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ABSTRACT 

Similarity solutions are obtained for unsteady adiabatic propagation of a cylindrical shock wave in a self 
gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux in which variable 
energy input is continuously supplied by the piston. The dusty gas is taken to be a mixture of non-ideal gas and 
small solid particles. Azimuthal fluid velocity and axial fluid velocity in the ambient medium are taken to be 
variable. The equilibrium flow conditions are assumed to be maintained. The initial density is assumed to be 
constant. The heat conduction is expressed in terms of Fourier’s law and the radiation is taken to be of the 
diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient 
are assumed to vary with temperature and density. The effects of the variation of the gravitational parameter 
and the heat transfer parameters on the shock strength and the flow variables such as radial velocity, azimuthal 
velocity, axial velocity, density, pressure, total heat flux, mass behind the shock front, azimuthal vorticity 
vector, axial vorticity vector, isothermal speed of sound and adiabatic compressibility are studied. It is found 
that the presence of gravitation effect in the medium modify the radiation and conduction effect on the flow 
variables. 
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1. INTRODUCTION

The investigation of the most important celestial 
phenomena must be centred on the problems of 
motion of gaseous masses with shock waves in 
gravitational field. The gravitational force has 
considerable effect on many astrophysical problems. 
The unsteady motion of a large mass of gas followed 
by a sudden release of energy results in flareups in 
novae and supernovae. A qualitative behaviour of the 
motion of gaseous mass may be discussed with the 
help of equations of motion and equilibrium, taking 
gravitational forces into account. There are two ways 
to formulate the problem of shock waves in 
gravitational field. The first, in which, the gravitating 
effect of the gas itself is considered (i.e. self 
gravitating). The second, in which, the gravitational 
effect of the gas, around nucleus having large mass 
m, can be neglected compared with the at-traction of 
the heavy nucleus (i.e. Roche model). Carrus et al. 
(1951) have studied the propagation of shock waves 
in a gas under the gravitational attraction of a central 
body of fixed mass (Roche model) and obtained the 
similarity solutions by numerical method. Rogers 
(1957) has discussed a method for obtaining 

analytical solution of the same problem. Ojha et al. 
(1998) have discussed the dynamical behaviour of an 
unsteady magnetic star by employing the concepts of 
the Roche model in an electrically conducting 
atmosphere. 

Singh (1988) obtained analytical solution of 
magnetogasdynamic cylindrical shock waves under 
the influence of self gravitation and rotation in 
perfect gas. Singh and Singh (1995) studied 
cylindrical blast wave with radiation heat flux in self 
gravitating perfect gas. Vishwakarma and 
Nath(2012) has obtained similarity solution of 
spherical shock wave propagating in a dusty gas 
under gravitational field. In all of the works 
mentioned above, study of cylindrical shock wave in 
dusty gas under gravitational field is not considered. 
Vishwakarma and Singh (2009) obtained similarity 
solution of spherical shock wave in an ideal gas with 
heat conduction and radiation heat flux and with or 
without self gravitational effects. Nath (2012) 
obtained similarity solution of a rotating dusty gas 
behind the spherical shock wave with increasing 
energy, conduction and radiation heat flux. 
Vishwakarma and Nath (2012) obtained similarity 
solution for a cylindrical shock wave in a rotational 
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axisymmetric dusty gas with heat conduction and 
radiation heat flux. 

Singh and Vishwakarma (2012) obtained similarity 
solution of a spherical shock wave in dusty gas in 
presence of heat conduction, radiation heat flux and 
a gravitational field. In all of the work mentioned 
above, the influence of gravitational field on the 
cylindrical shock wave with heat conduction and 
radiation heat flux is not considered. 

In the present work, we have, therefore, obtained 
similarity solution for a cylindrical shock wave in a 
self gravitating, rotating, axisymmetric dusty gas 
with heat conduction and radiation heat flux in which 
variable energy input is continuously supplied by the 
piston. The dusty gas is taken to be a mixture of non-
ideal gas and small solid particles. Azimuthal fluid 
velocity and axial fluid velocity in the ambient 
medium are taken to be variable. The equilibrium 
flow conditions are assumed to be maintained. The 
initial density is assumed to be constant. The heat 
conduction is expressed in terms of Fourier’s law and 
the radiation is taken to be of the diffusion type for 
an optically thick grey gas model. The thermal 
conductivity and the absorption coefficient of the gas 
are assumed to be proportional to appropriate powers 
of temperature and density Ghoniem et al. (1982). 
The viscosity terms are negligible. Also, it is 
assumed that the dusty gas is grey and opaque and 
the shock is isothermal. Radiation pressure and 
radiation energy are neglected. 

The effects of the variation of the gravitational 
parameter and the heat transfer parameters on the 
shock strength and the flow variables such as radial 
velocity, azimuthal velocity, axial velocity, density, 
pressure, total heat flux, mass behind the shock front, 
azimuthal vorticity vector, axial vorticity vector, 
isothermal speed of sound and adiabatic 
compressibility are studied. Also, the effect of 
gravitational parameter on all the three component of 
velocity is studied which was not done earlier. It is 
found that the presence of gravitation effect in the 
medium modify the radiation and conduction effect 
on the flow variables 

2.  FUNDAMENTAL EQUATIONS 
ANDBOUNDARY CONDITIONS 

he conservation equations governing the un-steady, 
adiabatic, self gravitating, axisymmetric, rotational 
flow of dusty gas with heat conduction and radiation 
heat flux taken into ac-count can be written as (c.f. 
Chaturani (1970), Ghoniem et al. (1982), Levin and 
Skopina (2004), Nath (2010), Vishwakarma and 
Nath (2010) ) 
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where r and t are independent space and time co-
ordinates, u, ν and w are the radial, azimuthal and 
axial components of the fluid velocity ݍԦ  in the 
cylindrical coordinates (r,θ,z∗), ܩҧ  is gravitational 
constant and F is the heat flux. 

We consider the medium to be dusty gas which is 
rotating about an axis of symmetry. The equation of 
state of the dusty gas which is a mixture of non-ideal 
gas and small solid particles is taken to be (c.f. 
Vishwakarma and Nath(2009), Vishwakarma and 
Nath(2010)) 

 
     ,11
1

1 *TRKb
Z

K
p p

p  



                        (7) 

where p and ρ are the pressure and the density of 

the mmixture, Z =
௏௦௣௏  is the volume fraction and Kp 

=
௠௦௣௠  is the mass fraction of the solid particle in the 

mixture, msp and Vsp being respectively the total 
mass and the volumetric extensions of the solid 
particles in a volume ‘V ’ and mass ‘m’ of the 
mixture. 

The internal energy per unit mass of the mixture is 
given by (c.f. Vishwakarma and Nath(2009), 
Vishwakarma and Nath(2010)) 
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The azimuthal component ν of fluid velocity ݍԦ  is 
given by 

,Arv                                                                  (9) 

where A is the angular velocity of the medium at 
radial distance r from the axis of symmetry. In this 

case the vorticity vector ζሬሬሬሬԦ = 
ଵଶ curlqሬԦ, has the com-

ponents, 
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It is assumed that a cylindrical shock wave is 
propagating outwards from the axis of symmetry 
inthe undisturbed medium with constant density 
having zero radial velocity and variable azimuthal 
and axial velocities. The flow variables immediately 
ahead of the shock front are 

,0u                                                                 (11) 

,tan tconsa                                          (12) 

,BRva                                                     (13) 

,2Rm aa                                                (14) 
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,* REwa                                                  (15) 

LaumbachFF a ,0 and Pr (1970)obstein  
(16)     

where R is the shock radius, B, E∗, λ and µ are 
constants and the subscript ‘a’ denotes the conditions 
immediately ahead of the shock. 

The components of the vorticity vector ahead of the 
shock vary as 
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From Eqs. (9) and (13), we find that the initial 
angular velocity vary as 

.1 BRAa
                                                 (20) 

It decreases as the distance from the axis increases, 
if λ − 1 < 0, and is constant if λ = 1. 

The total heat-flux F may be decomposed as 

,Rc FFF                                                (21) 

where Fc = conduction heat flux and FR = radiation 
heat flux. 

According to Fourier’s law of heat conduction 
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where ‘K’ is the coefficient of the thermal 
conductivity of the gas and ‘T ’ is the absolute 
temperature. 

Assuming local thermodynamic equilibrium and 
using the radiative diffusion model for an optically 
thick grey gas Pomraning(1973), the radiative heat 
flux FR may be obtain from the differential 
approximation of the radiation transport equation in 
the diffusion limit as (c.f. Mukhopadhyay(2009), 
Babu et al. (2014) ) 
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where σ is the Stefan-Boltzmann constant and αR is 
the Rosseland mean absorption coefficient. 

The thermal conductivity K and the absorption 
coefficient αR of the medium are assumed to vary 
with temperature and density. These can be written 
in the form of power laws, namely Ghoniem et al. 
(1982), Vishwakarma et al. (2008), Vishwakarma 
and Nath(2008), Vishwakarma and Nath(2010) 
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where the subscript ‘0’ denotes a reference state. The 
exponents in the above equations should satisfy the 
similarity requirements if a self similar solution is 
sought. 

From Eqs. (2), (13) and (14), we have 

.0,
22

2222

 


  RGRB
p aa

a
                     (25) 

The disturbance is headed by an isothermal shock 
(the formation of the isothermal shock is a result of 
the mathematical approximation in which the flux is 
taken to be proportional to the temperature gradient). 
This excludes the possibility of a temperature jump, 
see for example Zel'dovich and Raizer(1967), 
Rosenau and Frankenthal(1976), Vishwakarma et al. 
(2007), Vishwakarma et al. (2008) and hence, the 
conditions across it are 
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where the subscript ‘n’ denotes the conditions 

immediately behind the shock front and R=
ௗோௗ௧  de-

notes the velocity of the shock front. 

The expression for the initial volume fraction of the 
solid particles Za is given by 
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where Ga = ఘ௦௣ఘ௚௔ is the ratio of the species density of 

the solid particles to the initial species density of the 
gas ρga in the mixture. 

From Eqs. (26)-(33), we get 
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where bത = bρa, non-idealness parameter and M, the 
shock-Mach number referred to the frozen speed of 

sound ( 
ఊఘ௔௣௔ )1/2 in the perfect gas, is given by M = 

(
ோଶఘ௔ఊ௣௔ )1/2. The quantity β(0 < β < 1) is obtained by 

the relation 

   
  

   
   .0
11

11

11

111

1
1

2

2

22

2
23


































p

pa

p

aap

a

KbM

KbZ

MKb

MZMbZK

M
Z











    

 (43) 

Following Levin and Skopina (2004) and Nath 
(2010), we obtained the jump conditions for the 
components of vorticity vector across the shock as 
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The total energy ‘E’ of the flow field behind the 
shock is not constant, but assumed to be dependent 
on shock radius obeying a power law(Ranga Rao and 
Purohit(1972)) 
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where Ra and ‘s’ are constants. The positive values 
of ‘s’ corresponds to the class in which the total 
energy increases with shock radius. 

3. SIMILARITY SOLUTIONS 

The system of partial differential Eqs. (1)-(6) of gas 
dynamics reduces to a system of ordinary differential 
equations in new unknown functions of the similarity 
variable η =

௥ோ . For, we represent the solution of the 

partial differential Eqs. (1)-(6) in terms of products 
of scale functions and the new unknown functions of 
the similarity variable η, 
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where U, V , W , D, P, Ω and φ are new dimension-
less functions of the similarity variable η, in terms of 
which the differential equations are to be formulated. 

For existence of similarity solutions, the shock Mach 
number M which occurs in the shock conditions (35)-
(42) must be a constant parameter. Using 

(12) and (25) into M =(
ோଶఘ௔ఊ௣௔ )1/2, we have 
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Therefore, M is constant for      
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where ‘Q’ is a constant of dimension T −1. There-
fore, we obtain a relation for gravitation parameter 
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The relation (55) is analogous to the relations (103) 
of Rogers(1957) and (20) of Singh(1982) in the case 
of perfect gas with variable initial density of the 
medium, Eq. (3.7) of Patel(2013) in thecase of 
mixture of small solid particles and perfect gas. The 
quantity G0 is a parameter of gravitation analogous 
to the parameter l1 of Rosenau(1977). In absence of 

gravitation field, the parameter 
஻ொ  is similar to the 

parameter 
஻ொ   in relation (66) of Vishwakarma and 

Nath (2012). 

The total energy of the flow field between the piston 
and the cylindrical shock wave is given by 
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where r is the radius of the piston or inner expand-
ing surface . Now by using the similarity 
transformations (45) to (52) and the Eqs. (54) and 
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(55) in the relation (56), we get 
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η being the value of ‘η’ at the piston or inner 
expanding surface. 

From Eqs. (44) and (57), we get s = 4 which show 
that the total energy of the flow field behind the 
shock wave is not constant but proportional to the 
fourth power of the shock radius R. This in-crease 
can be achieved by the pressure exerted on the fluid 
by the inner expanding surface (a contact surface or 
a piston). It is also dependent on the gravitation 
parameter G0. 

Now by integrating Eq. (54) under the condition R(t0) 
= R0, we get 
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which show that for λ = 1, the total energy of the flow 
field behind the shock wave is time dependent and 
vary as an exponential law with time. 

Then, the shock conditions (35)-(42) are trans-
formed into 
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where λ = µ = 1. 

The condition to be satisfied at the inner boundary 
surface is that the velocity of the fluid is equal to the 
velocity of inner boundary itself. This kinematic 
conditions can be written as 
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Using the transformations (45)-(52), the equations of 
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From Eqs. (69)-(75), we have 
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By using Eqs. (22), (23) and (24) in (21), we get 
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Using the Eqs. (7) and (45)-(52) in Eq. (82), we get 
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Equation (83) shows that the similarity solution of 
the present problem exists only when 

βc = 1 and βR = 2. 

Therefore Eq. (83) becomes 
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where 
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Γc and ΓR are the conductive and radiative non-
dimensional heat transfer parameters, respectively. 
The parameters ΓC and ΓR depend on the thermal 
conductivity K and the mean free path of radiation 
1/αR, respectively and also on the exponent λ, and 
they are given by 
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From Eq. (77) and (84), we obtain 
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Also, applying the similarity transformations 
(46),(47) and the non-dimensional components of 
thevorticity vector 
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inthe flow-field behind the shock in Eq. (10), we 
obtain 
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For an isentropic change of state of the mixture of 
non-ideal gas and small solid particles, under the 
thermodynamic equilibrium condition, we may 
calculate the equilibrium sound speed of the mixture, 
as follows 
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(90) 

neglecting b2ρ2, where subscript ‘S’ refers to the 
process of constant entropy. 

The adiabatic compressibility of the mixture of non-
ideal gas and small solid particles may be calculated 
as (c. f. Moelwyn–Hughes(1961)) 
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Using Eqs. (48),(49) and (52) in (91), we get the 
expression for the adiabatic compressibility as 
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In addition, the isothermal speed of sound may also 
play a role, when thermal radiation is taken into ac-
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count. The isothermal sound speed in the mixture is 
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where the subscript ‘T ’ refers to the process of 
constant temperature. 

By using Eqs. (45) to (52) in (93), we get the 
expression for reduce isothermal speed of sound as 
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The ordinary differential Eqs. (76)-(81) and (80) 
with boundary conditions (61)-(67) can now be 
numerically integrated to obtain the solution for the 
flow behind the shock surface. 

Normalizing the variables u, v, w, ρ, p, m and F with 
their respective values at the shock, we obtain 
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4. RESULTS AND DISCUSSION 

We get the following relations among the constants 
λ and µ due to similarity considerations 1.    

The distribution of the flow variables between the 
shock front (η = 1) and the inner expanding surface 
or piston (η = ηp) is obtained by numerical 
integration of Eqs. (76)-(81) and (86) with the 
boundary conditions (61) to (67). The values of the 
constant parameters are taken to be γ = 1.4; Kp = 0.2; 

Ga = 50; β1 = ׳; തܾ = 0.02; δc = 1, δR = 2; ΓR = 0.5, 
10, 100, 1000, 5000, 10,000, 15,000, ∞; Γc = 
0.5,1,10,∞; M2 = 25; λ = 1, G0 = 0.01,0.94,24.94 and 

E∗/Q = 0.005. The values γ = 1.4; β1 = ׳ correspond 
to the mixture of air and glass particles Miura and 
Glass(1985). The value M = 5 of the shock Mach 
number is appropriate, because we have treated the 
flow of a non-ideal gas and a pseudo-fluid (small 
solid particles) at a velocity and temperature 
equilibrium. The set of values Γc = 1, ΓR = 10 is the 
representative of the case in which there is heat 
transfer by both the conduction and the radiative 
diffusion. 

Values of the piston position ηp and shock strength(1 
− β) are tabulated in Table 1 for different values of 
gravitation parameter G0 with Kp = 0.2, Ga = 50, തܾ = 

0.02, β1 = ׳, γ = 1.4, M = 5, λ = 1, δc = 1, δR = 2, 
E∗/Q = 0.005, Γc = 0.5 and ΓR = 10. Fig. 1 show the 
variation of the reduced flow variables u/un, v/vn, 
w/wn, ρ/ρn, p/pn, m/mn, F/Fn, aiso/R˙ and the adiabatic 
compressibility (Cadi)pa with η at various values of 

the parameters G0 for Γc = 0.5, ΓR = 10. Table 2 show 
the position of the inner expanding surface (piston) 
and shock strength for Kp = 0.2, Ga = 50, തܾ = 0.02, 
G0 = 0.01 and ΓR = 10 for different values of Γc. 
Table 3 show the position of the inner expanding 
surface (piston) and shock strength for Kp = 0.2, Ga 
= 50, തܾ = 0.02, G0 = 0.01 and Γc = 0.5 fordifferent 
values of ΓR. Fig. 2 show the variation of the reduced 
flow variables u/un, v/vn, w/wn, ρ/ρn, p/pn, m/mn, F/Fn, 
aiso/R˙ and the adiabatic compressibility (Cadi)pa with 
η at various values of the parameters Γc and ΓR for G0 
= 0.01. It is shown that, as we move from the inner 
contact surface towards the shock front, the radial 
compo-nent of fluid velocity u/un, the pressure p/pn, 
the density ρ/ρn, the axial component of vorticity 
vector lz∗ , the isothermal speed of sound aiso/R˙ de-
crease and azimuthal component of fluid velocity 
v/vn, the axial component of fluid velocity w/wn, the 
total heat flux F/Fn, the mass m/mn, the azimuthal 
component of vorticity vector lθ and the adiabatic 
compressibility (Cadi)pa increase. The behaviour of 
the heat flux are similar to those obtained by 
Elliot(1960), Ghoniem et al. (1982) and 
Vishwakarma et al. (2008). 
 

 

Table 1 Variation of the position of the piston ηp 
for different values of G0 with Kp = 0.2, Ga = 
 ,ഥ= 1, γ = 1.4, M = 5, λ = 1, δc = 1, δR = 2࢈ ,50

E∗/Q = 0.005, Γc = 0.5 and ΓR = 10 

0G    
R

un 1  
p  

0.01 0.043774 0.956226 0.985197 

0.94 0.043774 0.956226 0.985265 

25.94 0.043774 0.956226 0.987635 

 
Table 2 Variation of the position of the piston ηp 

for different values of Γc with Kp = 0.2, Ga = 
 ഥ= 0.02, G0 = 50 and ΓR = 10࢈ ,50

c    
R

un 1  
p  

0.5 0.043774 0.956226 0.985198 

1 0.043774 0.956226 0.982475 

10 0.043774 0.956226 0.982069 ∞ 0.043774 0.956226 0.981149 

 
It is found that the effects of an increase in the value 
of the gravitational parameter G0 on flow variables 
are 

(i) increase in the flow variables u/un, ρ/ρn, p/pn, 
aiso/R˙, lz∗ , 

(ii) decrease in the flow variables v/vn, w/wn, 
F/Fn, m/mn, lθ, (Cadi)pa, 

(iii) decrease in the distance of the piston from the 
shock front (see Table 1), 
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Fig. 1. Variation of the flow variables (a) radial component of fluid velocity (b) azimuthal component of 
fluid velocity (c) axial component of fluid velocity (d) density (e) pressure (f) total heat flux, in the 

region behind the shock front in case of Kp = 0.2, Ga = 50, = 0.002, Γc = 0.5, ΓR = 10, 
ࡽ∗ࡱ   = 0.005;1. G0 = 0.01; 2. G0 = 0.94; 3. G0 = 24.94. 

 

 

and the shock strength remain constant. 

It is found that the effects of an increase in the value 
of conductive heat transfer parameter Γc on flow 
variables are 

(i) decrease in the flow variables u/un, ρ/ρn, p/pn, 

F/Fn, lz∗ , 
(ii) increase in the flow variables v/vn, w/wn, m/mn, 

lθ ,aiso/R˙, (Cadi)pa, 

(iii) increase in the distance of the piston from the 
shock front (see Table 2), 
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Fig. 1. Variation of the flow variables (g) mass (h) azimuthal component of vorticity vector (i) axial 
component of vorticity vector (j) isothermal speed of sound (k) adiabatic compressibility, in the 

regionbehind the shock front in case of Kp = 0.2, Ga = 50, = 0.002, Γc = 0.5, ΓR = 10, ࡽ∗ࡱ = 0.005; 
 1. G0 = 0.01; 2. G0 = 0.94; 3. G0 = 24.94. 

 

 

and the shock strength remain constant. 

It is found that the effects of an increase in the value 
of radiative heat transfer parameter ΓR on flow 
variables are 

(i) decrease in the flow variables u/un, ρ/ρn, p/pn, 

F/Fn, lz∗ , 
(ii) increase in the flow variables v/vn, w/wn, m/mn, 

lθ, aiso/R˙, (Cadi)pa, 

(iii) increase in the distance of the piston from the 
shock front (see Table 3), 
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Fig. 2. Variation of the flow variables (a) radial component of fluid velocity (b) azimuthal component of 

fluid velocity (c) axial component of fluid velocity (d) density (e) pressure (f) total heat flux, in the 
region behind the shock front in case of Kp = 0.2, Ga = 50, b¯ = 0.002, G0 = 0.01; 1. Γc = 0.5, ΓR = 10; 2. 
Γc = 1, ΓR = 10; 3. Γc = 10, ΓR = 10; 4. Γc = ∞, ΓR = 10; 5. Γc = 0.5, ΓR = 0.5; 6. Γc = 0.5, ΓR = 100; 7. Γc = 

0.5, ΓR = 1000; 8. Γc = 0.5, ΓR = 5000; 9. Γc = 0.5, ΓR = 10000; 10. Γc = 0.5, ΓR = 15000; 
11. Γc = 0.5, ΓR = ∞. 

 

 

and the shock strength remain constant. 

The effects of variation of gravitation parameter G0 
on all the three component of velocity of fluid 

velocity and other flow variables behind the shock 
front is studied (Fig. 1(a)-1(k)). It is found that the 
effect of conduction and radiation heat parameter on 
the flow variables is modified due to the presence of  



R. Bajargaan and A. Patel / JAFM, Vol. 10, No. 1, pp. 329-341, 2017.  
 

339 

 

 

 
Fig. 2. Variation of the flow variables (g) mass (h) azimuthal component of vorticity vector (i) axial 

component of vorticity vector (j) isothermal speed of sound (k) adiabatic compressibility, in the region 
behind the shock front in case of Kp = 0.2, Ga = 50, b¯ = 0.002, G0 = 0.01; 1. Γc = 0.5, ΓR = 10; 2. Γc = 1, 
ΓR = 10; 3. Γc = 10, ΓR = 10; 4. Γc = ∞, ΓR = 10; 5. Γc = 0.5, ΓR = 0.5; 6. Γc = 0.5, ΓR = 100; 7. Γc = 0.5, ΓR = 

1000; 8. Γc = 0.5, ΓR = 5000; 9. Γc = 0.5, ΓR = 10000; 10. Γc = 0.5, ΓR = 15000; 11. Γc = 0.5, ΓR = ∞. 
 

 

gravitation parameter. This is justified by the 
complete change in the variation of lθ and partial 
change in the variation of F/Fn,(Cadi)pa, lz∗ and 

aiso/R˙etc in comparison to the corresponding 
variation of the flow variables in Vishwakarma and 
Nath(2012). 
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Table 3 Variation of the position of the piston ηp 
for different values of ΓR with Kp = 0.2, Ga = 

50,  ഥ= 0.02, G0 = 0.01, and Γc = 0.5࢈

R    
R

un 1  
p  

0.5 0.043774 0.956226 0.985217 

10 0.043774 0.956226 0.985198 

100 0.043774 0.956226 0.985013 1000 0.043774 0.956226 0.984154 

5000 0.043774 0.956226 0.98358 

10000 0.043774 0.956226 0.982818 

15000 0.043774 0.956226 0.982539 ∞ 0.043774 0.956226 0.981149 

 

5. CONCLUSIONS 

In this paper, similarity solutions are obtained for a 
cylindrical shock wave in a self gravitating, rotat-ing, 
axisymmetric dusty gas with heat conduction and 
radiation heat flux. Some of the important con-
clusions are: 

(i) The effect of gravitation parameter is studied 
on all the three components of fluid 
velocitywhich was not done earlier. 

(ii) The presence of gravitational field modify the 
effect of heat conduction and radiation field on 
propagation of shock wave significantly. 

(iii) The similarity solution of the present problem 
exists only when the initial angular velocity of 
the medium is constant (since λ = 1). 

(iv) The total energy of the flow field behind the 
shock wave is not constant but varies as an ex-
ponential law with time. It is also dependent on 
the shock radius and the gravitation param-
eter. 
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