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ABSTRACT 

The history of the study of fluid solidification in stagnation flow is very limited. Among these studies, only 
one two-dimensional Cartesian coordinate case has considered fluid viscosity and pressure variation along the 
boundary layer. In the present paper, the solidification process of an incompressible viscous fluid in a three-
dimensional axisymmetric coordinate system is considered. The solidification is modeled by solving the 
momentum equations governing a problem in which a plate is moving toward an impinging fluid with a 
variable velocity and acceleration. The unsteady momentum equations are transformed to ordinary 
differential equations by using properly introduced similarity variable. Furthermore, pressure variations along 
the boundary layer thickness are taken into account. The energy equation is solved by numerical method as 
well as similarity solution. Interestingly, similarity solution of the energy equation is used for validation of 
the numerical solution. In this research, distributions of the fluid temperature, transient distributions of the 
velocity components and, most importantly, the solidification rate are presented for different values of non-
dimensional governing parameters including Prandtl number and Stefan number. A comparison is made 
between the solidification processes of axisymmetric three-dimensional and two-dimensional cases to justify 
the achieved results in a better way. The obtained results reveal that there is a difference between the final 
solid thickness, when the process has reached to its steady condition, of three-dimensional axisymmetric and 
two-dimensional cases. Also the results show that increase the Prandtl number up to 10 times or increase the 
heat diffusivity ratio up to 2 times lead to decrease the ultimate frozen thickness almost by half. While, the 
Stefan number has no effect on the value of thickness and its effect is captured only on the freezing time. 
Prediction the ultimate thickness of solid before obtaining solution and introducing a new method for 
validation of numerical results are achievements in this research. 

Keywords: Axisymmetric solidification; Viscous flow; Exact solution; Stagnation point; Unsteady flow. 

NOMENCLATURE 

)(ta  time-dependent potential flow strain rate 

a  potential flow Strain rate at time 
f  similarity function 

lsh  solidification latent heat 

rk ratio of  K  
Pe

Pecklet number   
Pr Prandtl number  

)(tS  solid phase thickness 

S
~

non-dimensional solid thickness  
St

 Staefan number 
T Temperature 
t  Time 

r  ratio of  α 
   similarity variable, non-dimensional  Z axis   
  Viscosity 


non-dimensional temperature,


 non-dimensional time 
  non-dimensional r axis  
  variable  
  Density 


kinetic viscosity

Subscripts
I,i

 initial temperature of fluid at potential flow 

J Liquid 
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1. INTRODUCTION 

Solidification is a two-phase phenomenon that is 
used in different natural processes and industrial 
applications. Glass, metal, plastic and oil industries, 
providing food and other corresponding industries 
needs a good insight of solidification behavior as 
the nature of solid growth.  

Studies of phase change in stagnant media for better 
understanding of convection effect upon the 
interface behavior and solidification properties are 
needed by industrial demand such as the desire for 
more homogenous semi-conductor crystals, in 
nuclear industry, as well as the better understanding 
of natural ice formation.  

The classic problem stagnant fluid solidifying on 
the cold plate is solved (Stefan 1951). One 
dimensional heat fluxes method for phase change 
problem is presented (Goodrich 1978). These 
methods are accompanied simplified assumptions 
such as one dimensionality solid-liquid interface. 
An experimental study for natural convection in 
interface within heat flux controlling due to 
solidification is provided (Sparrow and Ramsey and 
Harris 1983). Also a numerical method for 
solidifying in natural convection is used (Lacroix 
1989) and three dimensional problems for natural 
convection accompaniment phase change in 
rectangular channel is solved (Hadji and Schell 
1990) in fluid variable properties state with 
temperature. Solidification of a fluid layer confined 
between two isolated plates is investigated 
(Hanumanth 1990). Another way for calculating of 
heat flux depended to on time in natural convection 
is presented (Curtic and Oldenburg and Frank 
1992).  A combined model for phase change upon 
various states of pure substances, melting fluid 
problem due to spreading and solidifying on the flat 
plate and numerical modeling of forming and 
solidifying of a droplet on a cold plate is 
investigated (Trapaga et al.. 1992; Watanabe et al.. 
1992; Marchi et al.. 1993 ). Evolution due to impact 
on substrate plate and solidifying of a droplet 
(Brattkus and Davis 1988) is presented. But in 
concentrating upon stagnation flow, solidification 
of an inviscid fluid at interface and effect of its 
phenomena on morphological instability is 
investigated (Rangel and Bian 1994). Stefan 
problem for inviscid stagnation flow by two 
methods and solidifying of super-cooled liquid 
stagnation inviscid flow is considered (Lambert and 
Rangel 2003; Yoo 2000), respectively. Recently, 
the two-dimensional solidification of a viscous 
stagnation flow has considered (Shokrgozar and 
Rahimi 2013). In this article, the exact solution of 
the momentum equations (Shokrgozar and Rahimi 
2012) is used for numerical solution of the energy 
equation. Imagine the fluid from far field moves 
perpendicularly approaches to a cold plate and after 
impinging on the plate the solid phase will formed 
on it gradually (Figure 1). 

In this study, the solidification process of a viscous 
stagnation flow is investigated in a three-
dimensional axisymmetric coordinate where a new 
method is implemented for validation of the 

numerical results. In this method, the exact solution 
of a heat profile is used as a quasi-steady solution 
for the problem. A parametric study is performed to 
examine influences of governing dimensionless 
parameters on the results as well. An exact solution 
is performed for solving momentum equations 
(Shokrgozar and Rahimi and Mozayyeni 2016) 
while the energy equation in liquid phase, solid-
liquid interface and solid phase is solved by using 
finite difference method. The exact solution of the 
energy equation is used for validation of the 
numerical solution of energy equation, too. Forth 
order Runge-Kutta algorithm is used for solving 
momentum and energy equations. In addition, 
Numerical solution is needed to finding unsteady 
temperature profiles at each time step. 

 

 
Fig. 1. Axisymmetric stagnation flow 

(coordinate system). 
 

2. PROBLEM FORMULATION 

Figure 1 represents three-dimensional axisymmetric 
coordinates with corresponding ),( wu velocities 

related to ),( zr . A viscous laminar unsteady 

incompressible stagnation flow with strain )(ta  

perpendicularly approaches to a plate, along z-
direction, initially positioned at 0z  when 0t . 
For all times of consideration, the fluid is solidified 
with variable solidification velocity and 
acceleration, )(tS  and )(tS , respectively, that of an 

imaginary plate at solid-liquid interface is moved 
towards fluid where )(tS  is the plate distance, at 

time t, from the plate origin at 0z . In later 
section, we will see why the imaginary plate is 
considered as a flat one because the only 
mechanism of heat transfer in the interface is 
conduction with the same temperature difference so 
the substrate remains flat. Notice that the inviscid 
flow can be assumed as potential flow within 
displacement thickness in boundary layer region. In 
reference (Shokrgozar et al., 2013), more 
explanations were given regarding the strain 
variations. Note 0a  is the strain rate at far field.     

For a Newtonian fluid with constant density and 
viscosity, unsteady three-dimensional axisymmetric 
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Navier-Stokes equations governing the flow and 
heat transfer are given as: 

Mass:
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In liquid phase: 

Energy (dissipation and radiation heat transfer are 
neglected without internal source): 
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In solid phase: 
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At interface: 
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Notice, conductivity and heat capacity coefficients 
are constant (k and c respectively) also dTcdu   is 

assumed where p ,  ,  , and   are the fluid  

pressure, density, kinematic viscosity, and thermal 
diffusivity, respectively. The dissipation terms are 
neglected in the energy equation because of the 
flow velocities being too small. Also, subscripts 

s and l  denote solid and liquid, respectively.  

3. SOLUTION  

3.1.   Fluid Flow Similarity Solution 

According to (Shokrgozar Abbasi 2016), viscous 
parts of the velocity components are as: 

)()( frtau   )7(  
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In which the terms involving )(f  in (7), (8) 

comprise the axisymmetric similarity form for 
unsteady stagnation flow, and prime denotes 
differentiation with respect to . Transformations 

(7)-(9) satisfy (1) automatically and their insertion 
into (2)-(3) yields an ordinary differential equation 

in terms of )(f  along with an expression for the 

pressure, as follow: 
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Where dot denotes differentiation with respect to t , 

Also, rSSP ~and
~

,
~

,
~   are dimensionless forms of 

rSSP and,,   , respectively.  

The boundary conditions for the differential 
equation (10) are: 

0,0:  ff  (15) 

1:  f        (16) 

It is worth mentioning that relation (11) which 
represents pressure is obtained by integrating 
Equation (3) in z-direction and by use of the 
potential flow solution as boundary conditions. 

3.2.1   Exact Solution of Heat Transfer 

To transform the energy equation into a non-
dimensional form for the case of defined wall 
temperature, we introduce: 
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Making use of transformations (7) - (9), this 
equation may be written as: 
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Where   is dimensionless temperature, the 
subscript w  and   refer to the conditions at the 
wall and in the free stream, respectively, and prime 
indicates differentiation with respect to .   

3.2.2   Numerical Heat Transfer Solution 

Using the non-dimensional quantities for 
temperature as  , time as , distance from r axis 

as r~ , and distance from z axis as z~ , equations 
(4)-(6) become: 

For liquid phase: 
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For solid phase: 
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And for their intersection:  
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4. SOLUTION METHOD 

At first, the momentum equation of liquid (10) is 
solved numerically using a shooting method based 
on Runge-Kutta algorithm. Resulted velocities are 
used in energy equation (21) in liquid region in 
order to convert this nonlinear equation to a linear 
one. Then this linear equation is dischretized by 
using Power Law scheme so for small )1( PePe  

and Large )10( PePe , scheme is central and 

upwind, respectively. For 101  Pe , scheme is 
composite of these two. For solving the algebraic 
system of equations, TDMA (Three Diagonal 
Matrix Algorithm) within ADI (Alternating 
Direction Implicit) method is used. In addition, the 
resulted velocities of momentum solution are used 
to obtain the exact solution of energy equation 
(Shokrgozar et al., 2016). However, this exact 
solution is not used to capture the fluid temperature 
in the computational domain at each time step. In 
the next sections, the reason of this phenomenon 
will be discussed.  

5. VALIDATION AND 
PRESENTATION OF RESULTS 

In this section, in order to validate the energy 
equation numerical results of our study, the 
obtained results are compared with exact solution 
and previous studies. Comparison of results 
between this study and exact solution is new and 
creative method. For comparisons, (Shokrgozar et 
al., 2013) study results are the most complete study 
and best selection. This reference was selected to 
validate the achieved results. For simplification and 
more excellent comparisons, parameter introducing 

in this study is the same as (Shokrgozar et al., 2013) 
study. The results of these two studies 
are presented together in figure 3 
for  1,1,1,1,1  rri kStPr  .  

Liquid

Final Solid
Thickness





        

Boundary



 
Fig. 2. a Final solid thickness, Low Pr number. 

 

Liquid

Final Solid
Thickness




        

Boundary



 
Fig. 2. b Final solid thickness, High Pr number. 

 
According to this figure, there is a difference in 
ultimate solid thickness between two-dimensional 
and three-dimensional cases, as expected; however, 
the trend of evolution is the same in both graphs. In 
addition, the exact solution of energy equation can 
be used for validation of the numerical solution of 
the same equation. Figure 8 shows the comparison 
between exact and numerical solutions of 
temperatures profiles. Indeed, the exact solution is a 
quasi steady solution of the energy equation. This 
means the numerical solution is the same as the 
exact solution if there is enough time for evolution 
while other conditions are maintained constant. In 
this figure, two profiles are matched completely, at 
first and last times. At the beginning, the time of 
evolutions is very small and differences between 
these two profiles are negligible (two profiles are 
matched completely). At the end, there is enough 
time to complete the evolution of temperature 
profile while variations of other parameters are not 
considerable as they are very close to reach their 
steady conditions. In the middle times, there is a 
noticeable difference between two profiles 
expectedly; however, the trend of the profiles 
evolution at both figures is the same.  
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Fig. 3. Comparison of Two-dimensional 

(Shokrgozar et al., 2016) and Three-dimensional 
(Present Study) results for 

)1,1,1,1,1(  IrrKStPr  . 
 

Figure 4 represents the temperature profiles of 
liquid and solid phases for different times due to 
advancement of solidifying front. The slope of 
each chart is )(tg  in the first node of liquid or 

solid phase. The figure reveals that solidification 
is stopped just as values of these two slopes 

become equal (note that 1r ). Figure 5 

presents the exact solution of thermal profile for 
different times and different solidification front 
velocity. Next, Figures 6 , and 7 provide the 
velocity profiles in r  and z  directions for 
different times and solid thicknesses. As it is 
shown, when the solidification velocity is very 
high, that is just for initial moments, the slope of 
velocity profile in boundary layer is very steep 
and the velocity approaches toward potential flow 
very fast and so the thickness of viscous boundary 
layer is very thin. By decreasing solidification 
velocity, Hiemenz flow is appeared more and 
more. Also, a comparison is made in Fig. 8 
between exact and numerical solutions of heat 
transfer profiles at different times.  
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Fig. 4. Numerical solution, Thermal liquid and 

solid profiles for 
)1,1,1,1,1(  IrrKStPr  . 
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Fig. 5. Exact solution, Thermal profile for 

)1,1,1,1,1(Pr  IrrKSt  . 
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Fig. 6. Velocity profile in x  direction for 

)1,1,1,1,1(  IrrKStPr  . 
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Fig. 7. Velocity profile in z  direction for 

)1,1,1,1,1(  IrrKStPr  . 
 

6. PARAMETRIC STUDY 

The parametric studies are applied for different 

values of rrI KStPr  ,,,, while study is 

concentrated on the advancement of solidifying 
front versus time that is the most important 
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phenomenon in solidification. In Fig. 9, a 
comparison is made between the solidification 
process of this study and Ref. (Shokrgozar et al., 
2013) for 1Pr , 10Pr and 1.0Pr , 

respectively.  The trend is the same in the two 
graphs so the solid upper limit decreases as 
Pr number increases relatively to basic 1Pr  
graph. Mathematical analysis can confirm the 
validity of the numerical solution. Solidification 
will stop when the steady conduction heat transfer 
establishes in intersection. One-dimensional 
steady conduction heat transfer at intersection 
reads: 

rsolidliquidSt

zPr








1~. 2

 (24)  
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Fig. 8. Comparison between temperatures profile 

of exact solution and numerical solution 
)1,1,1,1,1(  IrrKStPr  . 
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Fig. 9. Comparison between Two-dimensional 
and Three-dimensional. Effect of Pr  number 

upon Solidification front for 
)1,1,1,1(  IrrKSt  . 

 
that the just upper and lower nodes temperature in 
fluid and solid regions are introduced by liquid  

and solid  , respectively. In this equation, 

dimensionless time (  ) tends to infinity as 
  0 rsolidliquid  and solidification is 

stopped consequently while 1r is assumed for 

simplification. It can be referred to (Shokrgozar et 
al., 2013) for more details. Figures 2A, and 2B 
determine the ultimate solid thickness that is equal 
to )(tg (where )(tg  is slope of temperature 

profile at first node).  It is evident that when the 
thickness of the temperature boundary layer 
increases, the solid upper limit increases and this 
increasing is due to Pr number decrease and vice 
versa. Moreover, it was capture that by taking into 
account solely the effect of St  number does not 
change the solid upper limit as St  number does not 
appear in (24) but St number variations changes 
the solidification time. However, a complete match 
of the heat transfer profiles obtained by two 
methods of exact solution and numerical solution at 
the beginning and ending times can be considered 
as the best reason for validation of the numerical 
results.  
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Fig. 10. Effect of rk  or r  variations upon 

Solidification front for )1,1,1(  IStPr  . 
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Fig. 11. Effect of I  variations upon 

Solidification front for 
)1,1,1,1(  rrKStPr  . 
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Equation (24) shows that decreasing of rk or r  

by half, increases solid upper limit two times 
exactly of that )(tg  increases two times (figure 

2). Also, Figure 10 shows the effect of rk and 

r variations upon solidification front thickness. In 

this case, decreasing of rk and r  by half, 

increases thickness of solid two times exactly. 
Figure 11 represents results for 5.0I  and 2I  

( 1,1,1,1  rrkStPr  ). The variations of I  

have interesting results. When I  tends to zero, 

ultimate frozen thickness tends to infinity and this 
case requires another study separately. Figure 12 
represents effect of Pr  number variations in front 
solidification more clearly. As previously 
mentioned, this figure shows increasing Pr  number 
decreases solid upper limit and vice versa. Figure 
13 represents St  number has no effect on the 
ultimate thickness in front solidification as former 
discussion. However the St  number has only effect 
upon the solidifying time. 
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Fig. 12. Effect of Pr  number upon Solidification 

front for )1,1,1,1(  IrrKSt  . 
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Fig. 13. Effect of St  number upon Solidification 

front for )1,1,1,1(  rrKStPr  . 

7. CONCLUSIONS 

An investigation of solidification modeling of a 
viscous stagnation three-dimensional flow on a flat 
plate is performed in this study. Solution 
approaches comprise: 1- Exact solution for 
momentum equations, 2-Numerical solution for the 
energy equation in liquid phase and solid-liquid 
interface and then 3-Exact solution for the energy 
equation in liquid phase as a quasi steady solution 
for validation of numerical solution of the energy 
equation. These equations are solved at any time 
step simultaneously. 

The results show steady temperature boundary layer 
or, by more exact words, start of steady temperature 
profile slope determines the ultimate solidification 
thickness. Of course the steady temperature profile 
slope cans not be determined initially. However, the 
exact solution of energy equation is used to 
determine the steady temperature profile at the first. 
So we will know the ultimate thickness of solid 
before numerically solving the energy equation. The 
ratio of liquid to solid temperature diffusivity and, 
more importantly, Pr  number has effect upon this 
temperature boundary layer thickness. This study 
represents increase of Pr  number brings about the 
decrease of the ultimate solidification thickness and 
increasing rk  and/or r  by half increases this 

thickness two times and vice versa. Also, decrease 
of I  causes the solidification thickness to increase. 

On the other hand, St  number variations have no 
influence on the ultimate solidification thickness; 
however, increase in the value of this dimensionless 
number resulted in decrease of the time of approach 
to this thickness). Very small effect of convection 
terms at near of interface leads to flatting 
solidification front but these terms are very 
important as approaching to the edge of boundary 
layer. In fact, existence of these terms causes the 
solidification in a stagnation flow to be stopped. 
The results show that the final solid thickness in a 
three-dimensional stagnation flow is about 75.0  
times of that of a two-dimensional case. Indeed, the 
exact solution of energy equation is a quasi steady 
solution and, therefore, its results can be used for 
validation of the numerical solution. This final 
result is very important because it is meaning of 
exact solution for the energy equation, in this case. 
This is an ingenious way of comparison in the field 
of stagnation flow. 
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