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ABSTRACT

Similarity solutions are obtained for unsteady adiabatic propagation of a cylindrical shock wave in a self
gravitating, rotating, axisymmetric dusty gas with heat conduction and radiation heat flux in which variable
energy input is continuously supplied by the piston. The dusty gas is taken to be a mixture of non-ideal gas and
small solid particles. Azimuthal fluid velocity and axial fluid velocity in the ambient medium are taken to be
variable. The equilibrium flow conditions are assumed to be maintained. The initial density is assumed to be
constant. The heat conduction is expressed in terms of Fourier’s law and the radiation is taken to be of the
diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient
are assumed to vary with temperature and density. The effects of the variation of the gravitational parameter
and the heat transfer parameters on the shock strength and the flow variables such as radial velocity, azimuthal
velocity, axial velocity, density, pressure, total heat flux, mass behind the shock front, azimuthal vorticity
vector, axial vorticity vector, isothermal speed of sound and adiabatic compressibility are studied. It is found
that the presence of gravitation effect in the medium modify the radiation and conduction effect on the flow
variables.
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1. INTRODUCTION analytical solution of the same problem. Ojha et al.

(1998) have discussed the dynamical behaviour of an

The investigation of the most important celestial ~ unsteady magnetic star by employing the concepts of

phenomena must be centred on the problems of the Roche model in an electrically conducting
motion of gaseous masses with shock waves in atmosphere.

gravitational field. The gravitational force has
considerable effeqt on many astrophysical problems. magnetogasdynamic cylindrical shock waves under
The unsteady motion of a large mass of gas followed the influence of self gravitation and rotation in
by a sudden release of energy rgsults in ﬂareups in perfect gas. Singh and Singh (1995) studied
novae and supernovae. A qualitative behaviour of the cylindrical blast wave with radiation heat flux in self
motion of gaseous mass may be discussed with the gravitating perfect gas. Vishwakarma and
help of equations of motion and equilibrium, taking Nath(2012) has obtained similarity solution of
gravitational forces into account. There are two ways spherical shock wave propagating in a dusty gas
to formulate the problem of shock waves in under gravitational field. In all of the works
gravitational field. The first, in which, the gravitating mentioned above, study of cylindrical shock wave in
effect of the gas itself is considered (ie. self g5ty oasunder gravitational field is not considered.
gravitating). The second, in which, th‘e gravitational Vishwakarma and Singh (2009) obtained similarity
effect of the gas, around nucleus having large mass solution of spherical shock wave in an ideal gas with
m, can be neglected compared with the at-traction of  peat conduction and radiation heat flux and with or
the heavy nucleqs (i.e. Roche mf)del). Carrus et al. without self gravitational effects. Nath (2012)
(1951) have studied th? propagation Qf shock waves obtained similarity solution of a rotating dusty gas
in a gas under the gravitational attraction of a central behind the spherical shock wave with increasing
body of fixed mass (Roche model) and obtained the energy, conduction and radiation heat flux.
similarity solut‘ions by numerical method. R9g§rs Vishwakarma and Nath (2012) obtained similarity
(1957) has discussed a method for obtaining solution for a cylindrical shock wave in a rotational

Singh (1988) obtained analytical solution of
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axisymmetric dusty gas with heat conduction and
radiation heat flux.

Singh and Vishwakarma (2012) obtained similarity
solution of a spherical shock wave in dusty gas in
presence of heat conduction, radiation heat flux and
a gravitational field. In all of the work mentioned
above, the influence of gravitational field on the
cylindrical shock wave with heat conduction and
radiation heat flux is not considered.

In the present work, we have, therefore, obtained
similarity solution for a cylindrical shock wave in a
self gravitating, rotating, axisymmetric dusty gas
with heat conduction and radiation heat flux in which
variable energy input is continuously supplied by the
piston. The dusty gas is taken to be a mixture of non-
ideal gas and small solid particles. Azimuthal fluid
velocity and axial fluid velocity in the ambient
medium are taken to be variable. The equilibrium
flow conditions are assumed to be maintained. The
initial density is assumed to be constant. The heat
conduction is expressed in terms of Fourier’s law and
the radiation is taken to be of the diffusion type for
an optically thick grey gas model. The thermal
conductivity and the absorption coefficient of the gas
are assumed to be proportional to appropriate powers
of temperature and density Ghoniem et al. (1982).
The viscosity terms are negligible. Also, it is
assumed that the dusty gas is grey and opaque and
the shock is isothermal. Radiation pressure and
radiation energy are neglected.

The effects of the variation of the gravitational
parameter and the heat transfer parameters on the
shock strength and the flow variables such as radial
velocity, azimuthal velocity, axial velocity, density,
pressure, total heat flux, mass behind the shock front,
azimuthal vorticity vector, axial vorticity vector,
isothermal speed of sound and adiabatic
compressibility are studied. Also, the effect of
gravitational parameter on all the three component of
velocity is studied which was not done earlier. It is
found that the presence of gravitation effect in the
medium modify the radiation and conduction effect
on the flow variables

2. FUNDAMENTAL EQUATIONS

ANDBOUNDARY CONDITIONS

he conservation equations governing the un-steady,
adiabatic, self gravitating, axisymmetric, rotational
flow of dusty gas with heat conduction and radiation
heat flux taken into ac-count can be written as (c.f.
Chaturani (1970), Ghoniem et al. (1982), Levin and
Skopina (2004), Nath (2010), Vishwakarma and
Nath (2010) )
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where r and ¢ are independent space and time co-
ordinates, u, v and w are the radial, azimuthal and
axial components of the fluid velocity ¢ in the

cylindrical coordinates (r,0,z%, G is gravitational
constant and F is the heat flux.

We consider the medium to be dusty gas which is
rotating about an axis of symmetry. The equation of
state of the dusty gas which is a mixture of non-ideal
gas and small solid particles is taken to be (c.f.
Vishwakarma and Nath(2009), Vishwakarma and
Nath(2010))

-k,

= Z)) [1+bp(1-&, )JoR'T, (7)

where p and p are the pressure and the density of

the mmixture, Z =% is the volume fraction and Kp
=% is the mass fraction of the solid particle in the

mixture, msp and Vsp being respectively the total
mass and the volumetric extensions of the solid
particles in a volume ‘V ’ and mass ‘m’ of the
mixture.

The internal energy per unit mass of the mixture is
given by (c.f. Vishwakarma and Nath(2009),
Vishwakarma and Nath(2010))

_ p(l-2)
" (C-Dpfi+bpli-K, )]

The azimuthal component v of fluid velocity § is
given by

U ®)

v=Ar, O]
where 4 is the angular velocity of the medium at
radial distance  from the axis of symmetry. In this

. - _ 1 -
case the vorticity vector { = 2 curlq, has the com-
ponents,

_Low

(10)
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It is assumed that a cylindrical shock wave is
propagating outwards from the axis of symmetry
inthe undisturbed medium with constant density
having zero radial velocity and variable azimuthal
and axial velocities. The flow variables immediately
ahead of the shock front are

u=0, ()
p = p, = constant, (12)
v, = BR*, (13)
m, =7p,R*, (14)
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w, = E'R*, (15)
F =F,=0,Laumbach and Probstein(1970)
(16)

where R is the shock radius, B, E% A and u are
constants and the subscript ‘@’ denotes the conditions
immediately ahead of the shock.

The components of the vorticity vector ahead of the
shock vary as

g =0, (17
* 11
<o, =—%, (18)
B(A+1)R*!
42; =%. (19)

From Egs. (9) and (13), we find that the initial
angular velocity vary as

A, =BR"". (20)

It decreases as the distance from the axis increases,
if A— 1 <0, and is constant if A = /.
The total heat-flux F' may be decomposed as

F=F, +F,, @1

where Fc¢ = conduction heat flux and FR = radiation
heat flux.

According to Fourier’s law of heat conduction

T

F, = —Ka—, (22)
or

where ‘K’ is the coefficient of the thermal

conductivity of the gas and ‘T ’ is the absolute
temperature.

Assuming local thermodynamic equilibrium and
using the radiative diffusion model for an optically
thick grey gas Pomraning(1973), the radiative heat
flux FR may be obtain from the differential
approximation of the radiation transport equation in
the diffusion limit as (c.f. Mukhopadhyay(2009),
Babu ez al. (2014))

_4f o jort
3a, ) or’

where o is the Stefan-Boltzmann constant and ax is
the Rosseland mean absorption coefficient.

(23)

The thermal conductivity K and the absorption
coefficient ar of the medium are assumed to vary
with temperature and density. These can be written
in the form of power laws, namely Ghoniem et al.
(1982), Vishwakarma et al. (2008), Vishwakarma
and Nath(2008), Vishwakarma and Nath(2010)
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where the subscript ‘0’ denotes a reference state. The
exponents in the above equations should satisfy the
similarity requirements if a self similar solution is
sought.

From Egs. (2), (13) and (14), we have
B’p,R* . Grp’R’
24 2

P, = , 0. (25)

The disturbance is headed by an isothermal shock
(the formation of the isothermal shock is a result of
the mathematical approximation in which the flux is
taken to be proportional to the temperature gradient).
This excludes the possibility of a temperature jump,
see for example Zeldovich and Raizer(1967),
Rosenau and Frankenthal(1976), Vishwakarma et al.
(2007), Vishwakarma et al. (2008) and hence, the
conditions across it are

p,(R-u,)=p,R, (26)
pn+pn(R_un)2=pa+paR23 (27)
. 2
R -u
Umn +p7n+7( 2 ”) - F’}z :Uma+p7a
. Pn Pa Pa (28)
R* F,
2 pR
v, =V, (29)
m =m,, (30)
n = Wa’ (31)
Zy _Za (32)
pﬂ pa
T =T, (33)

s

where the subscript ‘n’ denotes the conditions
immediately behind the shock front and R=% de-
notes the velocity of the shock front.

The expression for the initial volume fraction of the

solid particles Z, is given by

V. K

sp )4

Z,=-2- ,
v, (I-K,)G,+K,

where Go = % is the ratio of the species density of

(34)

the solid particles to the initial species density of the
gas pga in the mixture.

From Egs. (26)-(33), we get

u =(1-p)R, (35)
_Pu (36)
n ﬂ
7 =Zs (37)
p
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it e
m, = 1p,R°, (39)
g =(l‘ﬂ{yMZ(/f"—Z)(l:fG)—Kp)J‘Hzﬁ p1

(40)
v, = BR*, (41)
w, = E*R*, (42)

where b = bpa, non-idealness parameter and M, the
shock-Mach number referred to the frozen speed of

sound ( %)1/2 in the perfect gas, is given by M =
&22%)112 The quantity f(0 < B < 1) is obtained by

ypa’ -
the relation

3 p2 1

L =B {Z“HJF;/MZ}
(1-k&,)zb0+mM2)+Zz 2 1] 33

th L+o(1-k&, )pm?
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Following Levin and Skopina (2004) and Nath
(2010), we obtained the jump conditions for the
components of vorticity vector across the shock as

0
g =%
o, F;
e‘zﬁ=§z"

B

The total energy ‘E’ of the flow field behind the
shock is not constant, but assumed to be dependent
on shock radius obeying a power law(Ranga Rao and
Purohit(1972))

E=E(R)=R,R";5>0, (44)
r
n=—sR=R()

where Ra and ‘s’ are constants. The positive values
of ‘s’ corresponds to the class in which the total
energy increases with shock radius.

3. SIMILARITY SOLUTIONS

The system of partial differential Egs. (1)-(6) of gas
dynamics reduces to a system of ordinary differential
equations in new unknown functions of the similarity
variable 7 =£ . For, we represent the solution of the
partial differential Eqs. (1)-(6) in terms of products
of scale functions and the new unknown functions of
the similarity variable #,

u=RU(n), (45)

v=RV(n), (46)
w=RW(n), (47)
p=p,Dn) (48)
p=p,R*P(n) (49)
m=p,R’Q(n), (50)
F=p,R¢(n), D
Z=27,D(n), (52)

where U, V', W, D, P, Q and ¢ are new dimension-
less functions of the similarity variable #, in terms of
which the differential equations are to be formulated.

For existence of similarity solutions, the shock Mach
number M which occurs in the shock conditions (35)-
(42) must be a constant parameter. Using

(12) and (25) into M =(’%“)H{ we have
2 R’ (53)

" (BRY GmpRY)
2 2

Therefore, M is constant for
R=0R and A=1, (54)

where ‘Q’ is a constant of dimension 7 ~/. There-
fore, we obtain a relation for gravitation parameter

2
B 2
Goz(j _ 2 (55)
0 w
Where
Gr
G, =22
0

The relation (55) is analogous to the relations (103)
of Rogers(1957) and (20) of Singh(1982) in the case
of perfect gas with variable initial density of the
medium, Eq. (3.7) of Patel(2013) in thecase of
mixture of small solid particles and perfect gas. The
quantity Go is a parameter of gravitation analogous
to the parameter /; of Rosenau(1977). In absence of

gravitation field, the parameter % is similar to the
parameter% in relation (66) of Vishwakarma and

Nath (2012).

The total energy of the flow field between the piston
and the cylindrical shock wave is given by

R 1 o
E= 2ﬂjp[2(u2 +v + w)+ U, - Gm}rdr, (56)
where 1 is the radius of the piston or inner expand-

ing surface Now by using the similarity
transformations (45) to (52) and the Eqgs. (54) and
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(55) in the relation (56), we get
E=2mR"p,0°J, (57)
Where

o)A P(1-2,D) Q
J={|Z 0+ +w? e ~22G, pdn,
£2< e )+(r—1)1+bD(1—K,,) Pl
(58)

n being the value of %’ at the piston or inner
expanding surface.

From Eqs. (44) and (57), we get s = 4 which show
that the total energy of the flow field behind the
shock wave is not constant but proportional to the
fourth power of the shock radius R. This in-crease
can be achieved by the pressure exerted on the fluid
by the inner expanding surface (a contact surface or
a piston). It is also dependent on the gravitation
parameter Go.

Now by integrating Eq. (54) under the condition R(#y)
= Ro, we get

R =R, 1y, (59)
From Egs. (57) and (59), we get
E =27p,0°JR, ") 1), (60)

which show that for 4 = 1, the total energy of the flow
field behind the shock wave is time dependent and
vary as an exponential law with time.

Then, the shock conditions (35)-(42) are trans-
formed into

u(1)=(1-p), (61)
D(1)= % (62)
P(l){(l—ﬂ)w;l—zﬂ, ©3)

Z,+b(-K,)  14p

¢(l):(1_’8){yM2(ﬂ—Z,,)l1+b(l_KP)J 2 J

(64)
Ql)=r, (65)
> :

(1)= (yMz - Goj : (66)
E*

w(l)="—, (67)
W=7

where A = u = 1.

The condition to be satisfied at the inner boundary
surface is that the velocity of the fluid is equal to the
velocity of inner boundary itself. This kinematic
conditions can be written as

U, )=n,, (68)

Using 15, =L-into Eq. (45).

Using the transformations (45)-(52), the equations of
motion (1)-(6) take the form

dD dUu

U =77)—+D—+%=0, (69)
Dn dn 7
2
(U:,])‘LU 1de 7 (70)
dn Ddn n
+ a0, (71
n

(U—n)d—P+Ld—D+Sﬁ+N+2P=O, (72)

dn dn dn

D, (73)

dn

-y Yy, (74)
dn n

(U—r])d—WJrW =0, (75)
dn

Where

L=L(n)

) [BD(I—KpXZaD—Z)—l—(F—l)(l+5D(1—Kp))z]
- Dll+bD(1-K, )|

L Plu=n)
(1-z,p)
s=sty-L 2K

#r-Di+bD(1-K,))
NNz

s

From Egs. (69)-(75), we have
du __U-ndb U (76)

dn D dn 77’
P _(u- )Z‘LD+M

— n
dn dn n (77
2
—DU+Q—iQD,
nooan
av__ v o (78)
dn  U-n WU-nh’
aw___Ww , (79)
dn  U-n
dﬁzzﬁnD, (80)
dn
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By using Egs. (22), (23) and (24) in (21), we get

dn S

_ Ko Be 5 ﬁl
F= fe s
TE) Po or (82)
1667})[;Rp0§R T3’ﬁR Sk al
3a, or’

Using the Egs. (7) and (45)-(52) in Eq. (82), we get

e

O e S
(1_ K )(ﬂ(H)D (c-p0)
P
B
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16 0T,/ ps*Q

a, p TR G
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d

x D (a3 ] 4 P(-2,D)
dn |4+b6D0-K,)D |
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P(U-2,D)
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Equation (83) shows that the similarity solution of
the present problem exists only when

Be=1and fr = 2.
Therefore Eq. (83) becomes

_%

P(l-K,)pD(Z,D-2)dD
’ p{i+5D(-k,) dn|

(1-z,) ap
pii+bD(-K, ) dn

¢
(84)

where

X =[r.o% N 4D i-k, )2

I': and Ik are the conductive and radiative non-
dimensional heat transfer parameters, respectively.
The parameters /'c and I'® depend on the thermal
conductivity K and the mean free path of radiation
1/ar, respectively and also on the exponent A, and
they are given by

(85)
P(1-2,D)
1+b6D(1-K,
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r _Kpi0 g [ 160T7p50
T "R R
From Eq. (77) and (84), we obtain
2
(dD} :[(1_ZMD){U_U(U_T7)_V
dn n n
GQ}wbD(lK)}} (86)
mn X
P(i-k,pD(z,D-2)-P+(1-2,D)"
X _
U -nyD+bD(-K,))
p1+5D(1-K, )}
Also, applying the similarity transformations

(46),(47) and the non-dimensional components of
thevorticity vector

ér 519

5*
®/R) TR IRY

(RZ/R)’

inthe flow-field behind the shock in Eq. (10), we
obtain

I =0, (87)
__m (88)
o 2U-n)
y
/., =—. (89)
© (U-n)

For an isentropic change of state of the mixture of
non-ideal gas and small solid particles, under the
thermodynamic equilibrium condition, we may
calculate the equilibrium sound speed of the mixture,
as follows

L
P
op ),

neglecting b%p°, where subscript ‘S’ refers to the
process of constant entropy.

a

m

>

fr+er-2poli-&, P |
(1-2)pli+bplI-K, ) }
(90)

The adiabatic compressibility of the mixture of non-
ideal gas and small solid particles may be calculated
as (c. f. Moelwyn—Hughes(1961))

Cadi = _p [

op [;J] ) P;m
(1-2)i+bpll-K, )]
IC+(@r-2ppll-K, )P

Using Egs. (48),(49) and (52) in (91), we get the
expression for the adiabatic compressibility as

0
(€2

(1-z,D)i+5D(1-K,)]

- 92)
P Ir+bD(—K, Yor - D)y P’

(Ca)

In addition, the isothermal speed of sound may also
play arole, when thermal radiation is taken into ac-
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count. The isothermal sound speed in the mixture is

() R

where the subscript T
constant temperature.

By using Egs. (45) to (52) in (93), we get the
expression for reduce isothermal speed of sound as
i
fi+(2-z,DpD(1-K, )P

— - : (94)
{(1—ZuD)D{1 +bpll-K, )}} '

The ordinary differential Eqs. (76)-(81) and (80)
with boundary conditions (61)-(67) can now be
numerically integrated to obtain the solution for the
flow behind the shock surface.

" refers to the process of

a.

iso

R

Normalizing the variables u, v, w, p, p, m and F with
their respective values at the shock, we obtain

uw U@y _ V(’?)L W (n)
u, UM)v, v()w, w()’
p _Dm) p _P(n) m _Q(n)
pn D) 'p, P(1)'m, Q@)
£ _gln)
F, ¢(1)

4. RESULTSAND DISCUSSION

We get the following relations among the constants
A and u due to similarity considerations 4= =1.

The distribution of the flow variables between the
shock front (y = I) and the inner expanding surface
or piston (7 np) is obtained by numerical
integration of Egs. (76)-(81) and (86) with the
boundary conditions (61) to (67). The values of the
constant parameters are takentobe y = 1.4, K = 0.2;

Ga=50; 8 =1,b=0.026:=1 6r=2;Tr=0.5,
10, 100, 1000, 5000, 10,000, 15,000, «; I. =
0.5,1,10,00; M? = 25; .= 1, Go = 0.01,0.94,24.94 and

E*/Q =0.005. The values y = 1.4; B’ = 1 correspond
to the mixture of air and glass particles Miura and
Glass(1985). The value M = 5 of the shock Mach
number is appropriate, because we have treated the
flow of a non-ideal gas and a pseudo-fluid (small
solid particles) at a velocity and temperature
equilibrium. The set of values I = 1, ['r = 10 is the
representative of the case in which there is heat
transfer by both the conduction and the radiative
diffusion.

Values of the piston position 7, and shock strength(7
— p) are tabulated in Table 1 for different values of
gravitation parameter Go with K = 0.2, Ga= 50, b =
0.02,8=1y=14M=5,=16=1 =2
E*Q =0.005 I'- = 0.5 and I'r = 10. Fig. 1 show the
variation of the reduced flow variables w/un, v/vn,
W/Wn, p/pn, p/Pn, m/Mn, F/Fu, aiso/R " and the adiabatic
compressibility (Caai)pa With 5 at various values of

335

the parameters Go for /e = 0.5, I’z = 10. Table 2 show
the position of the inner expanding surface (piston)
and shock strength for K, = 0.2, Ga = 50, b=0.02
Go = 0.01 and 'z = 10 for different values of /.
Table 3 show the position of the inner expanding
surface (piston) and shock strength for K, = 0.2, Ga
=50, b = 0.02, Go = 0.01 and I'. = 0.5 fordifferent
values of I'z. Fig. 2 show the variation of the reduced
flow variables u/un, V/Va, W/Wn, p/pn, p/pn, m/mn, F/Fp,
aiso/R " and the adiabatic compressibility (Cadi)ps with
n at various values of the parameters /. and I & for Go
= (.01. It is shown that, as we move from the inner
contact surface towards the shock front, the radial
compo-nent of fluid velocity w/un, the pressure p/pn,
the density p/ps, the axial component of vorticity
vector L+, the isothermal speed of sound aiso/R " de-
crease and azimuthal component of fluid velocity
v/vy, the axial component of fluid velocity w/wa, the
total heat flux F/Fu, the mass m/mn, the azimuthal
component of vorticity vector /o and the adiabatic
compressibility (Cadi)pa increase. The behaviour of
the heat flux are similar to those obtained by
Elliot(1960), Ghoniem et al (1982) and
Vishwakarma et al. (2008).

Table 1 Variation of the position of the piston #,
for different values of Go with K, = 0.2, G. =
50,b=1,y=14,M=5,)=106.=1,0r=2,

E¥Q=0.005,T-=0.5and I'r=10
u
G, B 1-8= ?ﬂ mp
0.01 0.043774 0.956226 0.985197
0.94 0.043774 0.956226 0.985265
25.94 | 0.043774 0.956226 0.987635

Table 2 Variation of the position of the piston #,
for different values of I' with K, = 0.2, G. =
50,b=0.02, Go=50 and I'e =10

I, po| g,
0.5 0.043774 0.956226 0.985198

1 0.043774 0.956226 0.982475

10 0.043774 0.956226 0.982069
o 0.043774 0.956226 0.981149

It is found that the effects of an increase in the value
of the gravitational parameter Go on flow variables
are

(i) increase in the flow variables w/un, p/pn, p/pn,
aiso/R ., Zz* 5

(ii) decrease in the flow variables v/vn, w/wn,
FE/Fn, m/mn, 10, (Cadi)pa,

(iii) decrease in the distance of the piston from the

shock front (see Table 1),
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Fig. 1. Variation of the flow variables (a) radial component of fluid velocity (b) azimuthal component of
fluid velocity (c) axial component of fluid velocity (d) density (e) pressure (f) total heat flux, in the
region behind the shock front in case of K, = 0.2, G, = 50, = 0.002, I'- = 0.5, I'r = 10,

% =0.005;1. Go=0.01; 2. Go=0.94; 3. Go = 24.94.

and the shock strength remain constant.

It is found that the effects of an increase in the value
of conductive heat transfer parameter /= on flow

variables are

(M)

decrease in the flow variables w/un, p/pn, p/pn,
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(i)

(iii)

F/Fy, lov,

increase in the flow variables v/vi, W/Wx, m/mp,
Z(?,afso/R , (Cadi)pa;

increase in the distance of the piston from the
shock front (see Table 2),
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Fig. 1. Variation of the flow variables (g) mass (h) azimuthal component of vorticity vector (i) axial
component of vorticity vector (j) isothermal speed of sound (k) adiabatic compressibility, in the

regionbehind the shock front in case of K, = 0.2, G. = 50, = 0.002, I'. = 0.5, I'r = 10, %= 0.005;
1. Go=0.01; 2. Go=0.94; 3. Go = 24.94.

and the shock strength remain constant. F/Fy, I+,
It is found that the effects of an increase in the value (ii)  increase in the flow variables v/vi, w/wn, m/mn,
of radiative heat transfer parameter Iz on flow lo, aiso/R ", (Cadi)pa,

variables are R . . .
(iii) increase in the distance of the piston from the

(i)  decrease in the flow variables w/un, p/pn, p/pn, shock front (see Table 3),
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Fig. 2. Variation of the flow variables (a) radial component of fluid velocity (b) azimuthal component of
fluid velocity (c) axial component of fluid velocity (d) density (e) pressure (f) total heat flux, in the
region behind the shock front in case of K, = 0.2, Go =50, b™ = 0.002, Go=0.01; 1. T- = 0.5, Tk = 10; 2.
Ie=1Tr=10;3.T:=10,Tr=10; 4. I'c=0,I'r=10; 5. I':=0.5,Tr=0.5; 6. [ = 0.5, 'r=100; 7. I'- =
0.5, IT'r=1000; 8. I'-= 0.5, I'r=5000; 9. I'- = 0.5, I'r =10000; 10. I' = 0.5, I'r = 15000;
11.T:=0.5,Tr=o.

and the shock strength remain constant. velocity and other flow variables behind the shock
front is studied (Fig. 1(a)-1(k)). It is found that the
effect of conduction and radiation heat parameter on
the flow variables is modified due to the presence of

The effects of variation of gravitation parameter Go
on all the three component of velocity of fluid

338



R. Bajargaan and A. Patel / JAFM, Vol. 10, No. 1, pp. 329-341, 2017.

()
()

05

08

—-Variation of I'; with ['g =10
_ Variation of Ty with ;=05 19

m
04
05 |t
1}
1(- =) \
i
02 [
"
ajt
[
)
[
1
09825 0985 09875 009 09925 0995 09975 1 + 00625 0035 00675 009 05525 0035 05075 -
n
@ (N
12
027
n 0.265
10 026
Ao 0.255
l. @ T
z
R 0.25
B
0.245
7
0.24
3
8 1= =) 0235
09825 0985 09875 099 09925 0995 09975 1 00825 0985 00875 099 09925 0895 09975 1
n
n
(k)
0.014
0.012
(Caqi P2
0.01
0.008

0.9825 0.985 0.9875 0.99 0.9925 0.995 09975 1

n
Fig. 2. Variation of the flow variables (g) mass (h) azimuthal component of vorticity vector (i) axial
component of vorticity vector (j) isothermal speed of sound (k) adiabatic compressibility, in the region
behind the shock front in caseof Ky = 0.2, Ga =50, b = 0.002, Go=0.01; 1. I = 0.5, Tr=10; 2. I = 1,
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1000; 8. I'-= 0.5, I'r =5000; 9. I'- = 0.5, I'r = 10000; 10. I'- = 0.5, I'r = 15000; 11. I'- = 0.5, I'r = o.

gravitation parameter. This is justified by the aiso/R’etc in comparison to the corresponding
complete change in the variation of /o and partial variation of the flow variables in Vishwakarma and
change in the variation of F/Fy,(Cadai)pa I+ and Nath(2012).
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Table 3 Variation of the position of the piston #,
for different values of I'r with K, = 0.2, G. =
50,b=0.02, Go=0.01,and I'. = 0.5

Ly B 1-p= % n,
0.5 0.043774 0.956226 0.985217
10 0.043774 0.956226 0.985198
100 0.043774 0.956226 0.985013
1000 0.043774 0.956226 0.984154
5000 0.043774 0.956226 0.98358
10000 | 0.043774 0.956226 0.982818
15000 | 0.043774 0.956226 0.982539
0 0.043774 0.956226 0.981149

5. CONCLUSIONS

In this paper, similarity solutions are obtained for a
cylindrical shock wave in a self gravitating, rotat-ing,
axisymmetric dusty gas with heat conduction and
radiation heat flux. Some of the important con-
clusions are:

(i) The effect of gravitation parameter is studied
on all the three components of fluid
velocitywhich was not done earlier.

(ii)) The presence of gravitational field modify the
effect of heat conduction and radiation field on
propagation of shock wave significantly.

(iii) The similarity solution of the present problem
exists only when the initial angular velocity of
the medium is constant (since A = ).

(iv) The total energy of the flow field behind the
shock wave is not constant but varies as an ex-
ponential law with time. It is also dependent on

the shock radius and the gravitation param-

eter.
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