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ABSTRACT 

A harmonically-driven, incompressible, electrically conducting, and viscous liquid metal 
magnetohydrodynamic flow through a thin walled duct of rectangular cross section interacting with a uniform 
magnetic field traverse to its motion direction is numerically investigated. Chebyshev spectral collocation 
method is used to solve the Navier-Stokes equation under the inductionless approximation for the magnetic 
field in the gradient formulation for the electric field. Flow is considered fully developed in the direction 
perpendicular to the applied magnetic field and laminar in regime. Validation of numerical calculations respect 
to analytical calculations is established. Flow structure and key magnetohydrodynamic features regarding 
eventual alternating power generation application in a rectangular channel liquid metal magnetohydrodynamic 
generator setup are numerically inquired. Influence of pertinent parameters such as Hartmann number, 
oscillatory interaction parameter and wall conductance ratio on magnetohydrodynamic flow characteristics is 
illustrated. Particularly, it is found that in the side layer and its vicinity the emerging flow structures/patterns 
depend mainly on the Hartmann number and oscillatory interaction parameter ratio, while the situation for the 
Hartmann layer and its vicinity is less eventful. A similar feature has been discussed in the literature for the 
steady liquid metal flow case and served as rationale for developing the composite core-side-layer 
approximation to study the magnetohydrodynamics of liquid metal flows usable in direct power generation. In 
this study that approximation is not considered and the analysis is performed on liquid metal oscillatory (i., e., 
unsteady) flows usable in alternating power generation. Conversely, in terms of prospective practical 
applicability the formulation developed and tested with these calculations admits the implementation of a load 
resistance and walls conductivity optimization. That means that besides representing a numerical study on the 
magnetohydrodynamics of the oscillatory flow under consideration, absent in the literature for the parametric 
ranges reported, the formulation presently implemented can also be applicable to study the performance of an 
alternating liquid metal magnetohydrodynamic generator in the rectangular channel configuration. 

Keywords: Magnetohydrodynamics; Oscillatory liquid metal flow; Laminar fully developed regime; 
Inductionless approximation; Navier-Stokes equation; Spectral collocation method; Power generation. 

NOMENCLATURE 

,a b  duct’s semi height, semi width  

0B  applied magnetic field magnitude  

B


 applied magnetic field  

H L,   Hartmann, side wall conductance ratios 

d  duct’s wall thickness  

E


 electric field 

f


 Lorent’z force 

G  pressure gradient amplitude  

i  imaginary unit 

J


 electric current density 

L  a characteristic lenght for the problem 

M  Hartmann’s number 

wN  oscillatory interaction parameter 

velocity field 
p  pressure gradient 

u


 velocity field 
*
0u  a characteristic velocity for the problem 

Reynolds number  
R m  magnetic R 

ωR  oscillatory Reynolds number 

t   time variable 
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v  fluid’s kinematic viscosity 

mv  fluid’s magnetic permeability 

 
ρ  fluid’s volumetric density  

  fluid’s electric conductivity 

,H L   Hartmann, side wall electric 

conductivities  
  electric potential  

ω  angular frequency 

1. INTRODUCTION 

Of interest to this paper is the characterization of 
MHD flows occurring in ducts or channels 
interacting with moderate to high intensity magnetic 
fields. Apart from the purely the physical interest of 
the subject, characterizing MHD flows is important 
within the contexts of nuclear power generation (e. 
g., liquid metal based cooling systems), alternative 
power generation/conversion (e. g., liquid metal 
magnetohydrodynamic -LMMHD- electric 
generators/converters), and industrial liquid metal or 
conductive fluids transport and handling (e. g., 
accelerators, pumps, flow meters). In general, the 
analytical/theoretical treatment of MHD duct flow 
problems is difficult due to the coupling of equations 
of fluid mechanics and electrodynamics. Because of 
that, exact analytical solutions are only available for 
relatively straightforward geometries subject to 
simple boundary conditions. Over time a range of 
numerical techniques have been used to solve MHD 
duct flow problems, such as finite difference method 
(FDM), finite element method (FEM), finite volume 
method (FVM), boundary element method (BEM), 
and spectral collocation methods (SCM). Examples 
of the first two can be found in Singh and Lal (1978), 
(1979), (1984), where numerical solutions of MHD 
duct flows through different cross-sections were 

obtained for Hartmann numbers of 1( 10 ).O   
Gardner and Gardner (1995) also applied FEM using 
bicubic B-spline elements for Hartmann numbers of 
the same order of magnitude, study which was taken 
further by Tezer-Sezgin and Köksal (1989) up to 

moderate Hartmann numbers of 2( 10 )O  using 
linear and quadratic element based (FEM). 
Demendy and Nagy (1997) used analytical (FEM) 
methodology to obtain numerical solutions for 

Hartmann numbers of 3( 10 ).O  Barrett (2001) also 
used this methodology to obtain solutions for high 
M values, reporting increasingly high computational 
costs. Nesliturk and Tezer-Sezgin (2005), (2006) 
solved the MHD duct flow equations for rectangular 
cross-sections using another (FEM) based technique 
called stabilized (FEM) with residual free bubble 
functions, reporting huge computational costs too. 
Now, the use of (BEM) based methods has been 
favored as a way to deal with the difficulties of 
managing large system sizes due to the need to 
increase domain discretization accuracy. Examples 

for Hartmann numbers of 1( 10 )O  are given by 
Singh and Agarwal (1984), Tezer-Sezgin (1994), 
Liu and Zhu (2002), Tezer-Sezgin and Aydin 
(2002), Carabineanu et al. (1995), and Bozkaya and 
Tezer-Sezgin (2006). Particularly, Liu and Zhu 
(2002), and Bozkaya and Tezer-Sezgin (2008), 

applied a (BEM) based methodology variant 
referred as dual reciprocity boundary element 
method (DRBEM) for non-conducting walls, and 
also another one referred as time-domain (BEM) for 
arbitrary wall conductivity unsteady MHD duct 
flow. Tezer-Sezgin and Aydın (2006) obtained 

results for Hartmann numbers of 2( 10 )O  using 
constant boundary elements. Bozkaya and Tezer-
Sezgin (2007) worked up a root solution to the 
(BEM) solution of MHD insulated and partly 
insulated wall duct problem for Hartmann numbers 
of O (≤ 102). Dehghan and Mirzaei (2009) proposed 
a technique referred as meshless local boundary 
integral equation method (LBIE) in order to obtain 
numerical solutions for coupled velocity and 
magnetic field equations for unsteady MHD 
rectangular and circular cross-sectioned duct flows 
with non-conducting walls. On the other hand, 
spectral collocation based methods have been used 
in pure and applied mathematics, e., g., Sezer and 
Kaynak (1996), Akyüz and Sezer (2003), Akyüz-
Daşcıoğlu and Sezer (2005), Çelik (2005a), Çelik 
(2005b), Çelik and Gokmen (2005), Çelik (2006), 
Keşan (2003), but also in MHD duct flow problems 
for the coupled steady case by Çelik (2011) and in 
the inductionless approach for the steady case by 
Cuevas et al. (1997). A combination of finite 
volume element method and spectral method is 
proposed in Shakeri and Dehghan (2011) for the 
coupled velocity and magnetic field rectangular 
cross-section unsteady case, focusing on building up 
and evaluating the method viability in terms of 
correctly combining the two techniques and 
establishing its validation respect to available 
analytical solutions as well as numerical ones for 

Hartmann numbers of 2( 10 ).O  In general, when 
applicable spectral collocation methods are found to 
be very practical in terms of solid convergence 
towards solutions behavior and overall 
computational efficiency. Regarding the subject of 
oscillatory MHD duct flows, precedent works 
include Mehmood and Ali (2007), who analytically 
investigated an oscillatory MHD porous filled duct 
flow linking the possible effects of heat and 
vibration transfer respect to boundary condition 
compliance. Mandal developed a detailed analytical 
treatment of an oscillatory MHD flow through a 
rectangular cross-sectioned duct. His approach 
regards isolating walls parallel to the applied 
magnetic field (also referred as side or lateral walls) 
and thin arbitrary conducting walls perpendicular to 
the field (also referred as Hartmann walls) in Mandal 
(1968); and thin arbitrary conducting side walls and 
perfectly conducting Hartmann walls in Mandal 
(1969). Additional examples of analytical treatment 
for MHD duct flow problems can be found in 
Shercliff (1953), Chang and Lundgren (1961), Hunt 
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(1965), Hunt and Stewartson (1965). 

In this paper the (SCM) based upon the work of 
Cuevas (1994), Cuevas et al. (1997) for the steady 
MHD duct flow case is used to develop a numerical 
study on a family of oscillatory flows potentially 
useful in alternating power generation. Formulation 
here implemented allows considering independent 
thin conducting side and Hartmann walls including 
the insulating and perfectly conducting limit cases; 
but here we restrict ourselves to both thin side and 
Hartmann walls of equal conductivity under validity 
conditions for thin wall approximation as established 
in Cuevas (1994), Cuevas et al. (1997), case which 
isn’t covered in Mandal (1968), Mandal (1969). The 
paper is organized as follows. The problem is 
physically formulated in section 2 below. In section 
3, a brief summary on the employed spectral 
collocation numerical formulation is given. In 
section 4, a comparison between our numerical 
solution and an unrestricted analytical solution 
obtained for isolating side walls and perfectly 
conducting Hartmann walls L H( 0, )    is 

presented. In section 5, numerical results on the 
velocity profiles and electric current are presented 
and discussed in terms of the dimensionless 
parameters defining the problem. Concluding 
remarks are given in section 6. Finally, Appendix A 
gives further details on the obtention procedure of 
the analytical solution used in section 4. 

2. PHYSICAL FORMULATION 

Consider a harmonically-driven, incompressible, 
electrically conducting, laminar, completely 
developed, and viscous flow through a thin walled 
duct of rectangular cross section interacting with an 
uniform magnetic field traverse to its motion 
direction. Basic schematic of the situation is 
presented in Fig. 1. Under these circumstances, 
functional dependence in the Cartesian coordinate 
system of all variables lies in y,z and t coordinates. 

ˆ( , , )x xu u x y z e
  defines the velocity field, where 

ˆxe  is the unit vector in x direction. Conductivity of 

Hartmann walls (perpendicular to the applied 
magnetic field) is not necessarily the same as the one 
of the side walls (parallel to the applied magnetic 
field). 
 

Fig. 1. Schematic of the problem. 
 

Solving the Navier-Stokes equation gives the 
velocity vector field: 

21
( . )

ρ ρ

u f
u u p v u

t


       



                            (1) 

Where p = p(x,t) and its gradient p relate to the 
functional dependence of the pressure applied to the 

fluid, B


is the applied homogeneous magnetic field, 

f j B 
  

is the electromagnetic body force in the 

fluid, related to j


, the induced electric current, 
which in its turn is given by Ohm’s law for a moving 
medium: 

 j E u B  
  

                                                  (2) 

On the other hand, ρ is the fluid’s volumetric mass 
density and ν its kinematic viscosity. If the flow is 
assumed slow enough, the induced magnetic field 
can be considered negligible compared to the 
externally imposed one. That constitutes the 
inductionless approximation, which can be 

expressed as *
0 1.m mR v u L   mR is defined as 

the magnetic Reynolds number, a conventional 
MHD dimensionless parameter which represents the 
ratio between induction and diffusion of the 
magnetic field in a given situation. ,  ,mv   are the 

fluid’s magnetic permeability and electrical 

conductivity while *
0,u L are respectively one 

characteristic velocity and length for the problem. 
Furthermore, if we reinterpret the inductionless 
approximation in terms of the much shorter time 
scale of magnetic field diffusion compared to that of 
velocity field variation, the quasistationary 

approximation yielding to E  


 is properly 

called for. ( , , )x y z   is the electrostatic potential. 

Using Ohm’s law in the form  ,j u B    
 

 

Eq. (2) turns into: 

0ˆ ˆ ˆj y z uB z
y z

 
  

      


                               (3) 

With it, the electromagnetic body force in Eq. (1) 
assumes the form: 

0 0ˆ ˆˆ ˆ
ρ

f
y z uB z B y

y z

 
  

       


                    (4) 

Replacing Eq. (4) into Eq. (1), one obtains: 

2 2
0

2 2

1

ρ ρ z
Bu p u u

v j
t x y z

    
          

                    (5) 

Proposing the adimensionalization given by 

0/ 1,B B B   

*
0/ ,  / , / , / ,u u u y y L z z L d d L      Eq. 

(5) conduces whether to: 
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2 2
1 2

ω 2 2 z
u p u u

N M j
t x y z

      
          

    
   

        (6) 

Or 

2 2
2 2

ω 2 2 z
u p u u

R M M j
t x y z

    
          

    
   

            (7) 

According to the set of dimensionless parameters 

chosen to define the problem. 2
ω ωM N R   

establishes the relation between the parameters. 

0 / ρM B L v is the Hartmann number, which 

represents the ratio of electromagnetic to viscous 

forces in the problem, 
0
2 / ρωwN B is the 

oscillatory interaction parameter, representing the 
ratio of electromagnetic to inertial forces, and 

2
ω ω /R L v is the oscillatory Reynolds number, 

representing the ratio of inertial to viscous forces. 
Choosing Eq. (6), to solve it we propose all variables 
to be harmonically dependent on time as follows: 

0

0

0

0

0

0

0 ( , )

   ( , )    

  ( , )   

 ( , )   
     ( )    

/       

       ( , )

       ( , )

      

      

ww

y y

z z

yw y w y z

zw z

u y zu

y z

y z

p xp

p x G

j j y z

j j y z

j j

j j




 
 
 
 
 
 
      
 
 
 
 
 
 
  

 

  
  
  
 
 

   
   
 

 
0 ( , )

it

w y z

e

  
  
  
  
  
  
  
                    



 

                         (8) 

From top to bottom: velocity field, fluid region 
electric potential, wall region electric potential, 
pressure, gradient pressure ( is the pressure gradient 

amplitude and 
0
2 *

0/ (1/ ) /p x B u p x       its 

adimensionalization equation), fluid region surface 
electric current density y component, fluid region 
surface electric current density z component, wall 
region surface electric current density y component, 
wall region surface electric current density z 
component. ℜ means taking the real part as 
physically meaningful. Replacing pertinent 
quantities into Eq. (6), one obtains a complex 
variable equation independent of time for the fluid 
region: 

2 2
2 10 0

0 ω 02 2 z
u u

M j iN u G
y z

   
       

   
 

             (9) 

Variables with tildes are dimensionless, and from 
now on that notation will be dropped since 
dimensionless quantities will be assumed by 
implication. As stated, the solution for the velocity 

field will be the real part of 0( , ) .itu u y z e  Charge 

conservation in the problem, expressed as . 0J 


 
implies that: 

0 0
0,           yo zoj j u

y z

  
    

 
                    (10) 

0yo zoj j

y z

 
 

 
                                                   (11) 

0 0,     w wH L
yow zowj j

y z

  
 

              
    (12) 

0 0 0y w z wj j

y z

 
 

 
                                              (13) 

 

 
Fig. 2. Duct dimensionless cross-section. 

 
H/ /H C d   and / / .L LC d   HC and LC  

are defined as conductance ratios for Hartmann and 
side walls respectively. It should be noticed that 
these quantities are dimensionless from definition. 
The problem is then defined by Eqs. (9) to (13), but 
further considerations must be made to complete its 
physical formulation. No initial conditions are 
required since presently we are not interested in the 
transient solution, so focus is put on boundary 
conditions. Departing from considering symmetry in 
both y and z directions with b = 1 (shown in Fig. 2), 
a complete reformulation to the problem can be 
developed based on the work by Cuevas (1994) and 
Cuevas et al. (1997) for the steady case, in order to 
advance the following steps into obtaining a solution. 
First, define pertinent to the case and proper 
hydrodynamic and electromagnetic boundary 
conditions within fluid, wall and outer regions. 
Second, exploiting the fact that the electric current is 
divergence free and two dimensional (2−D) —see 
again Eqs. (10)-(13)—, propose for them properly 
defined fluid and wall regions electric current stream 
functions. Third, decouple the resulting equations 
within fluid region from those within wall and outer 
regions by forwarding a potential function in terms 
of both the fluid region electric current stream 
function and electric potential; then applying for it 

the thin wall approximation, i., e., regarding 1d 
and the medium around the duct (outer region) as 
fully isolating. d is the width of the duct walls, as 
shown in Fig. 2. These steps have the overall effect 
of rendering the system given by Eqs. (9)-(13) into a 
single variable within the fluid region, i., e., F = F 
(y,z). Since that reformulation is based on what was 
developed in those references, no further details are 
necessary here. Previous considerations conduce to 
the following set of equations and boundary 
conditions defining our problem: 

a) Fluid region governing equation. 
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2 2 2
2 10 0

ω 02 2 2

u u F
M iN u G

y z y
    

        
          (14) 

Where, given that 0 < y < a ∧ 0 < z < 1: 

2 2

0 2 2

F F
u

y z

 
 
 

                                                (15) 

b) Boundary conditions. At z = 0: 

2 2

2 2
0,     0

F F F

z zy z

    
       

                         (16) 

At y = 0: 

2 2

2 2
0,     0

F F F

y yy z

    
       

                         (17) 

2 2

2 2
0,     0L

F F F
F

zy z

   
        

                  (18)  

At y=a 

 
2 2 2

1
2 2 2

2
1

2

0,     

                                                       =

H
F F F F

M
yy z z

F
M

y





    
         







   (19) 

In addition to what is conditioned by means of Eqs. 
(14) to (19), the physical formulation must also take 
into account the dimensionless volumetric flow 
conservation condition in terms of the averaged 
velocity amplitude ( 0u ) : 

1
00 0

a
u dydz a                                                    (20) 

Eq. (20) comes from 
1

0 00 0
. ,

a

ds

u ds u dydz a   


since a is simultaneously the duct cross section 
dimensionless area and aspect ratio. Because the 

spatial average of 0u  is 0 0. / ,
ds ds

u u ds ds  


 in 

order to normalize u respect to it one has: 

0
1

0 00 0

( , )( , , ) it

n a

u y z eu y z t
u a

u u dydz
 

 
                            (21) 

3. NUMERICAL FORMULATION 

To solve Eqs. (14)-(19) by means of the spectral 
collocation method, a function F = F (y,z) satisfying 
the boundary conditions is proposed as a finite series 
of even Chebyshev polynomials ( 2 ( / ),mT y a and

2 ( )nT z ): 

2 2
0 0

( , ) ( )
y zN N

mn m n
m n

y
F y z A T T z

a 

   
 

                    (22) 

Variables to determine are the complex coefficients

mnA . yN  and zN  the number of terms taken along 

y coordinate and z coordinate respectively. Use of the 
Gauss-Lobatto collocation points set is convenient 
because it yields the appropriate numerical 
resolution for the boundary layers by concentrating 
the points near the walls. The unknown coefficients 
can be considered as a vector β( )= ,mnAJ A  and the 

algebraic system of simultaneous equations can be 
expressed as: 

1

α β γ
TN

PJ AJ AJ PJ
AJ




                                        (23) 

Wher ( 1) 1,1 ,z TAJ m N n PJ AJ N        

and ( 1)( 1).T y zN N N    Elements of matrix 

αPJ AJ and known vector γPJ are obtained by 

replacing Eq. (22) into Eqs. (14)-(19). Explicitly, 
into governing Eq. (14): 

 

 

 

 

4
2

24 4
0 0

2
22

2
2 2 2

4
2

2 4

2
2 2

22 2

2
2 1 2

ω
22 2

2

1
( )

2
          

          

         

         

         

y zN N m

n
m n

m
n

n
m

m

n

m

n

y
T

a
T z

a y

y
T

T za
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            (24) 

When replacing into Eqs. (16) and (17), boundary 
conditions at z = 0 and y = 0 are identically satisfied, 
so no equations are generated. Into Eq. (18) left, the 
hydrodynamic boundary condition at z = 1 results: 
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(25) 

Into Eq. (18) right, electromagnetic boundary 
condition at z = 1 results: 
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Fig. 3. Collocation vs. analytical solution at a moderate Hartmann number (M) and high interaction 
parameter (Nω). M = 102, Nω = 106, and t = 0 − π Rads in increments of π/12 Rads. L  = 0, H  → ∞, 

a = 1. Left: profiles at y = 0. Right: profiles at z = 0. 
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Into Eq. (19) left, the hydrodynamic boundary 
condition at y = a results: 
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Into Eq. (19), the electromagnetic boundary 
condition at y = a results: 
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 (28) 

The system of linear simultaneous equations in the 
variables A mn  given by Eqs. (24)-(28) can be 

solved by Gauss-Jordan elimination or another 
suitable method. Once done that, the solution as 
proposed in Eq. (22) can be constructed. 

4. ANALYTICAL VS. NUMERICAL 
COMPARISON 

In absence of experimental data, numerical 
calculations are validated if they can get reasonably 
close to analytical results. An instance of validation 
is then provided by comparing numerical results with 
analytical solutions for the oscillatory flow case, as 
shown in Fig. 3 (left) and (right). This was performed 
by obtaining an analytical solution for isolating side 
walls and perfectly conducting Hartmann walls 

L H0,    at a moderate Hartmann number, 

case which was also treated in Mandal (1969) but 
restricted there to obtaining an asymptotic 
approximation solution valid for large Hartmann 
numbers The unrestricted analytical solution 
presented here was reached by means of the 

separation of variables technique in the potential 
formulation for the problem (φ-formulation), see 
Appendix A for details. Dimensionless solution 
reads: 


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u being the magnitude of the velocity field, with the 
following dimensionless parameters/constants:  

1 2 2 2 2 4
ω

2 2
1 1

1 2 2

1 , β=η α ,  γ=(1 η) α α ,

 δ= α ,  ε= β 4γ ,  ε =β ε, ζ

ε / 2 , and  ζ ε / 2.

n n n

n n

iN M M

GM a

     

  
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5. RESULTS 

Once found that numerical results are close to 
analytical results, a picture of the flow dynamics and 
structure is captured by a parametric study in terms 
of Hartmann number (M), oscillatory interaction 
parameter ω( ),N and in a first case the consideration 

of a single wall conductance ratio, i. e., 
H L .     Emphasis was put on M as high as 

possible because they are characteristic of strong 
applied magnetic fields, typical in electric generation 
applications. The range of ωN  was chosen primarily 

due to our interest in the flow at the low frequencies 
case having in mind liquid metal MHD generators. 
Finally, regarding , values 0.0, 0.001, 0.01, and 
0.05 were chosen due to interest in taking into 
account the transition from thin conducting to the 
insulating wall case. The number of collocation 
points to use for the obtention of a numerically stable 
collocation solution is a subtle topic. Generally 
speaking, considering the oscillatory case on its own 
on this particular subject is a self contained matter of  
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Table 1 M/ Nω and NY = NZ, for the set of numerical experiments performed 
Nω↓,M→ 100 101 102 103 104 

100 100, 85 101, 105 102, 125 103, 155 104, 210 

101 10-1, 85 10, 105 101, 125 102, 155 103,210 

102 10-2, 85 10-1, 105 100,125 101, 155 102, 210 

103 10-3, 85 10-2,105 10-1,125 100, 155 101, 210 

104 10-4, 85 10-3, 105 10-2, 125 10-1, 155 100, 210 

105 10-5, 85 10-4,105 10-3, 125 10-2,155 10-1, 210 

106 10-6, 85 10-5, 105 10-4, 125 10-3, 155 10-2, 210 

 

 
Fig. 4. Numerical solution respect to collocation parameters. 3

ωC = 0.05, N = 10 , 4 M = 10 , ωM / N = 10.  

t = 4π / 12(top)  and 5π / 12(Bottom)Rads.  Left: profiles at y = 0. Right: profiles at z = 0. 

 

 
Fig. 5. Numerical solution respect to collocation parameters. 3

ωC = 0.05, N = 10 ,  4M = 10 ,  
ω M / N = 10.  t = 6π / 12(top) and 7π / 12(Bottom)Rads. Left: profiles at y = 0. Right: profiles at z = 0. 

 

 

inquiry since it varies in terms of both increasing M 
and ω/ .M N  A picture of the situation is grasped 

with Table 5. filled with values of ω/M N , NY , and 

NZ. These last two register values above which the 
collocation oscillatory solution was found to be 
stable up to at least three significant figures within 
the ranges checked. In order to illustrate the 
oscillatory collocation solution behavior respect to 
NY and NZ, Figs. 4 to 6 show six different sets of 

collocation parameters for 0.05, 3
ω 10 ,N 

410 ,M   t = 0−9π/12 Rads. While time elapses the 
numeric collocation solution could vary greatly 
before reaching stability with increasing values of 
collocation parameters, more so regarding the 
Hartmann wall layer velocity profiles than the side 
wall layer ones. This is expected since the side wall 

layer width is estimated to be 
1

2( )O M


while 

Hartmann wall layer width is 1( ),O M  i. e., 

,L H   as discussed in Cuevas (1994). It can also 

be seen that the region of interest for the side wall 
layer velocity profiles is approximately the final 15% 
of the duct transversal length, where differences 
between solutions are clearly noticeable, specially at 
Fig. 6 (left). In contrast, for the Hartmann wall layer 
velocity profiles the region of interest is 
approximately the final 3% of the duct transversal 
length, as noticeable in Figs. 4 (right), 5 (right), and 
6 (right). It can be distinguished as well that 
collocation solutions with NY = NZ = 15, 45, and 75 
are not stable yet for the Hartmann wall layer 
definition, this particularly shown again in Figs. 4 
(right), 5 (right), and 6 (right) in the close vicinity of 
y = 1. Now, solutions with NY = NZ = 125, 180, and 
210 have ceased to oscillate between adjacent 
collocation points. This advices to carefully establish 
collocation parameters when searching for  
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Fig. 6. Numerical solution respect to collocation parameters. 3 4

ωC = 0.05, N = 10 , M = 10 ,  
ωM / N = 10.  t = 8π / 12(top) and 9π / 12(Bottom)Rads.  Left: profiles at y = 0. Right: profiles at z = 0. 

 

 
Fig. 7. Left: velocity profiles at plane y = 0. Right: velocity profiles at plane z = 0. 5

ωC = 0.01, N = 10 ,
2 -3

ωM = 10 ;M / N = 10 .  

 

 
Fig. 8. Left: velocity profiles at plane y = 0. Right: velocity profiles at plane z = 0. 4

ωC = 0.01, N = 10 ,
3 -1

ωM = 10 ; M / N = 10 .  
 

 

solutions since flow structure patterns could be 
entirely missed in the side wall layer by not 
employing enough collocation points, e. g., Fig. 6 
(left). It must be noticed that with respect to the 
Hartmann wall layer, the subject would not be as 
much as of missing flow structure patterns due to not 
setting a sufficient number of collocation points, but 
of a correct profile resolution, e. g., Figs. 4 (right), 5 
(right), and 6 (right). Profiles under previous 
discussion are shown over the time period 
4π/12−9π/12 Rads divided in increments of π/12 
Rads. No other examples are shown here. Figs. 4 
(left) to 6 (right) also serve the purpose of showing 
that flow structure patterns in the side wall layer 
could get a little more complex when compared to 
the steady case once MHD effects are established 
with its characteristic M-shaped profiles, back-flows 
and overshoots as thoroughly discussed in Cuevas 
(1994) and Cuevas et al. (1997). The main 
observation is that flow structure in the oscillatory 

case for the side wall layer depends both on 
increasing M and ω/ .M N  As ω/M N ratio 

increases, it is noticeable in the figures how the flow 
bulk gets progressively located into the last 15-10% 
of the duct transversal length in spatial terms, while 
simultaneously flow structure shows increasing 
complexity in terms of different emerging flow 
patterns. On the other hand, for the same 
circumstances the Hartmann wall layer flow bulk is 
distributed over the entire duct transversal length 
except for the last 5-3%. Figs. 7 to 9 attempt to 
illustrate these last remarks by showing velocity 
profiles for both side and Hartmann wall layers over 
a semi-period (t = 0 − π Rads) divided in increments 
of π/12 Rads for three cases of increasing ω/M N  

ratio within the parametric ranges solved. In Fig. 7 

with 3
ω/ 10 ,M N   side wall layer velocity profiles 

have an smooth (i., e., not pronounced) M-shaped 
contour, but they progressively transition into a little  
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Fig. 9. Left: velocity profiles at plane y = 0. Right: velocity profiles at plane z = 0. 3

ωC = 0.01, N = 10 ,  

4 1
ωM = 10 ; M / N = 10 .  

 

 

Fig. 10. Oscillatory collocation solution profiles at different planes. 4
ωC = 0.05, N = 10 , 3M = 10 ;

ωM / N -1= 10 , t =0 Rads. Left: side wall layer. Right: Hartmann wall layer. 

 
 

 

more complicated shape as shown in Figs. 8 and 9, 

with 1
ω/ 10M N   (i., e., a more abrupt M-shaped 

contour in this case) and 110  (which can hardly be 
described as a M-shaped contour at all) respectively. 
Notice also how from (left) Figs. 7, 8, and 9, flow 
structure patterns keep getting closer and closer to 
the boundary at z = 1. At the same time, the time-step 
evolution for the Hartmann wall layer velocity 
profiles is much more less dynamic compared to 
their counterparts in the side wall layer, basically 
getting closer and closer to the boundary at y = 1 and 
not showing signs of emergence of different flow 
structure patterns as shown in (right) Figs. 7, 8, and 
9. 

 

 
Fig. 11. 3 −D velocity profile provided by the 

collocation solution. 5
ωC = 0.05, N = 10 ,

3M = 10 ; t = 0 Rads. 

 
Other aspects in need of illustration are the behavior 
of the oscillatory collocation solution respect to the 
plane of visualization longitudinal to the externally 

applied magnetic field and the time-step evolution of 
the velocity profiles. Fig. 10 (left) shows how the 
oscillatory collocation solution matches the steady 
collocation case as portrayed in Cuevas (1994) for 
the set of parameters presented for the side wall 
layer. The Hartmann wall layer situation, absent in 
the discussion developed on Cuevas (1994), Cuevas 
et al. (1997) due to the use of the core-side-layer 
approximation, is shown here in Fig. 10 (right). 
Interestingly, it is as much as eventful as its 
counterpart, only that not in terms of emerging flow 
structure patterns but on the transitioning between 
flat slug-like velocity profiles and more parabolic 
shaped velocity profiles sharply cut towards the 
boundary at y = a. These remarks can be put in 
perspective aided by Fig. 11, which help us to 
explain the features just described. Figs. 12 to 14 
show the behavior of velocity profiles respect to the 
plane of visualization while simultaneously present a 

grasp on their time-step evolution for 410 ,M  in 
order to show how flow structure develops over time 
for this relatively high Hartmann number. Other 
cases are not shown due to space constraints. Profiles 
are illustrated over a semi-period (0−π Rads) divided 
in increments of 2π/12 Rads. As commented, in this 
problem we are not dealing with the transient 
solution but with the steady-state or long run 
oscillatory one. Because of that no initial conditions 
were set when calculating the solution, so at t = 0 
Rads, the velocity profiles time-step evolution begin 
not at their maximum normalized values for the time 
set solved, which are reached at Fig. 12 (right, top) 
for the side wall layer and Fig. 14 (right, bottom) for 
the Hartmann wall layer case. For the side wall layer, 
right at a half of the semi-period (t = 6π/12 Rads) the 
velocity is already reversing its  
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Fig. 12. Collocation solution profiles at different planes/time-step evolution. 3

ωC = 0.05, N = 10 ,
4M = 10 ;  ωM / N 1= 10 . Left: t = 0 Rads. Right: t = 2π/12 Rads. 

 

 
Fig. 13. Collocation solution profiles at different planes/time-step evolution. 3

ωC = 0.05, N = 10 ,
4M = 10 ;  ωM / N 1= 10 . Left: t = 4π/12 Rads. Right: t = 6π/12 Rads. 

 

 
Fig. 14. Collocation solution profiles at different planes/time-step evolution. 3

ωC = 0.05, N = 10 ,  

4M = 10 ; ωM / N 1= 10 . Left: t = 4π/12 Rads. Right: t = 6π/12 Rads. 

 
 

direction, as shown in Fig. 13 (right, top). Flow 
structure remains pretty much the same, somewhat 
resembling an smoothly serrated M-shape with 
apparition of some back-flow as noticeable in the 
same figure and also in Fig. 14 (top, left). As time 
elapses, the back-flow shown at Fig. 13 (right, top) 
keeps increasing along the new flow direction, while 
the overshoot in the same figure keeps diminishing 
as shown in Fig. 14 (top, right), and (bottom). This 
continues to happen until flow structure develops 

into what is shown in Fig. 14 (bottom, top); two 
valleys and two peaks in the negative direction, each 
one more pronounced towards the duct boundary. 
That is, the flow continues to evolve to form again 
what was described as an smoothly serrated M-shape 
of Fig. 12 (left, top). The velocity completely 
reverses and begins to establish the same time-step 
evolution pattern for the other half of the semi-
period, which is not shown here. Figs. 12 to 14 also 
show the behavior of the oscillatory collocation  
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Fig. 15. Collocation solution profiles respect to wall conductance parameter. 6
ωN = 10 , 3M = 10 ;

ωM / N  -3= 10 ,  t = 0 Rads. Left: profiles at y = 0. Right: profiles at z = 0. 

 

 

Fig. 16. Collocation solution profiles respect to wall conductance parameter. 2
ωN = 10 , 4M = 10 ,  

ωM / N 2= 10 ,  t = 0 ∧ π/12 Rads. Left: profiles at y =0. Right: profiles at z = 0. 

 

 

Fig. 17. Collocation solution profiles respect to wall conductance parameter. 2
ω N = 10 , 4M = 10 ,

ωM / N 2= 10 ,  t = 4π/12 ∧ 5π/12 Rads. Left: profiles at y = 0. Right: profiles at z = 0. 

 
 

solution velocity profiles at different visualization 
planes (0 < y < a), presenting their correct 
differentiation respect their individual relative 
proximity to the boundary y = a and its non slip 
condition. Due that condition, profiles at different 
planes present the same basic shape but more and 
more attenuated as they get closer towards the 
boundary. 

Another feature to take into account is the behavior 
of the oscillatory collocation solution respect to the 
wall con ductance parameter (  ). Fig. 15 (left) 
shows how the solution is also in good agreement 
with the steady collocation solution case as reported 
in Cuevas (1994), Cuevas et al. (1997). Fig. 15 
(right) shows the situation for the Hartmann wall 
layer which as commented is absent in those 
references due to the core-side-layer approximation. 
Notice that calculations for 0.001 were 
performed too in order to further portrait the 

transition to the isolating duct wall case ( 0.0)  
Figs. 16 to 19 present the behavior of the oscillatory 

collocation solution respect to   and its time-step 
evolution for both side and Hartmann wall layers 
velocity profiles. No other cases are shown here. 
Side wall layer velocity profiles with 0.0
exhibit a basic structure shape thorough almost the 
entire semi-period, which in this particular case of 
parameters can be described as an smoothed M-
shape with an small peak towards the boundary z = 
1; peak which gets smaller and smaller with 
diminishing values of . That basic shape does not 

dramatically change for each value of  but for the 
appearance of a progressive back-flow. For 

0.001 it can be only appreciated by the end of 
the semi-period in Fig. 19 (left, top) as well as the 
formation of a second valley or back-flow when the 
initial peak towards the boundary reverses its 
direction (appreciated in incipience in Fig. 19 (left,  



J. A. Rizzo-Sierra / JAFM, Vol. 10, No. 1, pp. 459-477, 2017.  
 

470 

 

Fig. 18. Collocation solution profiles respect to wall conductance parameter. 2
ω N = 10 , 4M = 10 ,

ωM / N 2= 10 , t = 8π/12 ∧ 9π/12 Rads. Left: profiles at y = 0. Right: profiles at z = 0. 

 

 

Fig. 19. Collocation solution profiles respect to wall conductance parameter. 2
ω N = 10 , 4M = 10 ,

ωM / N 2= 10 ,  t = 12π/12 ∧ 13π/12 Rads. Left: profiles at y = 0. Right: profiles at z = 0. 

 

 
Fig. 20. Sample of 3 − D velocity profiles time-step evolution by the collocation solution. 

2
ωC = 0.05, N = 10 ,  4M = 10 ;  ωM / N 2= 10 . Left to right top: t = 10π/32, 11π/32 Rads, bottom: 

t = 12π/32, 13π/32 Rads. 

 
bottom)). Notice how all along for 0.0 the case 
is different since no back-flow is present and the 
small peak towards the boundary at z = 1 is much 
more less pronounced. This kind of flow structure 
can be described as slug-like. For the Hartmann wall 
the velocity profiles and the entire situation is much 
more uneventful in terms of flow structure, limiting 
itself to cleaner slug-like patterns (i., e., no peaks 
towards the boundary y = 1). Complementarily, Figs. 
20 and 21 try to further detail visualization on the 

occurrence of back-flow by showing a sample of the 
3D velocity profile time-step evolution for 

0.05,  conductivity for which the phenomena is 
more pronounced in this particular example. 

Other characteristic to consider in this paper is the 
flow behavior with respect to varying Hartmann 
number value (M), parameter which corresponds to 
the externally applied magnetic field intensity. This 
is illustrated in Figs. 22 to 24 for three conductance  
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Fig. 21. Sample of 3 − D velocity profiles time-step evolution by the collocation solution. C = 0.05,  

ω N  510 , 3M = 10 ;  ωM / N 2= 10 . Left to right top: t = 14π/32, 15π/32 Rads, bottom: t = 16π/32, 

17π/32 Rads. 
 

 
Fig. 22. Collocation solution respect to the Hartmann number. Left: profiles at y = 0. Right: profiles at 

z = 0. 6
ωC = 0.05, N = 10 ,  t = 0 Rads. 

 

 
Fig. 23. Collocation solution respect to the Hartmann number. Left: profiles at y = 0. Right: profiles at 

z = 0. 6
ωC = 0.05, N = 10 , t = 0 Rads. 
 

 

ratio values ( 0.05, 0.001,  and  0). As seen, 

profiles at t = 0 Rads match the features described 
in Cuevas (1994), Cuevas et al. (1997) for the 
steady case. No additional figures with different 
points in time at the time-step numerically solved 
are shown here. Notice particularly how for 
increasing M values the peak velocity value also 
increases sharply while the side layer thickness 

decreases as expected. For 310M  and 0,  the 
peak velocity value is around 30% of its value with 

410M  due to the side layer velocity being 
1

2( ).O M Correspondingly, the side layer thickness 

is 
1

2( ).O M


As for 0,  since in that case the 
induced electric currents totally close within the  
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Fig. 24. Collocation solution respect to the Hartmann number. Left: profiles at y = 0. Right: profiles at 

z = 0. 6
ωC = 0.0, N = 10 , t = 0 Rads. 

 

 

Fig. 25. Electric current surface density ( j


) respect to the Hartmann number. Top left: 1M = 10 , top 

right: 2M = 10 ,  bottom left: 3M = 10 ,  bottom right: 4M = 10 . C = 0.05,  6
ωN = 10 ,  t = 0 Rads. 

 

 

fluid and through the Hartmann layers, that 
circumstance seriously dampens any possible 
velocity overshoots and the side layer velocity 
results now of O(1), as shown in Fig. 24 (left). 

It’s also interesting for the scope of this paper to 
briefly inquire on the induced electric current surface 

density ( j


) distribution over the duct. The present 
configuration would be equivalent to an open circuit 
liquid-metal generator with a single wall 
conductance parameter, by no means an efficient 
setup for electric generation purposes. A more 
suitable generator-like setup would consider 

H L0, ,    coupled with an adequate 

physical/numerical model for the attachment of a 
load resistance between the side walls. Those 
conditions fall within the feasibility of this present 
formulation. Mentioned inquiry was performed in 

Figs. 25 to 27 for wall conductance parameters ( ) 
values of 0.05, 0.001, and 0. It is noticeable how as 

  gets near to 0 and M increments, more and more 
of the electric current lines close within the 

increasingly thinner Hartmann layer in the fluid 
region. Extreme cases for this parametric situation 
are shown in Fig. 25 (top left) and Fig. 27 (bottom 

right). For a given 0  value the trend to notice is 
pretty much the same: increasing M values mean 
thinner Hartmann layers for electric current return 
and augmented closing of electric current lines 
within the conducting walls, for both side and 
Hartmann walls (Figs. 25 and 26). In the case of 

0, the situation is defined by thinner and thinner 
Hartmann layers with the increment of M, since all 
electric current lines must close within the fluid 
region (Fig. 27). 

As illustrated, relevant parameters to take into 
account regarding flow features and behavior with a 
given conductance parameter  are M, ω ,N  and its 

ratio ω( / ).M N Numerical solutions for the 

oscillatory case were validated by comparison with 
an analytical oscillatory solution, finding good 
agreement (see again previous section). Behavior 
and features of the numerical collocation oscillatory 
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Fig. 26. Electric current surface density ( j


) respect to the Hartmann number. Top left: 1M = 10 ,  top 

right: 2M = 10 ,  bottom left: 3M = 10 ,bottom right: 4M = 10 . C = 0.001, 6
ωN = 10 , t = 0 Rads. 

 

 

Fig. 27. Electric current surface density ( j


) respect to the Hartmann number. Top left: 1M = 10 ,  top 

right: 2M = 10 ,  bottom left: 3M = 10 ,  bottom right: 4M = 10 .  C = 0.0, 6
ωN = 10 , t = 0 Rads. 

 

 

solution with respect to several parameters were 
inquired as follows: varying number of collocation 
points (NY , NZ) and time-step profile evolution, see 
Figs. 4 to 6; varying ω/M N ratio, see Figs. 7 to 9; 

different planes of visualization, see Fig. 10 and 11, 
different planes of visualization and time-step profile  
evolution, see Figs. 13 to 14; different wall 

conductance parameter values ( ), see Fig. 15 (left) 
and (right); different wall conductance parameter 

values ( ) and time-step velocity profile evolution, 
see Figs. 16 to 19; varying Hartmann number value 

(M), see Figs. 22 to 24; and electric current surface 

density ( j


) behavior with respect to wall 

conductance parameter ( ) and Hartmann number 
(M), see Figs. 25 to 27. 

6. CONCLUSION 

A harmonically-driven, incompressible, 
electrically conducting, laminar, completely 
developed, and viscous flow through a thin walled 
duct of rectangular cross section interacting with a 
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uniform magnetic field traverse to its motion (axial) 
direction was numerically investigated under the 
inductionless approach. An estimation of the 
amount of current flowing through the Hartmann 
layers was provided in order to propose thin 
conducting boundary conditions at top/bottom 
walls to be able to include the insulating case. In 
this approximation the Hartmann layers were 
considered as return paths for the electric currents 
and numerically solved. Concordance between 
oscillatory analytical and present numerical 
calculations was established by revisiting a classic 
analytic asymptotic solution restricted to large 
Hartmann numbers in Mandal (1969). A non 
restricted oscillatory analytical solution absent in 
that reference was provided and compared to 
present numerical calculations, finding reasonable 
agreement. Several MHD features of the liquid 
metal oscillatory flow were explored in a 
parametric range of interest related to liquid metal 
magnetohydrodynamic alternating power 
generation applications. Influence over the velocity 
profiles of parameters such as wall conductance 

ratio ( ), Hartmann number (M), and oscillatory 
interaction parameter ω( )N was studied. It was 

found that emerging side layer and close vicinity 
flow structures/patterns depend mainly on the 
Hartmann number and oscillatory interaction 
parameter ratio ( ω/M N ), while the situation for 

the Hartmann layer and close vicinity was in 
contrast less eventful. Increasing values of 

ω/M N ratio are associated to complexer (in terms 

of generally more serrated in shape) flow 
structures/patterns towards the boundary in the side 
wall layer velocity profiles. At the same time, 
increasing ω/M N ratios relate to thinner and 

thinner Hartmann layers with flow 
structures/patterns remaining practically 
unchanged. A comparable feature has been 
discussed in the literature for the steady case and 
served as partial rationale for developing the 
composite core-side-layer approximation in order 
to study the magnetohydrodynamics of steady 
liquid metal flows usable in direct power 
generation applications, but hadn’t been illustrated 
for neither the former or the present oscillatory case 
(see again Cuevas (1994), Cuevas et al. (1997)). In 
this present study the core-side-layer 
approximation was not taken and therefore a 
broader analysis was conducted on liquid metal 
oscillatory (i., e., unsteady) flows usable in 
alternating electric power generation contexts. That 
kind of analysis was absent from the literature in 
the parametric ranges proposed here. Hence, 
calculations here presented conform, elaborate, and 
expand on what was presented in those references 
for the steady flow situation since now the analysis 
is performed on the non approximated oscillatory 
case. On the other hand, in terms of potential 
practical applicability the system here described 
represents a liquid metal magnetohydrodynamic 
generator functioning in an unoptimized open 
circuit configuration. Consequently, these 
calculations set the first steps towards the 
numerical investigation on the performance of a 

cartesian-symmetric liquid metal MHD generator. 
In a first approximation that would require 
considering H L0,   and the attachment of 

a load resistance to the setup here described in order 
to calculate its isotropic efficiency, things which 
are well within the feasibility of the formulation 
developed. 
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APPENDIX A. ANALYTICAL DETAILS 

Equation to be solved is: 

21
( . )

ρ ρ

 
       



   u j B
u u p v u

t
               (30) 

Considering 

0 0ˆ( , , ) , ( , , ),xu u y z t e y z t B B b B     
   

(inductionless approximation), 0 ˆ,

B B y  and using 

the Ohm’s l w in the gradient formulation ( j


=

   


u B  ), Eq. (30) turns into: 

22 2
0 0

2 2

1

ρ ρ ρ

    
       

    

B Bu u u
p v u

t zy z

 

(31) 

Now, combining . 0 

j with Ohm’s law, one gets: 

2 2

02 2
0

  
  

 

u
B

zy z

 
                                      (32) 

Eqs. (31) and (32) constitute the system to solve in 
the gradient formulation. Next we define the 
dimensionless variables: ………………………….   

*
0 0/ 1, / , ω , / ,B B B u u u t t y y L      

/ , / , / ,itz z L d d L p x Ge        ( G being 

the pressure gradient amplitude). Dropping tildes 
and considering only dimensionless quantities from 
now on, they change into: 

2 2
1 2

ω 2 2
       

      
     

u p u u
N M u

t x zy z


   (33) 

2 2

2 2
0

  
  

 

u

zy z

 
                                           (34) 

Eqs. (33) and (34) would now constitute a 
restatement of the system to solve. Proposing 

0( , ) , itu u y z e  and  0( , ) ,ity z e  they conduce 

to a particularization of the problem for its spatial 
part as: 

 
2 2

2 10 0 0
ω 02 2

1    
     

   

u u
M iN u G

zy z


 (35) 

2 2
0 0 0

2 2
0

  
  
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u

zy z

 
                                      (36) 

With spatial boundary conditions for isolating and 
perfectly conducting side and Hartmann walls 
(respectively) given by: 

0 0( ; ) ( ; ) 0     u y a z y a z                        (37) 

0
0( ; 1) ( ; 1) 0


     


u y z y z

z


                     (38) 

Eqs. (35) and (36) subject to boundary conditions 
given by Eqs. (37) and (38) can be solved by means 
of applying a suitable variables separation. This 
begins by making ourselves sure that solutions for 

0( , )u u y z and 0( , )u y z in the following form 

satisfy the boundary conditions, given firstly by Eqs. 
(38): 

0
0

( , ) ( ) (α )



  n n

n

u y z u y Cos z                             (39) 

0
0

( , ) ( ) (α )



  n n

n

y z y Sin z                                (40) 

Indeed they do, once considering that: 

0

( ) (α )



  n n

n

G z G a Cos z                                    (41) 

With α (2 1) / 2,  α 4( 1) / (2 1) ,    n
n nn n   

and n = 0, 1, 2, 3,… 

Replacing Eqs. (39) and (40) into (37) and (38), one 
obtains: 

 
2

2 2 2
2

( )
α η ( ) α ( )

                                                          0

   

 

n
n n n n

n

d u y
M M u y y

dy

Ga


(42) 

2
2

2

( )
α ( ) α ( ) 0   n

n n n n
d y

y u y
dy

                     (43) 

With 1
ωη=1+iN . This last ordinary differential 

equations system is subject to the following 
boundary conditions: 

( ) ( ) 0   n nu a a                                            (44) 

Solutions for the system of Eqs. (42) and (43) subject 
to boundary conditions given by Eqs. (44) take the 
form: 


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1
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( ε ε )
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2 ε ζ2
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( , , ) (ε ((2 ) 2ε )
8 γ(2 +1)ε

    ( 1)sech( ζ )+4(2 ) ε )
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y y

e
u x y z e n
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e a n e
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 12 2 εζ2
2 1 1    ε ((2 ) 2ε ) ( 1)sech( ζ )yyn e e a      


(45) 





2 1 1

1 2 2

δ
( ) 2ε ε sech( ζ )cosh(ζ )

2γε

           +ε sech( ζ )cosh(ζ )

 n y a y

a y


           (46) 

With
2 2 2 2 4 2β=ηM α ,  γ=(1 η) α α ,  δ= α ,  ε=  n n n n nM GM a

 2
1 2 1 1β 4γ ,ε β ε,  ε β+ε, ζ ε / 2,     and 

2 2ζ ε / 2,  

Final solutions are reconstructed by replacing 
solutions for ( )nu y and ( )n y provided by Eqs. (45) 

and (46) into Eqs. (39) and (40) in order to find out 

0( , )u y z and 0( , ).y z Once that’s completed, one 

can put together 0( , ) , itu u y z e  0 ( , ) ity z e  as 

written in Eq. (29). Ultimately the velocity is 
normalized as proposed in Eq. (21) before 
visualization. 

 


