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ABSTRACT 

The aerodynamic force and the flow structure of a wing performing hovering motion at small Reynolds 
number (Re=4000) is calculated by computationally solving the 3D Navier-Stokes equations. The 
computations are performed for the hovering motion which consists of stroke 1, followed by the flipping 
motion for reversing the direction and then the stroke 2 (similar to stroke 1 but in the opposite direction). The 
intent of the study is to research the effects of different scheduling of the flip motion between the two strokes. 
At Re=4000, the delayed stall mechanism is noted during the azimuth rotation of a wing with a high value of 
CL due to stabilized Leading Edge Vortex. The lift contribution during the flip (pitch rotation for reversing 
the direction) for the complete stroke is not substantial. During a stroke, the wing encountered the wake from 
the previous stroke in which, the wake does not contribute positively. 

Keywords: Hovering; Delayed stall; Wake capture; Flip scheduling; Low reynolds number; CFD.

NOMENCLATURE 

a  
speed of sound

c mean chord length 

DC drag coefficient

DC time averaged drag coefficient

CFD Computational Fluid Dynamics 

LC lift coefficient

LC time averaged lift coefficient

l  radial position along the wing length from 
axis of rotation 

LEV leading Edge Vortex 

M  
free stream Mach number

Re Reynolds number 
U∞ free-stream reference velocity 

  angle of attack 
  non-dimensional time  

a non-dimensional time for acceleration

  
azimuth rotation angle 




angular velocity of azimuth rotation 

1. INTRODUCTION

Flapping flight of natural flyers has always 
fascinated the researchers and the curiosity has 
increased manifold due to interest in developing an 
electromechanical device capable of mimicking the 
Flapping-wing insects. The flapping-wing insects 
employ unsteady aerodynamic mechanisms to keep 
them afloat, and there have been many studies on 
this topic such as Ellington (1984a), Ellington 
(1984b), Ellington (1984c), Ellington (1984d), 
Ellington et al. (1996), Van den Berg and Ellington 
(1997a), Van den Berg and Ellington (1997b), 
Dickinson et.al (1999), Liu (2002), Liu (2005), 

Sane (2003), Lehman (2004a), Lehman (2004b) and 
Wang (2005). During the last few years, 
computational fluid dynamics (CFD) has also been 
widely applied to studies concerning insect flight. 
For instance, Liu and Kawachi (1998), Liu et al. 
(1998), Sun and Tang (2002a), Sun and Tang 
(2002b), Wang et al. (2004), Liu (2005), Wu and 
Sun (2004), Sun and Yu (2006), Yanpeng and Sun 
(2008), Hamdani and Sun (2000), Yilmaz (2011), 
Jun-Jiang et al. (2014) and Bross and Rockwell 
(2014). A major conclusion from these studies is 
that the insects obtain a sufficient lift force to 
support their weight through the vortices generated 
by the flapping wings. Among the many 
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mechanisms involved in the insect flight, the 
“delayed stall” identified by Ellington (1996) and 
Hamdani (2010), which is featured by a prolonged 
attachment of a leading-edge vortex (LEV) on a 
wing, has been widely recognized as an important 
unsteady aerodynamic mechanism contributing to 
the enhancement of the lift force generation in the 
flapping-wing insects. Other unsteady mechanisms 
might contribute to the force production in the 
insect flight. Dickinson et al. (1999) suggested that 
the rotational circulation and the wake capture 
increased the aerodynamic force during the 
rotational phase of the wing motion. These studies 
have made significant contributions to the 
understanding of the different aspects of the 
aerodynamic mechanisms involved in the insect 
flight.  

Hovering is the condition of staying aloft while 
having no mean translational motion. It is the most 
extreme and demanding aspect of the flapping wing 
flight. The flow over a wing undergoing hovering 
kinematics is unsteady, such that during one stroke, 
the wing accelerates and rotates, all the while 
traveling a distance of only about 3 to 5 chord 
lengths. Hikaru et al. (2008) performed a CFD 
study of an unsteady 3D near- and far-field vortex 
wake dynamics in a hovering fruit fly and their 
relation to the lift force generation using 
biologically inspired dynamic flight simulator. By 
comparing the computed results for the hovering 
Hawkmoth and the Fruit fly, marked dependence of 
the span-wise flow and the delayed stall on Re is 
elucidated.  

2. THE PRESENT STUDY 

In this work, CFD methodology is applied to 
understand the instantaneous force generation and 
vortex structures during hovering motion of a Fruit 
fly wing. Using the solution of the Navier-Stokes 
equations, the aerodynamic force and the detailed 
flow structure around the wing are obtained. The 
results provide a useful insights into the mechanism 
of the unsteady force generation during the 
hovering at Re=4000. The Reynolds number is 
chosen since this Re range has been used in many 
studies for MAVs such as by A Naderi et al. (2016).  
It is pertinent to mention that Re=4000 is selected 
on the premise that the length scale (mean 
aerodynamic chord) becomes closer to a Micro Air 
Vehicle (MAV).   

Attention is focused on capturing the unsteady 
aerodynamic effects during the hovering by 
systematically scheduling the flip motion between 
the two strokes. The rationale is to investigate the 
effects of various flip schedules on the performance 
of the subsequent stroke with a focus on wake 
capture mechanism. The experimental study by 
Dickinson et al. (1999) has used these scheduling to 
generate force peaks at the start and the end of the 
stroke leading to wake capture and rotational lift 
effects. Numerical analysis by Sun et al. (2002a and 
2002b) has, as yet, not found any conclusive 
evidence of wake capture phenomena and has thus, 
supported the findings of Ellington et al. (1996) that 

if LEV does not shed, wake capture mechanism 
might not exist. 

3. COMPUTATIONAL METHOD AND 
GRID GENERATION 

3.1   Computational Method 

The 3D compressible Navier-Stokes equations are 
numerically solved in the present study. The Mach 
number is given a low value such that the solution 
is a close approximation to that of incompressible 
flow (further details presented in the next section). 
For the flow past a body in arbitrary motion, the 
governing equations can be cast in an inertial frame 
of reference using a general time-dependent 
coordinate transformation to account for the motion 
of the body. Employing this approach, the Navier-
Stokes equations are expressed in a strong 
conservation form. They are well documented in the 
Beam and Warming (1978) and will not be repeated 
here. 

The Navier-Stokes equations are solved using the 
implicit, approximate-factorization algorithm of 
Beam and Warming (1978). The scheme is 
formulated using the three-point-backward implicit 
time differencing and the second-order finite 
difference approximation for all the spatial 
derivatives. A constant coefficient fourth-order 
explicit and a second-order implicit spectral 
damping are added to damp the high frequency 
oscillations and enhance the stability behavior as 
described by Steger (1978).  

The calculations are performed in the still air. At 
the wing surface, no slip wall boundary condition is 
enforced which means that the fluid on the wall 
surface will move with the same velocity as the 
wall. Along the grid cut-line, the periodic boundary 
conditions are enforced. The pressure on the 
boundary is obtained through the normal 
component of the momentum equation. 

3.2   Grid Generation 

A body-fitted O-H-type grid is constructed by span-
wise stacking the 2-D O-type grids. The two-
dimensional grid is generated by using a special 
Poisson solver based on the methods of Thomas 
(1982). A portion of the grid used for the wing in 
span-wise and chord-wise direction is shown in Fig. 
1. 

For the stacking procedure, the mid span chord is 
used to normalize the wing under a 7th order 
polynomial for the leading edge and a 6th order 
polynomial for the trailing edge. The resulting wing 
has a span (B) of 2.5 with the aspect ratio (AR= 
B2/S) 3.74 (Fig. 2) 

4. WING KINEMATICS, GRID AND 
MACH NUMBER SENSITIVITY 

4.1 Model Wing Kinematics 

Figure 3 depicts the hovering motion, which 
consists of stroke 1, stroke reversal (flipping) and  



H. R. Hamdani et al. / JAFM, Vol. 10, No. 1, pp. 433-445, 2017.  
 

435 

 
Fig. 1. A portion of the grid around a section and on the wing surface. 

 
 
the stroke 2.  The wing during stroke 1 (translation) 
performs azimuth rotation around the y-axis.  Near 
the end of stroke 1, the wing decelerates in azimuth 
rotation in preparation of the stroke 2 which is in 
opposite direction.  Simultaneously the wing 
performs flipping (pitch rotation) along the 
spanwise axis for stroke reversal so that angle of 
attack during Stoke 1 and 2 are same. 
 

 
Fig. 2. Position of the O-H type Grid of the 

modified Fruit fly wing (aspect ratio AR=3.74). 

 

 
Fig. 3. Motion set up for the Fruit fly wing. 

 

For hovering, the flip motion occurs relative to the 
translation of the wing. A parameter ADF 
(ADvance Factor) is introduced to relate the 
scheduling of a flip motion (τr) with the azimuth 
translation during a stroke and it is expressed as: 

ADF = τr + Δτr – τt                    (1) 

where Δτr is the total time for the flipping motion; 
τr is the instant at which flipping motion (rotation) 
commences during the stroke and τt is the total time 
for one stroke, i.e. half cycle (τt = τa + Δτt + τd), 
which is set so that the azimuth angle (ψ) during a 
stroke is affixed at 155°. Here, τa and τd are the 
non-dimensional times during which the 

acceleration and deceleration in azimuth occurs, 
respectively and Δτt is the non-dimensional time for 
the constant speed phase of the translation in the 
azimuth.  

ADF (ADvance Factor) essentially provides the 
value of time at which flipping commences.  For 
instance, ADF= 0.5 implies that half of the flipping 
motion occurs in Stroke 1 while the other half 
during Stroke 2 i.e. symmetric flipping. The major 
parameter for flipping motion is the duration of 
flipping which is kept constant i.e. Δτr = 1.0. The 
translational speed, ut, is equal to U during the 
constant speed phase. During the acceleration and 
deceleration phases, ut is given by: 
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where, t
t

u
u

U
   , τ = τU/c (equivalent to number of 

chord lengths travelled),  c is the chord length of the 
wing and U is a reference velocity. Here Re is also 
based on c and U and it is 4000. τ1 and τ2 are the 
non-dimensional times at which the acceleration 
and deceleration start in each stroke, respectively. 

Denoting the azimuth rotation speed as 


 

(U=r2
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), where, r2 = 
1

2
2
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 
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 
  (second moment 

of wing area) is calculated as 0.58l, where l is wing 
span (B) plus the distance between the wing root to 
the rotational axis (0.25 B). During the pitching 
motion (Δτr), the wing pitches from αm = α° to (180 
– α)° at an angular velocity whose maximum 
amplitude (

o
 ) is defined by: 

  0.5 1 cos 2 / ;o r r r r r         


         
        (4) 

where, /c U 
 

 , 
o
 is a constant representing the 

maximum value of 

. During Δτr, the wing rotates 

from α = 40° to α = 140°; therefore, when either 

o
 or Δτr are specified, the other can be 

determined by the relation 

( ) / 0.5o final start r       .  

The major parameters in the present study are  
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Table 1 Description of Cases with different ADFs 

 

Table 2 Mean Force Coefficients: Experimental and Numerical Results for a wing in azimuth rotation 
after rapid acceleration 

AoA 

  (degrees) 
Experimental †  

Numerical 
( τa = 0.5) 

% Difference 

in LC  

 LC  DC  LC  DC   

40 1.886 1.55 1.96 1.49 -3.9 

30 1.7128 .938 1.72 .904 -0.11 

20 1.205 .527 1.24 .429 -2.9 

10 .6236 .274 .628 .154 -0.7 

†  data extracted from Fig. 1A [Birch et.al (2004)] , error in valves 0.25  

 
0.5, 0.5, 1.0 3.4906a d r oor         at Re = 

4000 and 0.1M   . The motion is continued till 

approximately the similar mean force coefficients 
are achieved during the two stroke of a cycle and 
hence only the final stroke is discussed in the detail. 
The complete motion’s non dimensional time is 
normalized to a scale of 1 using the cycle time τc 
(which is 9.82). 

Table 1 shows the details of the four cases 
considered in the present study. The last column 
depicts the flip scheduling with respect to Stroke 1 
deceleration. It is important to mention that the 
cases have been selected in a manner so that at the 
start of the constant speed phase of the Stroke 2, the 
angle of attack is about 400. 

In essence, there are five variables while 
considering the motion: Acceleration time (τa), 
Deceleration time (τd), Stroke amplitude (ψ), flip 

velocity ( /c U 
 
 ) and scheduling of the 

Flipping motion (ADF). In the present study, the 
following assumptions are made to reduce the 
number of variables: 

(a) Acceleration and deceleration time are kept 
equal to τa = τd = 0.5. 

(b) Stroke amplitude (ψ) or azimuth angle during 
a stroke is fixed at 1550, which corresponds to 
τ = 4.91. 

(c) Flipping velocity ( /c U 
 

 ) is given a 
value such that the wing rotates from α=400 
to α=1400 within τ = 1.0. 

(d) Flipping motion (stroke reversal) is scheduled 
according to the value of the ADF. A total of 
4 cases are considered and the details are 
presented in Table 2. 

4.2 Grid Sensitivity Study 

For the Grid independence study, the wing 
translation starts by accelerating for τa in the still air 
(Eq. 1) to a constant speed U (denoted as Motion 1). 
Due to this half of the hovering motion (i.e. 
acceleration and constant speed azimuth rotation 
only), the grid sensitivity study does not require 
ADF factor since the stroke reversal (or flip) is not 
taking place. Mach 0.1 is selected for this study. 
Two grids are considered: While the Grid 1 is of the 
size 1257276 in the normal, around the wing 
section, and the span-wise directions, respectively, 
whereas the Grid 2 is of 1569076. The far field 
boundary is set at 10 chord lengths away from the 
wing surface in the normal direction and 5 chord 
lengths away from the tip in the span-wise 
direction. The calculated lift and drag coefficients 
are shown in Fig. 4. 

It is seen that during the acceleration phase, there is 
almost no difference between the results of these 
two grids; however, during constant speed phase, 

* ADF = τr + Δτr - τt 

* Δτr = τa + τd = 0.5 + 0.5 = 1.0 
* τt = 4.91: time for 1 stroke which includes acceleration, constant speed phase and deceleration 

* During Stroke 1, deceleration starts at τ = 4.41 

Case ADF 
τr 

(Pitching start instant) 
Correspondence of Pitching and Stroke 1 Azimuth deceleration 

1 0.5 4.41 Starts with deceleration 

2 0.25 4.16 0.25 c before deceleration commences 

3 0.0 3.91 0.5 c before deceleration commences 

4 -0.25 3.66 0.75 c before deceleration commences 

5 1.0 4.91 Starts at the end of Stoke 1 deceleration 
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there is a very small difference between the results, 
which indicates that results of grid 1 and grid 2 are 
similar. From the above result, grid 2 is selected for 
the present study for ensuring more accuracy as 
well as better resolution of the flow structures. 

 

 
Fig. 4. Lift and Drag force coefficients plots 

versus τ for Grid 1 and 2. 
 

4.3 Mach Number Sensitivity Study 

In order to obtain the solutions close to that of 
incompressible flow, the value of Mach number 
needed to be small enough so that the 
compressibility effects do not affect the solution. 
For this purpose, the calculations are performed on 
the wing performing Motion 1. These calculations 
are performed at three Mach numbers, M=0.1, 0.05 
and 0.025 at Re 4000. Fig. 5 shows the lift (CL) and 
drag (CD) force coefficients at the different Mach 
numbers and it is seen that the results for all the 
three Mach numbers are similar during the 
acceleration phase. 

 

 
Fig. 5. Force coefficients vs τ for a wing 
performing Motion 1 at different Mach 

Numbers. 
 
In the constant speed phase, the lower Mach 
number gives slightly higher lift coefficient as 
compared to M=0.1. Therefore, Mach 0.1 (33 ms-1) 
is selected for the subsequent computations since it 
would give a good approximation (qualitative) of 
the incompressible flow at Mach number as low as 
0.01 (3.3 ms-1). 

          5.    RESULTS AND DISCUSSION 

5.1   Code Validation 

The code has been validated by comparing the 
results with the experimental data at the low 

Reynolds number by Hamdani and Sun (2000).  The 
code validation is also performed by comparing the 
computational results with the experimental at Re 
=120 and 1400 by Birch et.al (2004), respectively. 
Table 2 shows the mean lift and drag coefficients at 
the different angles of attack for the experimental 
and computational comparison of the results. Figure 
6 shows comparative force coefficient plots for the 
experimental and numerical results. Essentially, the 
results are similar especially when α is small. Small 
variation seen in the results could be due to 
different acceleration time used in the experiment 
by Birch et.al (2004), which is not known. 

5.2   Case 1 (ADF=0.5) 

In all the cases, the first cycle commences in the 
still air with the wing acceleration (τa=0.5) at α=400, 
which is followed by a constant speed azimuth 
rotation. During the case 1 at τ=4.41, the 
deceleration starts to bring the wing to halt in the 
azimuth and simultaneously the wings starts to pitch 
up. At the end of the deceleration, the pitching rate 
is maximum and α=900. At this stage, the stroke 1 
of the cycle ends. Stroke 2 begins with the 
acceleration in the azimuth and the pitch motion 
from α=900 to α=1400. At the start of the constant 
speed phase, the flipping is completed and the wing 
is moving at α=1400 through the wake of the Stroke 
1. The Stroke 2 deceleration and flipping starts 
simultaneously and at the end of the deceleration, 
the Stroke 2 (and Cycle 1) is completed. The wing 
continues to perform the motion with the same 
kinematics as the Cycle 1 and the computations are 
continued till the results of two the successive 
strokes are similar. Fig. 7 shows the lift and drag 
coefficients versus τ/τc for the Stroke 4 during the 
Cycle 2. 

L DC a n d C (Weighted average lift and 

drag coefficients) for the final stroke is 1.35 and 
0.79, respectively giving /L DC C of 1.7.  

The Stroke 4 starts with a low value of CL =0.12. 

As 


 reduces from a maximum value to zero and 


  increases from zero to its maximum value, a 

peak value of CL =1.13 (Location 1: τ/τc = 1.52) is 
achieved. By the end of the acceleration (τ/τc = 
1.55), the CL

 
peak has subsided. During the 

constant speed translation phase, the lift coefficient 
increase is steady till τ/τc = 1.65. After which, the 
increase in CL is gradual and the value of 2.165 
(Location 2) is achieved by the end of the constant 
speed phase. At τ/τc = 1.95, the azimuth 
deceleration and the pitch up rotation starts 
simultaneously, where the CL drops to -1.128 
(Location 3) at about the mid of this phase (or the 
point of maximum deceleration rate). It then 
increases to a value of CL =0.12 (at the end of the 
stroke i.e. the deceleration has finished and 

  is 
maximum).  

On the other hand, CD is 0.63 at the start of the 
stroke 4 (τ/τc = 1.5) and increases rapidly during the 
acceleration in the azimuth direction to a peak value 
of about CD = 2.0 (τ/τc = 1.515). By the end of the 
acceleration (τ/τc = 1.55), CD peak has also 
subsided and for the duration of the constant speed  
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Fig. 6. Experimental (Dickinson etal) and Numerical results of the Wing performing Motion 1. 

 

 
Fig. 7. Case 1 (ADF=0.5). Lift and drag coefficients versus non-dimensional time during Stroke 4. 
Filled square shows end of acceleration and filled circle start of deceleration in azimuth. Shaded 

rectangles depict the flipping motion. 

 

 
Fig. 8. Case 2 (ADF=0.25). Lift and drag coefficients versus non-dimensional time during Stroke 4. 

Filled square shows end of acceleration and filled circle start of deceleration in azimuth. Shaded 
rectangles depict the flipping motion. 

 
 
translation phase, the drag coefficient increase is 
steady and a value of 1.6 is achieved by the end of 
the constant speed phase. At τ/τc = 1.95, the 
azimuth deceleration and the pitch up rotation starts 
simultaneously, as the wing angle of attack 
increases, CD increases to a peak of 2.65 (τ/τc = 
1.988) and by the end of the deceleration phase, has 
reached 0.63. 

5.3   Case 2 (ADF=0.25) 

In Case 2, the kinematics is similar to the Case 1, 
however the flip motion is initiated 0.25 chord 
length before the deceleration phase of the stroke 1 
and ends at the mid of the acceleration phase of the 
stroke 2. 

The stroke begins with a high negative value of CL 
(about -1.5) and CD is about 1.5. During the starting 

phase, 


is decreasing to zero while 
 is 

increasing. As can be seen from Fig. 8, CL peak 
value of 1.865 and CD peak value 2.05 (location 1) 
is attained during the acceleration phase. By the end 
of the acceleration phase, (τ/τc=1.55), CL drops to 
less than 1.0. During the constant speed translation, 
CL gradually increases (due to delayed stall 
mechanism) and before the flip starts (0.25 c before 
deceleration); CL is approximately 1.97, which is 
higher than the force peak produced during the 
acceleration phase. Immediately after the flipping 
commences, a second peak (location 2) of the force 
coefficients is observed (CL and CD is 2.404 and 
3.558 respectively). As soon as the deceleration in 
azimuth starts, the combined effect of the 
deceleration and pitching ( a n d 

  ) is dominated 

by the deceleration and the lift reduces sharply 
(between location 2 and 3). At α=900, the lift 
coefficient is almost zero (location 3). There is then 
a slight increase in CL (location 4); however CL  
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Fig. 9. Case 3 (ADF=0.0). Lift and drag coefficients versus non-dimensional time during Stroke 4. 
Filled square shows end of acceleration and filled circle start of deceleration in azimuth. Shaded 

rectangles depict the flipping motion. 
 

 

drops sharply to a high negative value (location 5) 
by the end of the stroke under the influence of the 
deceleration. 

In comparison with CL, CD shows a similar behavior 
with a large peak during the acceleration, which is 
followed by a drag plateau during the constant 
speed phase. During the flipping motion, another 
peak is observed (location 2). A negative peak is 
seen which corresponds nearly to the maximum 
deceleration rate and towards the end of the stroke 
(α > 900), CD has a positive value due to change in 
the direction of the drag force. 

L DC and C for the 

stroke are 1.5 and 1.47, respectively while 
/L DC C is calculated as 1.02. 

5.4   Case 3 (ADF=0.0) 

In the Case 3, the kinematics is similar to the Case 
1, however the flip motion is initiated 0.5 chord 
length before the deceleration phase of the stroke 1 
and ends with the deceleration phase of the 
translation. Or, there is no flipping motion during 
the acceleration phase of the next stroke. 

The stroke begins with CL about -0.9. During the 
starting phase,  is zero (no flipping motion) while 


 is increasing. From Fig. 9, it is seen that 

qualitatively behavior of the force coefficients is 
similar to that of the previous case ADF=0.25 (Fig. 
8). It is seen that the CL and CD peaks (location 1: 
2.5 and 2.6 respectively) are produced during the 
acceleration phase. During the constant speed 
translation, the forces gradually increase and there 
is a lift and drag plateau during the most part of 
azimuth translation (delayed stall mechanism). As 
the flipping motion starts, CL increase to about 2.7 
(location 2) or a lift peak associated with flipping 
(rotational lift). As α increases further, CL starts to 
decrease and at α=900 (which coincides with start of 
deceleration and maximum flipping rate); CL is 
zero. Under the influence of the deceleration, CL 
drops to -1 (location 3) and as the maximum 
deceleration rate is achieved; a positive peak of CL 
= 0.7 appears (location 4). CL drops to a negative 
value of -0.9 at the end of the stroke. It is 
worthwhile to note that this spike (location 4) is not 
evident in the previous two cases; thus highlighting 

the importance of the flipping motion scheduling 
viz deceleration in the azimuth rotation. 

In comparison with CL, CD shows a similar behavior 
with the large peak during acceleration, which is 
followed by a drag plateau during the constant 
speed phase. During the flipping motion, very high 
peak is observed corresponding to the maximum 
flip rate (location 2). During the deceleration, CD 
continually decreases and by the end of the stroke, 
CD is about -1.25.

L DC and C for the stroke are 1.51 

and 1.7, respectively while /L DC C is calculated as 

0.88. 

5.5   Case 4 (ADF=-0.25) 

With similar kinematics as the previous cases 
except that the flip starts 0.75 chords length before 
the deceleration starts and ends at the mid of the 
deceleration phase of the stroke (α=140°). 
Therefore, the wing continues to decelerate for the 
quarter chord length at an angle of attack of 140°  

The stroke begins with CL and CD value of -0.4 and 
0, respectively. At the start of the stroke,  is zero 

(no flipping motion) while 
 is increasing. From 

Fig. 10, it is seen that qualitatively behavior of the 
force coefficients is similar to that of the previous 
case ADF=0.0 (Fig. 9). As the wing starts to 
accelerate, CL and CD start to rise till a force peak is 
achieved (location 1: 2.88 and 2.77 respectively). 
There is a sudden decrease in CL and CD as the 
acceleration phase ends. 

During the constant speed translation phase, the 
force coefficients stabilize at a high CL and CD 
value as compared to the steady state results thus 
signifying the stall absence phenomenon. The 
flipping motion commences 0.75 chords length 
travel before the azimuthal deceleration. Due to the 
flipping motion, CL increases to about 2.66 
(location 2) and thereafter it drops sharply. At the 
mid of the flipping (flipping rate is maximum and 
α=900), CL is zero. As the wing continues to rotate 
beyond 900, CL continues to decrease till location 3 
due to the orientation of the lift vector. Shortly 
beyond location 3, the deceleration starts and CL 
attains another peak at the maximum deceleration  
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Fig. 10. Case 4 (ADF=0.25). Lift and drag coefficients versus non-dimensional time during Stroke 4. 

Filled square shows end of acceleration and filled circle start of deceleration in azimuth. Shaded 
rectangles depict the flipping motion. 

 

 
Fig. 11. Case 5 (ADF=1.0). Lift and drag coefficients versus non-dimensional time during Stroke 4. 

Filled square shows end of acceleration and filled circle start of deceleration in azimuth. Shaded 
rectangles depict the flipping motion. 

 
rate (location 4: flipping has ended) and similar to 
the acceleration phase; CL decreases as the 
deceleration rate reduces to zero (location 5). It is 
worthwhile to observe the three positive force peaks 
(1, 2, 4) and the two negative force peaks (location 
3 and 5). 

CD, at the start of the stroke is almost zero and 
increases to a high value during the acceleration. As 
the acceleration rate reduces, CD decreases and 
maintains almost a constant value during the 
constant speed translation phase. The flipping 
motion causes the drag coefficient to increase and a 
very large value (CD =7.8) is achieved at the instant 
when the flipping rate is maximum and α=900 
(location 2). Beyond this instant, it then starts to 
decrease rapidly and is close to zero when the 
deceleration starts. At the location 4 (the flipping 
has ended and the deceleration rate is maximum), 
CD is about -1.0. Thereafter, CD increases to a value 
of zero by the end of the stroke. 

L DC and C  for the 

stroke are 1.47 and 1.62, respectively and /L DC C is 

calculated as 0.91. 

5.6   Case 5 (ADF= 1.0) 

A variation of the Case 1 is also investigated in 
which the flipping motion occurs during the 
deceleration of the Stroke 1 and the acceleration of 
Stroke 2 (the symmetric flip scheduling). The 

rationale behind investigating this case is on the 
basis of very good performance during the 
symmetric flip scheduling and it is worthwhile to 
reduce the acceleration / deceleration rates during 
the azimuth (and corresponding the decreased 
flipping rate) for ascertaining their effect. The 
kinematics remains the same except for 

1.0 , 1.0, 2.0 1.745a d r oor         . The 

motion is continued till approximately the similar 
mean force coefficients are achieved during the two 
strokes of a cycle and hence only the final stroke is 
discussed in the detail. The complete motion’s non 
dimensional time is normalized to a scale of 1 using 
the cycle time 

c  (which is 10.82). 

The Stroke 4 starts with an almost zero value (Fig. 
11) and increases during the acceleration in the 
azimuth to a peak value of CL =0.43. By the end of 
the acceleration ( / 1.6c   ), CL is 1.1, which 

shows that after subsiding, the lift coefficient has 
started to rise again. Initially, this rise during the 
constant speed translation phase is steep and then it 
gradually increases ( / 1 .62c   onwards). By the 

end of the constant speed translation phase 
( / 1.90c   ), CL is 2.08. At / 1.90c   , the 

azimuth deceleration and the flipping starts 
simultaneously, CL drops to zero at the mid phase 
and there is a further decrease till -0.28. It then 
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increases to a value of CL =0.0 (at the end of the 

stroke i.e. the deceleration has finished and 


 is 
maximum).  

CD has a positive value at the start of the stroke 
( / 1.5, 0.115c DC    ) and increases during the 

acceleration phase to a peak value (location 1) of 
CD = 0.9 ( / 1.53c   ) after which it decreases 

slightly. Thereafter, it begins to increase and by the 
end of the acceleration ( / 1.6c   ), the CD is 

about 1.0. For the duration of the constant speed 
translation phase, the drag coefficient increase is 
steady and a value of 1.6 (location 2) is achieved by 
the end of the constant speed phase. 
At / 1.90c   , the azimuth deceleration and pitch 

up rotation starts simultaneously. CD decreases to a 
negative peak of -0.765 (location 4). By the end of 
the deceleration phase, CD has a magnitude of 0.1. 

It is important to note that due to slow acceleration/ 
deceleration rates, high peaks are not produced 
(unlike the previous 4 cases). 

L DC a n d C  for the 

stroke are 1.28 and 1.06, respectively, which are 
lesser than the Case1; /L DC C for the stroke is 1.2. 

This case (τc=10.82, Δτr=0.185τc, Re=4000) has the 
kinematics closer to Sun and Tang (2002a. 2002b), 
where they used τc=10.82, 40o  , Δτr�0.185τc  
and Re =136 and calculated a 

LC  =1.2  for one 

stroke. This is almost similar to the one calculated 
for the final stroke of the case 2 i.e. 

LC =1.19. 

While in their study on the lift and power 
requirements for drosophila by Sun and Tang 
(2002a), 

LC  was calculated as 1.15 for a symmetric 

motion with the wing at 36.5o   The results thus, 
revalidate the initial assumption of the present study 
that the flow physics at 0.1M   is essentially 

similar to 0.01M   and with these results, the 

velocity can be estimated to as low as 
10.14U ms  used by Sun and Tang (2002a, 

2002b). 

5.7   Discussion 

The complexity of the motion and its accompanying 
results (the force coefficients) merits discussion on 
various aspects of all the above cases for the 
purpose of gaining useful insights.  

First, the coefficient of lift behavior during a stroke 
is discussed: 

(a) It is seen that as the flip schedule is further away 
from the acceleration phase, CL peak increases 
during the acceleration phase (For ADF=0.5, CL 
peak is the lowest while for ADF=-0.25, it is the 
highest). 

(b) 
 
CL peak occurs approximately at a point where 

the acceleration rate is maximum. 

(c) The extent of drop in CL during the acceleration 
phase is almost the same in magnitude for all the 
4 cases (Cases 1 to 4). 

(d) After the acceleration phase, CL starts to rise and 
within a short period; there is a constant lift 
plateau with CL ≈ 2.0 (i.e. during the constant 
speed phase due to the delayed stall mechanism). 

(e) The flipping before the start of the deceleration 
produces a rotational lift peak and as the flip is 
scheduled nearer to the deceleration; the 
magnitude of the peak decreases. In the Case 1, 
when the flip starts simultaneously with the 
deceleration; there is no rotational lift peak. 

(f) After the rotational (or the flipping) peak, CL 
drops sharply due to the increasing α (case 3 and 
4). 

(g) At the onset of the deceleration, CL drops 
sharply to a negative value. At α=900, with CL ≈ 
0 (due to the orientation of the force vector). 

(h) As α>900 (the obtuse angle and the flip rate is 
decreasing) and the deceleration has 
commenced; CL then starts to increase to a some 
positive value (the location 4 in Cases 2, 3 and 
4) which is the same effect as the acceleration at 
the acute angle (like beginning of the stroke). 
The magnitude of the peak at the location 4 is 
related to the flip rate at that instant. It is 
important to note that there is no such peak for 
the Case 1 since the deceleration and the flipping 
commences simultaneously; and therefore, no 
rotational lift peak is observed. Beyond the 
location 4, CL drops (location 5) and the drop in 
CL decreases with the decreasing flip rate. 

The coefficient of drag behavior during the stroke is 
predictable and it is explained as follows: 

(a) During acceleration, CD
 
peak is around 2.0 for 

all the cases and there is a lag between the 
force production and the acceleration rate i.e. 
CD peak occurs a little after the maximum 
acceleration rate. 

(b) At the end of the acceleration, CD drops and 
then maintains almost a constant value 
throughout the constant speed phase.  

(c) For the cases where the flipping commences 
before the deceleration, CD increases rapidly to 
very large positive values. The large value is 
associated with the flipping and almost 
coincides with the rotational lift peak (Cases 2, 
3 and 4). While in the case 1, the peak is not 
exhibited since the flipping and deceleration 
starts simultaneously and under the 
deceleration effect; the force production due to 
the flipping is inhibited. 

(d) Beyond the location 4 (CD
 

peak), CD
 

drops 
sharply under the influence of the decreasing 
flip rate and more prominently, due to the 
onset of the deceleration. 

From the above discussion, it is seen that the 
commencement of the flipping before the 
deceleration gives dividend in the lift production; 
however the drag penalty is quite large. Table 3 
shows the weighted average of the force 
coefficients during the final stroke. The best 
aerodynamic efficiency is achieved in the case 1,  
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Table 3 Force coefficient during Stoke 4 for all the cases 

CASE 
ADF = 0.5 
(CASE 1) 

ADF = 0.25 
(CASE 2) 

ADF = 0.0 
(CASE 3) 

ADF = -0.25 
(CASE 4) 

ADF = 1 
(CASE 5) 

Averaged 
Value LC

 DC
 LC

 DC
 LC

 DC
 LC

 DC
 LC

 DC
 

Stroke 4 1.35 0.79 1.5 1.47 1.51 1.71 1.47 1.62 1.28 1.066 

LC /
DC  1.7 1.02 0.88 0.91 1.2 

 
 

where the flipping and deceleration starts at the 
same time. For the Cases 2, 3 and 4; the prominent 
lift peaks are exhibited, however the associated drag 
peak causes overall lesser value of the aerodynamic 
efficiency. Although the case 5 flip scheduling is 
similar to the Case 1, however, the drag coefficient 
is more due to the prolonged motion (the flipping 
from α=900 to 1400 during the acceleration and 
from α=1400 to 900 during the deceleration takes 
place in 1 chord length; while in the Case 1, the 
same occurs in the 0.5 chord length travel) at the 
high α. It is pertinent to mention that any further 
increase of the ADF, i.e. more flipping occurring at 
the start of the new stroke, would lead to drag 
penalty since the wing would be translating at the 
high α (Case 5 exhibits this statement). 

For all the cases, it has been computed that the 
maximum contribution towards 

LC  comes from the 

constant speed phase of the stroke i.e. the lift 
contribution is predominantly due to the delayed 
stall mechanism. While for

DC , the constant speed 

phase and the deceleration (coupled with the 
flipping) combined contributes towards the high 
value of the drag coefficient. 

5.8   Comparison of First and Final Stroke 

For the Case 4, the first stroke (started in still air or 
in other words pure azimuth rotation) is compared 
to the final stroke (occurs in the wake of the 
previous strokes). Such an analysis is useful for 
assessing the wake capture phenomena. In Fig. 12, 
it is seen that the lift force coefficient generated in 
the 1st stroke and the final stroke have similar trend 
with the two interesting observations: - 

(a) The force coefficient behavior during the 
acceleration and deceleration phase is 
quantitatively same. 

(b) During the constant speed translation, the lift 
force coefficients during the final stroke are 
consistently slightly lower than the first 
stroke; while the drag coefficient for both the 
strokes are same. 

This implies that the decreased CL during the 
constant speed phase is due to the wake from the 
previous stroke. Interesting to note is that the 
negative effect of the wake do not influence the fast 
acceleration / deceleration phases or in other words, 
the unsteady effect is dominant. In essence, in the 
flip scheduling considered in the present study, the 
wake capture phenomenon to enhance the 
performance is not observed. 

 
Fig. 12. Case 4: Over lay of force coefficients 

produced during first (dashed) and final (solid) 
strokes. 

 

5.9   Vorticity Plots during Case 1 

Figures 13, 14, and 15 show the vorticity plots 
during a stroke for the case 1 i.e.  ADF = 0.5.  The 
solid and broken lines represent the positive and 
negative vorticity lines, respectively. The angle of 
attack at the beginning of the stroke (τ/τc = 1.5) is 
90o. The wing performs a translational acceleration 
for τa = 0.5 toward the right while rotating 
clockwise from α � 90° to 140°. 

Figure 13 shows the vorticity contours at various 
span-wise locations during the acceleration phase 
(i.e. from / c  =1.5 to 1.55). The wing is 

surrounded by the vortices from the previous stroke 
i.e. the deceleration and flipping from 40o to 90o. 
Before dilating on the effect of the acceleration on 
the vortex generation; it is important to partly 
explain the origin of the vortices from the previous 
stroke. During the previous stroke, as the wing 
decelerates, positive and negative vorticity layers 
are formed on the upper and lower surface of the 
wing. Simultaneously, the flipping starts which 
produces new layer of positive vorticity at the upper 
surface with the existing positive vorticity layer 
produced during the deceleration. As the wing 
pitches up, this vortex layer (positive) curls to form 
the rotation vortex at the leading edge. The positive 
vorticity at the trailing edge is formed under the 
negative vorticity layer during the deceleration, 
which starts to curl form another positive vortex at 
the trailing edge. 

Now as the new Stroke commences, these two 
positive vortices can be seen detaching as the wing 
approaches α = 90°, especially at the locations 
closer to the wing-tip. As the wing rotates beyond α 
= 90° (the pitch down and pitching rate decreases), 
the negative vorticity layers are produced at the 
upper and lower surface. As the wing accelerates,  
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Fig. 13. Case 1: Vorticity plots during acceleration for stroke 4 at different instants. A, B, and C are the 

25%, 50%, and 75% span wise locations. 
 

 
Fig. 14. Case 1: Vorticity plots during constant speed phase for stroke 4 at different instants. A, B, and 

C are the 25%, 50%, and 75% span wise locations. 

 
 

the positive vorticity layer is formed on upper 
surface under the negative vorticity layer and the 
negative vorticity layer forms on the lower surface. 
The positive vortices generated during the flip are 
shed at both the leading and trailing edge locations. 
The formation of the new vorticity layers during the 
acceleration occurs in a very short time, which 
explains (according to vorticity dynamics) the force 
peak during the acceleration phase. 

Figure 14 shows the vorticity plots during the 
constant speed phase. The negative vorticity on the 
upper surface at the end of the acceleration (and the 
flip) accumulates at the trailing edge and sheds at 
the beginning of the Stroke. During the constant 
speed phase, the positive vorticity forms the 
Leading Edge Vortex (LEV) which remains stable. 

At the trailing edge, the negative vorticity generated 
during the flip combines with the negative vorticity 
produced during the acceleration and this negative 
vortex (starting vortex) sheds i.e. moves away from 
the wing causing a gradual rise of the force 
coefficients. During the constant speed phase, the 
flow pictures at two the different instants are quite 
similar; which explains the force coefficients 
plateau during the most part of the constant speed 
phase. 

Figure 15 shows the vorticity plots during the 
deceleration phase. The flipping has also 
commenced where the wing rotates from 40o to 90o. 
Due to the deceleration, the negative and positive 
vorticity layers are formed on the upper and lower 
surface of the wing under the existing vorticity  
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Fig. 15. Case 1: Vorticity plots during deceleration phase for stroke 4 at different instants. A, B, and C 
are the 25%, 50%, and 75% span wise locations. 

 

layers. Simultaneously, the flipping starts which 
produces the new layer of the negative vorticity at 
the upper surface with the existing negative 
vorticity layer produced during the deceleration. 
The wing continues to rotate till 90o and the 
cumulative effect of the deceleration and the 
flipping causes drop in the force coefficients 
(similar yet opposite to the acceleration phase). The 
flow pattern continues to be the same during the 
subsequent strokes. 

        7. CONCLUSION 

One very interesting aspect from the above results 
is the diversity of the motion combinations which 
are available at any point in time, leading to enough 
lift production to keep an insect (at Re 4000) in a 
sustained flight. The flip scheduling is an important 
parameter and it has the decisive impact on the 
aerodynamic efficiency during the hovering motion. 
For all the cases considered in the study (with the 
different flip scheduling), the lift plateau is 
observed due to the delayed stall mechanism 
attributed to the non-shedding of the LEV. During 
the fast acceleration and deceleration, the large 
force peaks are achieved due to the unsteady effect, 
or in other words, due to the generation of the 
vortices in a very short period of time. In instances 
where the flip is scheduled before the deceleration, 
the rotational lift is produced while the 
accompanying large drag offsets the advantage in 
the lift production. In a case where the deceleration 
and the flip starts simultaneously, the rotational lift 
is not produced; however the absence of the drag 
penalty due to the flipping results in the large values 
of 

LC /
DC . The wake capture phenomenon is 

observed but it did not contribute towards the 
enhancement of the performance, rather the 

aerodynamic efficiency is reduced during the 
subsequent stroke. 
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