt 2013; Morton and  Yarusevych 2014). Wake 
region is produced due to the existence of 
hydrodynamic forces. Therefore, it must be possible 
to estimate the hydrodynamic forces from the 
measured velocity of the wake. To achieve this 
target, an inverse method is developed that can be 
used to make reliable predictions of the external 
forces acting on the body. The least squares method 
also is used to approximate the unknown 
parameters. Because of the non-linear objective 
function, the inverse problem is formulated as a 
parameter-estimation problem. Its solution is based 
on minimization of the ordinary least squares, 
which is done by means of the Levenberg–
Marquardt (LM) algorithm. 

2. MATHEMATICAL FORMULATION 

OF THE DIRECT PROBLEM 

A body, which is placed in a water flow, reduces 
the fluid momentum and change the fluid velocity 
profile. These changes will produce a region called 
wake region. The velocity profile in this region can 
be presented by the following equation 

   exp n
wU U y K y                                (1) 

Where U∞ is the velocity of free flow, Uw(y) is the 
flow velocity in the wake region, y is the vertical 
position and K and n are constants. To globalize the 
results, it is better to make the parameters non-
dimensional. When the body is placed 
symmetrically in the flow, the only force acting on 
it is drag force. Thus, the velocity profile is 
symmetric related to y and the power of it (n), in 
Eq. (1) must be even. Therefore, Eq. (1) can be 
written as below: 

  2

expwU U y y
B

U 




         
                          (2) 

Where δ is the wake’s width of the velocity profile 
and B=K/U∞. The main reason of reduction velocity 
in the wake region is the reaction of the drag force 
acting on the body. Thus, in order to determine the 
constant B, the momentum and mass conservation 
laws must be satisfied for a control volume (CV) 
around the body.  

 
Fig. 1. Control volume around a cylinder. 

 
Present research is done for the estimation of the 
drag force acting on the underwater vehicles. 
However, to validate the results of the developed 
inverse method, the cylinder as an underwater 
moving body is selected for consideration. This 
body and its control volume are shown in (Fig. 1). 
With the incompressible fluid assumption, the mass 
conservation law can be written as below 

.

. 0
c s

v ndA 
 

                                                      (3) 

( )side wm U dA U y dA 
 


 

                       (4) 

Where ρ and ν are the fluid density and velocity 
respectively, n is the normal vector of surface and 

sidem is the mass flux of the CV side. The 

momentum conservation law is as follow  

� EMBED Equation.DSMT4 
.

.
c s

F v v ndA 
 

                                            

Where F is the resultant force acting on the 
cylinder. Because of cylinder symmetry, the only 
force acting on it is the drag force. Therefore, Eq. 
(5) can be written as  

, ,d w x out x inF p dA p dA M M                   (6) 

Where  

2 2( ) ( )xout w wM U U U y U y dA              (7) 

2
,x inM U dA                                                (8) 

p∞ and pw are static pressures of the inlet and outlet 
flow of CV respectively and Fd is the drag force. 

,x outM  and ,x inM  are the output and input 

momentum rates. Therefore, the final format of the 
momentum conservation law is:  
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2( ( ) ( ))

d w

w w

F p dA p dA

U y U U y dA





  

 

 
                     (9) 

If the pressures of input and output of the CV are 
equal then the Eq. (9) can be written as below 

2 ( ) ( )
(1 )w w

d

U y U y
F U dA

U U
 

 

                   (10) 

The assumption of the equality of the entrance and 
exit pressures for an environment without boundary 
is acceptable, but in the water tunnel, it is not true 
and the reliable equation for the tunnel, is Eq. (9). 
On the other hand, the drag force can be written as 

21

2d d FF C U A                                               (11) 

Where Cd is the drag coefficient and AF is the 
Frontal area of the body. By substituting Eq. (10) in 
Eq. (11), the drag coefficient can be achieved as 

( ) ( )1
(1 )

2
w w

d F

U y U y
C A dA

U U 

                  (12) 

If wu U U  then the Eq. (12) can be rewritten 

as blow 

1 ( ) ( )
(1 )

2 d F

u y u y
C A dA

U U 

                        (13) 

Because ( )u y U the Eq. (13) can be reduced to  

1 ( )

2 d F

u y
C A dA

U

                                          (14) 

In the Cartesian coordinate for the cylinder, AF and 
dA can be defined as  

FA DL                                                         (15) 

dA Ldy                                                         (16) 

Which L and D are the length and diameter of 
cylinder respectively. Thus, the Eq. (14) can be 
written as 

1
1

2
w

d
U

C D dy
U

 
  

 
                                      (17) 

By solving Eq. (17), the drag coefficient can be 
derived as below 

22
exp( ( ) )d

y
C B dy

D 


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                                (18) 

2

2
d

d
C DB

C B
D

 


                               (19) 

By substituting B in Eq. (2), the equation of 
velocity profile in the wake region is achieved as 
follow 

2( ) exp( ( ) )
2

d
w

U C D y
U y U

 


                  (20) 

 is dependent on the position of velocity 
measurement and consequently the velocity profile 
depends on xm coordinate which is defined as the 
distance between body and measurement position. 
As can be seen from Eq. (20), Uw is a nonlinear 
function of the most important flow parameters. 
This equation is for mean flow conditions and all 
parameters are the time average.  

3. SOLUTION OF THE INVERSE 

PROBLEM 

In the inverse problem considered in this work, we 
are looking for the unknown parameters [Cd, δ, U∞]. 
Direct measurement of these parameters is very 
costly and difficult. These parameters can be 
evaluated from velocity measurements taken at 
several downstream points in the wake region of 
flow field. It should be noted that free flow velocity 
can be measured too. 

Upon the parameterization given by Eq. (20), the 
inverse problem has been formulated as a parameter 
estimation problem. The solution of the inverse 
problem for the estimation of the two unknown 
parameters is based on the minimization of the 
ordinary least squares norm of error function, which 
is defined by  

 , ( , )j j j w je P y d U P y 
 

                            (21) 

Minimize
2

1

1
( , )

2

N

j w j
j

S d U P y


 
     
 




        (22) 

Where ej is the error function, dj is the measured 
water velocity in the wake region and ( , )w jU P y


is 

the calculated velocity, which is the nonlinear 
function of unknown parameters P


. yj is the vertical 

position of jth measurement point in the wake 
region. The vector of unknown parameters is 
formed by 

 ,T
dP C 


                                                 (23) 

We use the Levenberg–Marquardt method for 
parameter estimation, written in matrix form 

 T TJ J I P J E   
 

                               (24) 

Where E


 is the vector of error function, I 
represents the identity matrix, J is the Jacobean 
matrix, λ is a damping coefficient to improve the 
convergence behavior and remove the ill-condition 
of Hessian matrix which is defined as below 

TH J J                                                              (25) 

The elements of the Jacobian matrix are 

1,2, ,
,

1, 2, ,
m

mn
n

m Mu
J

n Np








                          (26) 
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Where um is the wake’s velocity at vertical location 
of ym and it can be defined as um=Uw(ym) and pn is 
the nth unknown parameter. Equation (24) is then 
written in a form convenient to be used in an 
iterative procedure, 

  1k kT k k k kT kP J J I J E


   


                 (27) 

Where k is the iteration index. 

A new estimation of the parameters, 1kP 


, is 
calculated by 

1k k kP P P   
  

                                            (28) 
The iterative procedure starts with an initial guess 

for parameters, 0P


, and new estimates, 1kP 


 ,are 
sequentially obtained using Eq. (28) with 

kP


given by Eq. (24) until the convergence 
criterion is satisfied. It can be written as 

, 1,2
k
n

k
n

p
n

p



                                            (29) 

Where   is a small real number, such as 810 . The 
elements of the Jacobian matrix as well as the right 
hand term of Eq. (27) are calculated by using the 
Eq. (20), as described in the previous section. The 
damping coefficient λ must be changeable to 
modify the convergence optimally. In order to reach 
this aim, λ is set to a large value if Hessian matrix is 
non-positive definite, or to a small value if it is 
positive definite.  

4. EXPERIMENTAL APPARATUS 

AND INSTRUMENTATION 

The experiments are conducted in a water tunnel 
located in the Hydrodynamic Laboratory at the Iran 
University of Science and Technology (IUST). The 
water tunnel is of the closed-circuit type, and it has 
four aggregated, 1-m-long test sections (a total 
length of 4m) with a rectangular cross section of 
0.1m × 0.2 m. The water’s speed can be varied 
continuously. The turbulence intensity (TI) level in 
the free flowing stream is about 4.4%. A scaled 
pitot tube with electrically-controlled movement is 
used to measure the water’s velocity.  

 

 
Fig. 2. Experimental Setup for measuring flow 

velocity of wake region. 

Figure 2 shows the cylinder installed in one of the 
sections of the tunnel and the pitot tube which is 
used to measure the wake velocity. The pressure 
differences of the pitot tube are transmitted to a 
pressure measurement system (PMS) with 64 
pressure-sensor channels. The output signals of the 
PMS are transmitted to a PC through a 12-bit data-
acquisition card and are processed by Hydrolab 
Data Processing Software (HDPS). The outputs of 
HDPS consist of discrete dynamic and static 
pressures. Then, the water’s velocity is calculated 
by using these pressure differences and the 
Bernoulli equation given below:  

20.5P v gh cet                                      (30) 

Where P is static pressure, ρ is the water’s 
density,g is the gravity acceleration, v is water’s 
velocity and h is the velocity head. A flow meter 
made by the Endress-Hauser Company (model: 
Proline Promag 10P) is used to measure the mean 
flow velocity.  

An uncertainty analysis of the data is performed 
according to the procedure described by (Kline 
1985). The uncertainty associated with the 
velocity measurements by the pitot tube is: Uuc = 
0.052 m/s precision. To verify the results of the 
developed inverse method and because of the 
availability of hydrodynamic information for 
cylinders in several references, a cylinder with a 
2-cm diameter and a 10-cm length is used as the 
investigated body in the flow field (Fig. 2). Four 
longitudinal velocity profiles are measured at 
stations located 10, 40, 60, and 80 cm from the 
centerline of the cylinder. These measurements are 
performed at 29 points for every section of the 
tunnel. Fig. 3 presents the grid distribution of 
velocity measurements. The distance between 
measurement points are 0.005m in the range of [-
0.05, 0.05] and 0.01m in the ranges of [0.05, 
0.095] and [-0.095, -0.05].  
 

 
Fig. 3. Grid distribution of velocity 

measurements. 

 
All of the profiles are measured over the centerline 
of the test section. For every section, the velocity 
profiles are measured three times, and the time 
average of them is used. The drag coefficient (Cd), 
wake’s width (δ), and free flow velocity (U∞), for 
each measured wake velocity profile are obtained 
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through a program specially developed in the 
MATLAB software package.  

5. RESULT 

The objective of this work is to estimate the 
unknown parameters introduced earlier. The closer 
the measurement location to the centerline of the 
water tunnel, the higher the resolution required for 
the measured velocities. This is due to the higher 
velocity gradient near the center of the body. This 
issue is performed in the grid distribution of 
velocity measurements. As stated before, the 
developed inverse algorithm is applicable for a 
moving body in the sea or in an environment 
without boundaries. Therefore, to reduce the effect 
of the tunnel’s wall, several experiments are 
performed to determine the minimum distance from 
the wall at which the wall effect vanishes. Fig. 4 
shows the free flow velocity that is measured by 
pitot tube in the water tunnel. As can be seen from 
this figure, in the range of [-0.05, 0.05] (m) from 
centerline of the cylinder, the wall or boundary 
layer effects almost vanish. Therefore, the data of 
the water velocities in the range of [-0.045, 0.045] 
are used in the estimation of the parameters. 
However, the effects of static pressure drop in the 
tunnel and turbulence intensity effects must be 
considered in the results of the study. As mentioned 
before water velocity is measured at 29 points in 
one section of the tunnel. Due to the wall effects, 
just 19 points of them are applicable for parameters 
estimations and the vertical distance between these 
points are 0.005m. 

 
Fig. 4. Free flow velocity measured by pitot tube 

in the water tunnel. 

 
Figure 5 shows the measured and fitted velocity 
profiles of the wake region at 10, 40, 60 and 80 cm 
from the centerline of the cylinder. It shows that a 
good conformity is achieved between the measured 
and fitted velocity profiles for all of the cases but 
the two last cases have the best coincidence. This is 
because of lower velocity gradient for two last 
cases. The closer to the body in the wake the higher 
resolution is needed to have a better-fitted profile. 
In these experiments, the free flow velocity is 
measured by a flow meter.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5. Measured and fitted wake velocity 
profiles at (a) 10, (b) 40,(c) 60, (d) 80 cm from the 

center of the cylinder. 
 

To develop the equation for the wake’s velocity, it 
is assumed that the entrance and exit static 
pressures of the control volume are equal. However, 
this assumption is only true for an environment 
without boundaries. In the water tunnel, the static 
pressure decreases due to the friction and tangential 
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stress, and this must be taken into account in the 
estimation procedure. Thus, the upstream and 
downstream static pressures are measured for all the 
mentioned cases and the equivalent drag 
coefficients due to the pressure differences are 
evaluated and subtracted from the estimated drag 
coefficients by the inverse method.  

Based on the findings of Schlichting, and Gersten, 
(2003), the drag coefficient for the cylinders with 
Reynolds numbers in the range of 1.6×105 to 
1.7×105 in a boundary-less environment is almost 
1.25. However, it is different for a water tunnel with 
a Turbulence Intensity (TI) of 4.4% (Li et al. 2009). 
Cheung and Melbourne (1980) demonstrated the 
dependency of the drag coefficient of a cylinder on 
TI and Reynolds number. Their results indicate that, 
for a TI of 4.4% and Re = 1.65×105 the drag 
coefficient is equal to 0.53.  

Table 1 compares the estimated drag coefficient, 
(Cd)E, for different wake velocity measurements 
with the drag coefficient values presented by 
Cheung and Melbourne. (1980), (Cd)R, for the same 
Reynolds Numbers. Table 1 shows also the error of 
estimated drag coefficients, eCd. 

 

Table 1 Comparison between estimated value for 
drag coefficient and its value presented by 

Cheung and Melbourne. (1980) 

mx
, 

(cm) 
(Cd)E (Cd)R eCd Re 

10 0.67 0.53 37% 164000 

40 0.59 0.53 11.3% 158400 
60 0.52 0.53 1.88% 156800 
80 0.535 0.53 1.9% 154600 

 

As can be seen from Table 1 estimated drag 
coefficients for two last positions (i.e. xm=60 and 
xm=80) are evaluated accurately and have errors 
lower than 2%. This shows that the developed 
inverse method can estimate drag coefficient with 
an acceptable accuracy. 

Table 2 shows the estimated wake’s width δE, the 
measured, (U∞)M, and estimated, (U∞)E, velocity of 
free flow and their errors for different 
measurements.  
 

Table 2 Estimated wake’s width, measured and 
estimated velocity of free flow and their errors 

mx , 

(cm)  
E

m

   MU  

(m/s) 
 EU  

(m/s) 
Ue


 

10 0.021 8.20 8.21 0.12% 
40 0.032 7.92 7.94 0.25% 
60 0.037 7.84 7.81 0.38% 
80 0.041 7.73 7.76 0.39% 

 

As can be seen from Fig. 2, Table 1 and Table 2 the 
unknown parameters are estimated by the proposed 
inverse method accurately. As expected, the error of 
estimated drag coefficient, (eCd), showed that, in 
order to achieve accurate results, the measurement 

position, (xm), must be suitable. Choosing a proper 
location for velocity measurement depends on 
Reynolds number. The experimental results indicate 
that the distance range of 30D≤ xm≤40D for the 
measurement location is suitable for the Reynolds 
number of 1.6×105 and the unknown parameters, 
especially Cd, can be estimated with good accuracy 
in this range of position. The estimated wake’s 
widths can be compared with those extracted from 
the measured velocity profiles. Through this 
comparison, one can deduce that the estimated 
wake’s widths have an acceptable accuracy. Finally, 
it is shown that the estimated values for drag 
coefficient (Cd), wake’s width ( ), and free flow 
velocity (U

) by the developed inverse method 

have an acceptable accuracy and the presented 
model for wake velocity of flow can be used for 
estimation of drag coefficient. 

All of the above results ensure that the present 
procedure can be extended to the estimation of drag 
force acting on the other kinds of bodies such as 
hydrofoils.  

4. CONCLUSION 

An inverse problem is formulated as a parameter 
estimation problem that searches drag coefficient, 
wake’s width, and free flow velocity by measuring 
the wake velocity in an incompressible turbulent 
flow over an underwater body. The proposed 
method is applicable for two-dimensional flows. To 
examine the developed inverse method, several 
experiments are conducted to measure the wake 
velocity of the flow over a cylinder and the 
unknown parameters are identified. In the 
identification process, turbulent intensity, and 
pressure drop effects are undertaken. 

By comparing our results with those of other 
researchers, it is shown that drag coefficient, wake’s 
width, and free flow velocity values can be 
estimated accurately if appropriate experimental 
data are obtained by measuring the velocity profiles 
at suitable locations from the body.  

All of the above results are very promising, which 
leads us to believe that the present approach can be 
extended for estimation of the drag force on the 
other kinds of underwater vehicles. Due to the great 
cost of direct measurement of the forces acting on 
these bodies, inverse methods could become 
powerful tools for evaluating these forces. This 
issue will be addressed in future work by the 
authors of this paper. 
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