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ABSTRACT 

Several efforts have been performed to improve LBM defects related to its computational performance. In 
this work, a new algorithm has been introduced to reduce memory consumption. In the past, most LBM 
developers have not paid enough attention to retain LBM simplicity in their modified version, while it has 
been one of the main concerns in developing of the present algorithm. Note, there is also a deficiency in our 
new algorithm. Besides the memory reduction, because of high memory call back from the main memory, 
some computational efficiency reduction occurs. To overcome this difficulty, an optimization approach has 
been introduced, which has recovered this efficiency to the original two-steps two-lattice LBM. This is 
accomplished by a trade-off between memory reduction and computational performance. To keep a suitable 
computational efficiency, memory reduction has reached to about 33% in D2Q9 and 42% in D3Q19. In 
addition, this approach has been implemented on graphical processing unit (GPU) as well. In regard to 
onboard memory limitation in GPU, the advantage of this new algorithm is enhanced even more (39% in 
D2Q9 and 45% in D3Q19). Note, because of higher memory bandwidth in GPU, computational performance 
of our new algorithm using GPU is better than CPU. 

Keywords: Memory reduction; Optimization; Computational performance; Lattice boltzmann method 
(LBM). 

NOMENCLATURE 

d dimensions  
e velocity element 
f fluid packet  
i fluid packet Index 
q total lattice cites 
Re Reynolds Number 

V


 velocity 
  density 

temp temporary index 
new updated Index 
t  time 

1. INTRODUCTION

Recently, Lattice Boltzmann Method (LBM) has 
become an appropriate commonly used technique in 
fluid flow simulations (Higuera and Jimenez 1989, 
Higuera et al. 1989, Chen et al. 1992, Qian et al. 
1992, Succi 2001, Di Rienzo et al. 2012). LBM has 
emerged from lattice-gas automata in late 1980s 
(Frisch et al. 1986, McNamara and Zanetti 1988, 
Succi 2001, Mattila et al. 2007), which was itself 
derived from Boltzmann equation. LBM has been 
applied to many thermo-fluid flow problems, such 
as laminar, turbulent, complex geometries, thermal, 
multi-component and immiscible fluids, and 

multiphase flows (Dawson et al. 1993, Shan and 
Chen 1993, Bailey et al. 2009, Rahmati et al. 2014). 

LBM Simulation is performed in both two- and 
three-dimensions, where like conventional CFD 
approach, each lattice node discretize the media to 
fluid or solid nodes and the fluid packets propagate 
through the lattice in discrete time steps. At each 
lattice point, the packets collide with each other, 
while they are restricted locally and only depend on 
data from the neighboring nodes. Note, the spatial 
locality of LBM to data makes it a good candidate 
for parallelization.  

In addition, simplicity in coding, easy handling of 
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complex geometries, and straightforward 
incorporation of microscopic interactions make 
LBM a favorable method to investigate complex 
fluid flows (Mattila et al. 2007). 
 
Nevertheless, there are some restrictions in using 
LBM, e.g., boundary conditions; Mach number 
limitations; memory restrictions; and memory 
bandwidth limitations.  
 
In LBM, the computational grid exchanges 
information of each node with its neighbors. Since 
there are many packets (with regard to the particle 
distribution functions), a high memory bandwidth is 
usually needed, which causes some hardware 
limitations. 
 
Improvement of LBM computational efficiency is 
still an open research. Inefficiency in computations, 
which causes low convergence rates (Geller et al. 
2006, Mattila et al. 2007) is one of LBM 
restrictions. There have been efforts to make this 
better by grid refinement (Filippova and Hänel 
1998, Mattila et al. 2007), improved algorithms for 
explicit time-marching implementations (Massaioli 
and Amati 2002, Pohl et al. 2003, Mattila et al. 
2007), and code optimization (Pohl et al. 2003, 
Velivelli and Bryden 2004, Wellein et al. 2006, 
Mattila et al. 2007). 
 
Note, several types of LBM have been 
implemented. Generally, they are tagged in DdQq, 
where d is dimension (2 or 3) and q denotes the 
number of particle distribution functions (PDFs) 
(Wittmann et al. 2013).  On the other hand, LBM 
contains two distinct steps: streaming and collision. 
In streaming step, data are coupled to and from 
adjacent lattice nodes, while in collision step, data 
are usually independent of the underlying lattice 
type and computations are performed in this step 
(Mattila et al. 2008).  
 
Allocation of nodes in memory can be determined 
either by direct addressing of a full grid (“simple 
index arithmetic”) or by indirect addressing (Pan et 
al. 2004, Zeiser et al. 2009, Wittmann et al. 2013) 
(“an index array which holds the full adjacency 
information of all nodes, the q−1 neighbors per 
node”)(Wittmann et al. 2013). 
 
On behalf of computational inefficiency, high 
memory requirement is another bottleneck in using 
LBM.  Allocation of data can be optimized for 
either streaming or collision steps. To optimize for 
streaming step, the structure of arrays (SoA) data 
layout is used, where each direction of the discrete 
velocities is stored in an individual array. While, to 
optimize for collision step, array of structures (AoS) 
data layout is used. In AoS, only one array stores 
the PDFs node-wise. Note, this type of allocation of 
PDFs in memory causes better cache utilization 
(Wellein et al. 2006, Wittmann et al. 2013). 
 
The differences between basic algorithms are 
related to their treatment of this data dependence. 
So far, for implementation of LBM, several 
algorithms have been identified, e.g., the 

Lagrangian, compressed grid (shift), swap, two-
lattice, and two-step algorithm (Massaioli and 
Amati 2002, Pohl et al. 2003, Mattila et al. 2007). 
Of course, each of these has its own advantages and 
disadvantages.   
 
Note, in the basic two-step algorithm, collision and 
streaming steps are handled separately, while in 
one-step algorithm, collision and streaming steps 
are combined to one step. To avoid data 
dependencies, in both of these algorithms two 
lattices are used. 
 
Lagrangian approach was presented by Massaioli 
and Amati (Massaioli and Amati 2002). They 
compared it with two-step algorithm, in which 
slight improvement in performance was observed. 
 
To reduce memory traffic within the system, the 
compressed grid (shift) algorithm was presented by 
Pohl et al. to reduce high memory consumption of 
two-lattice algorithm by combining collision and 
streaming steps. They compared their new 
algorithm with the two-lattice algorithm (Pohl et al. 
2003) and observed that both methods have the 
same performance with almost half the memory 
requirements in shift algorithm. The effect of data 
layouts on computational performance was studied 
by Wellein et al. (Wellein et al. 2006). They found 
that data layout had an important role in achieving 
high performance. 
 
On the other hand, the swap algorithm was 
proposed for implementation of LBM by Guo, Zhao 
et al.  2004. They compared the computational 
performance and memory consumption of the four 
main algorithms, namly, shift, swap, two-lattice, 
and two-step with a collision-optimized data layout. 
 
Another study was performed by Mattila et al. 
(Mattila et al. 2007). They compared 
implementations of the two-step, one-step, 
compressed grid, swap, and Langrangian algorithms 
with different addressing, e.g., direct, semi-direct, 
and indirect. 
 
In the present work, however, a new algorithm has 
been introduced, which approximately halfs the 
memory requirement in LBM, while preserves the 
simplicity of LBM. This approach is more 
applicable for GPU, because of onboard memory 
restriction in GPU by less performance reduction.        

2. LBM  

In 1986, Frisch et al. introduced LBM, based on 
lattice-gas cellular automata (LGCA) to simulate a 
real fluid flow. But It can, also be directly derived 
from Boltzmann equation (Abe 1997, He and Luo 
1997, Philippi et al. 2006, Shan et al. 2006). 
Nowadays, it has become a very acceptable method 
in many research and industrial flows.  
 
In Boltzmann equation, a set of fluid particle 
populations is used. These populations follow a 
Maxwellian distribution function. The number of 
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populations has been defined by Hermite–Gauss 
integration. By applying the Chapman–Enskog 
expansion, the incompressible Navier–Stokes 
equations can be recovered from Boltzmann 
equation in the low Mach number limit (Zhang and 
Seaton 1994, Coppens and Froment 1995, Alvarado 
et al. 1997).  
 
Finite difference scheme has been mostly used to 
solve the space and time parts of lattice Boltzmann 
equation (LBE). In this regard, both time and space 
phases are discretized and time is advanced in 
lattice-Boltzmann simulation, where each time step 
is divided into two parts: collision step, where 
momentum is exchanged between the fluid packets 
at each node and streaming step, where the fluid 
packets are transferred to the neighbor nodes along 
their paths.  
 
In contrast to conventional CFD methods, in each 
cell, LBM uses a set of particle distribution 
functions (PDF) to describe the fluid flow. A PDF 
is defined as the expected value of particles in a 
volume located at the lattice position X with the 
lattice velocity ei. Computationally, LBM is based 
on a uniform grid of square/cubic (2D/3D) cells, 
which are updated in each time step, using an 
information exchange with nearest neighbor cells. 
Structurally, this is equivalent to an explicit time 
stepping for a regular finite difference scheme. For 
LBM, the lattice velocities determine the finite 
difference stencil, where index i represents an entry 
in the stencil.  
 
In LBM, solution is started by an initial 
configuration, which is done using initial 
macroscopic values. On each time step, the fluid 
packets move from their lattice nodes to the 
neighboring nodes according to their velocities. 
When all fluid packets are transferred to lattice 
nodes, the fluid packets of each lattice node collide 
together and change their velocities. The average 
motion of the particles describes the macroscopic 
behavior of the flow.  
 
By an appropriate collision term, using LBE, the 
Navier–Stokes equations with second order 
accuracy (Chen and Doolen 1998, Succi 2001) in 
the macroscopic limit can be satisfied.  
 
There are many collision operators, in which the 
single-relaxation-time approximation is the simplest 
one, where in kinetic theory, it is known as the 
BGK approximation.  
 
In addition, besides the main collision 
approximation, there are several collision rules, 
where three of them are used in most simulations, 
namely: 1) standard single-relaxation, which is used 
for simulating fluid flows, 2) a bounce-back 
collision rule, which is used for simulating solid-
fluid boundaries (Coppens and Froment 1995), and 
3) a collision rule, which is used for simulating 
pressure-controlled boundary conditions. 
 
During the streaming step, almost all fluid packets, 
except the stationary ones (usually it is with zero 

index), go from each node and propagates to the 
corresponding incoming fluid packet locations in 
the neighboring nodes. Then, these incoming fluid 
packets and the zero index fluid packet are used in 
the next collision step. 

2.1   Standard LBM  

There is a standard implementation of LBM, which 
is known as two step-two lattice method. In this 
method, collision and streaming are literally as two 
separate steps and two lattices, denoted by A and B, 
where A stores the distribution values of the nodes 
(often denoted as fi) and B stores the post-collision, 
pre-streaming, values (often denoted fi

temp). 

In each time step, after performing the collision 
step, the new computed PDF’s are stored in lattice 
B at the same index position. In the streaming step, 
the following PDFs in lattice B are replaced with 
the neighbor nodes in lattice A. Note, streaming 
step has not any computational task and it just 
contains the data replacement. By performing this 
step, current time step is finished and is ready for 
the next time step.  
 
Because of several transfer of data to and from 
memory at each time step and since two arrays of 
data is needed to store, the memory bandwidth 
intensive and high memory consumption are two 
major restrictions of this algorithm. On the other 
hand, there are two ways in Implementations of 
LBM namely, "Push" and "Pull". In "push", 
collision step is executed before streaming step, and 
in "pull", it is vice versa. A suitable scheme for 
most implementations is "pull". Note, LBM 
implementation contains several sections, data 
storage model, data layouts, and addressing 
schemes.  
 
To accomplish the streaming step, accessing the 
distribution values of the neighboring nodes is 
needed. In this regard, there are three addressing 
schemes namely: direct, semi-indirect, and indirect, 
where the easiest one to implement is direct 
addressing. the explicit time marching is considered 
by direct address scheme.  In this scheme, the 
neighboring lattice nodes are explicitly known 
through the structure of the lattice, via array 
indexing. 
 
In direct addressing, both V and P are accessed 
through enumeration numbers provided by the 
enumeration function. This implies that in vector V, 
memory must be allocated also for the distribution 
values of the solid nodes. 

2.2   New Algorithm  
In order to reduce memory consumption, a new 
algorithm was developed, which approximately 
halves memory requirements. Although some other 
algorithms have been presented before, keeping the 
simplicity of LBM implementation has also been 
considered in this new algorithm.  

In regard to our new algorithm, simplicity, memory 
efficiency, and bandwidth reduction of the standard 
LBM algorithm have been easily modifiable. 
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Generally, in implementation of this algorithm, the 
original two steps have been retained, while each 
streaming and collision steps have been done for 
each fluid packages, individually. The flowcharts of 
the standard two-step and the new algorithm are 
shown in Fig. 1.  

 

 

 
Fig. 1. Flowcharts of the standard (up) and the 

new algorithms (down). 

 
 

In contrast to the standard algorithm, in our new 
method, collision step of the ith fluid package (q) 
and then its streaming step were performed. These 
steps loop over all fluid packages. In addition, 

boundary conditions were implemented after 
finishing collision-streaming of all fluid packages. 
As seen, there is not any special consideration in 
this step. By ending this step, current time step 
becomes complete and the next time step begins. 
     
 

Collision ↓  Streaming ↓ 
i=1 

 
i=2 

 

After completing of collision and streaming steps 

Fig. 2. Collision-streaming consequence of our 
new algorithm: initial or previous time step 

(top); collision-streaming of each cites (middle); 
the end of current time step (bottom). 

 
The collision-streaming consequence is shown in 
Fig. 2. By performing the collision of each fluid 
package, it would be streamed in its direction. It 
could be performed because of the independency of 
fluid packages in their own directions. Therefore, 
coupling of collision-streaming for each fluid 
package would be allowed without any interruption 
in operation of the original LBM, which would 
indeed lead to the same results at each time step.  
 

Briefly, the steps of our new algorithm in each time 
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step are as follow: 

1. collision of the ith fluid package,  

2. streaming of the ith fluid package, 

3. performing steps 1 and 2 for all cites of fluid 
packages, and 

4. implementing of the boundary conditions. 

Thus, the collision-streaming in this method are 
completely independent, so that decoupling of fluid 
packages from each other is allowed in each time 
step.  

To find the new macroscopic variable for the next 
time step (during streaming of the fluid package), 
they are calculated and stored for the next time step, 
as:  
 



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∑ operator could be discretized to multi-steps, 
which is performed after streaming and updating of 
each f. Therefore, by discretizing the macroscopic 
variables, the independency of calculation and 
updating of fluid packages are individually retained.    
Before beginning of collision and streaming steps 
Thus, during collision and streaming of each fluid 
package, the new streamed fluid package is 
summed (Eqs. 1 and 2). When all fluid packages 
have been finished, the fluid properties for the next 
time step are ready as well.  

 
Also, as the boundary conditions are implemented 
after collision and streaming steps, the changes of 
macroscopic values at the boundary nodes are 
inevitable. So, as a straight treatment, the 
macroscopic values at some boundary conditions 
(e.g., inlet) should be recalculated and updated.  
 
In addition, in the new algorithm just a spare 
variable is used to store fi

temp to replace in fi
new, 

which in D2Q9 lead to memory reduction of 45% 
and in D3Q19 lead to memory reduction about 
47%, instead of exactly half.  
 
It should be noted that except for the flow 
properties, if there are several distribution 
functions, the same temporary variables could be 

used. This leads to more memory reduction. Thus, 
our approach could be used for distribution 
functions of other properties, such as temperature, 
spices concentration, as well. 

3. RESULT AND DISCUSSION   

3.1   Benchmark Simulations 

To check if our new algorithm is working correctly, 
its related results were compared to those of the 
standard two-step algorithm. In this regard, several 
benchmark problems, i.e., 2-D and 3-D flows with 
different Re numbers, were considered. In the 2-D 
cases, a standard lid driven cavity flow and flow 
around a cylinder were considered, while in the 3-D 
cases, a cubic cavity and flow around a sphere were 
considered. To ensure that both of these algorithms 
have the same result, they were implemented in a 
code with two zones, where the new algorithm was 
dedicated in a zone and the standard two-step used 
in another one. Also, to couple the data of the two 
algorithms at intersection of the zones, an interface 
boundary condition was developed, which performs 
similar to a streaming step.  

Note, to compare the computational performance of 
both algorithms, use of MLUPS (lattice updated per 
second in million) is a suitable choice. Higher 
MLUPS, for the same domain size, means better 
computational performance. Clearly, it shows less 
computational time of the solution.  MLUPS is 
monitored for several grid resolutions to do 
performance analysis. The hardware used here was 
a E8400 core 2 Duo by 3 GHz CPU, which only 
one of them was used. 

2-D Lid-Driven Cavity flow 

As a basic fluid dynamic issue, a lid driven cavity 
flow was solved with several grid sizes. Fig. 3 
shows the related physical domain and its boundary 
conditions. The unit lid driven velocity was 
converted to LBM velocity, using lattice length (L) 
and relaxation factor (Ω) to retrieve the same Re in 
both physical and LBM domains.  
 

 
Fig. 3. Physical domain and boundary conditions 

of a 2-D lid driven cavity flow. 
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To verify the accuracy of the new algorithm, our 
results were compared to some benchmark studies 
in lid driven cavity flow. Fig. 4 shows the 
comparative plot of our new algorithm at Re 100, 
which confirms the accuracy of the new method 
very well.  
 

 
Fig. 4. X and Y-components of the velocity in the 

mid-line of a lid driven cavity at Re=100. 
 

(a)  

(b)  
Fig. 5. Contours of X (a) and Y-components (b) 
of the velocity for a lid driven cavity at Re=100 
with a 400x400 grid, using the standard and the 

new LBM algorithms. 
 
Figure 5 shows the contours of velocity components 

in a 400x400 gird size for both algorithms. Note, 
there is not any discontinuity at the interfaces. 
Because of no interpolation/extrapolation at 
intersection boundaries, both algorithms have the 
same results (see also Fig. 5). This could also be 
observed in streamline contours of Fig. 6.  

 

 
Fig. 6. Streamlines of a lid driven cavity at 
Re=100, using the standard and the new 

algorithms. 
 
To do a Re study, numerical simulation was carried 
out using both the standard LBM and the new 
algorithms for Re of 400, 1000, 5000, 7500, and 
10000. Steady state solution was obtained, except 
for the last case, since  bifurcation takes place 
somewhere between Re 7500 and 10,000 (Hou et 
al. 1994). As Hou et al. (1994) presented, the 
results for Re 10,000 oscillate between a series of 
different configurations when using the standard 
LBM. It is one of the weaknesses of the standard 
LBM to capture turbulence phenomena by 
increasing turbulence intensity at higher Re's. 
 
In addition, to simulate an unsteady incompressible 
flow, some additional conditions and methods, such 
as non-equilibrium extrapolation, multi-relaxation 
time scheme, combining LBM with a subgrid 
model, etc. are used to eliminate artificial 
compressible effects (Xiao-Yang et al. 2004, Zhen-
Hua et al. 2006).  
 
The comparative streamlines of the standard LBM 
and our new algorithm at Re 400, 1000, 5000 and 
7500 are shown in Fig. 7. In our new method, the 
basic discretization of lattice Boltzmann equation 
(LBE) has not been changed and no changes in the 
obtained results were expected (Figs. 7-8). In our 
new approach, collision and propagation steps are 
performed serially and sequentially, which does not 
influence the final values of the distribution 
functions.     
 
The accuracy of the new algorithm is the same as 
that of the standard LBM and the result adapted 
very well to other benchmark studies at different 
Re's (Fig. 8). By refining the grid sizes, the standard 
LBM can resolve low Re turbulent flow field very 
well. While at high Re, weakness of the standard 
LBM (and the present algorithm indeed) is more  
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(a) (b) 

 
 

(c) (d) 
Fig. 7. Streamlines for a lid driven cavity at (a) Re=400, (b) Re=1000, (c) Re=5000 and (d) Re=7500 

using the standard and the new algorithms. 

 

  
(a) 

  

(b)  

 

(c) (d) 

Fig. 8. Comparison of the velocity components of the new algorithm to others at mid-line of the cavity 
at (a) Re=400, (b) Re=1000, (c) Re=5000 and (d) Re=7500. 
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visible. This natural weakness refers to 
compressible effect of LBM, which leads to an 
undesirable error in the numerical simulation. Some 
efforts have been proposed to reduce or eliminate 
such errors.  
 
Since in the new algorithm collision and streaming 
steps for each cite are serialized, to model the 
turbulent flow with our new algorithm, may need 
further work. 
 
Table 1 shows the performance analysis of several 
grid sizes in MLUPS, mentioned earlier. The best 
obtained performance for 3 grid sizes was about 
76% of the standard method in a 1000x1000 grid.  

 
Table 1 Computational performance comparison 

of the standard and the new algorithms in 
MLUPS with different grid sizes for 2D Lid-

Driven Cavity 

Methods 

   Grid Size 
Standard 

Algorithm 
New Algorithm 

400x400 2.63 1.92 

500x500 2.66 1.97 

1000x1000 2.73 2.08 

 

Flow Around a Cylinder  

As another 2D basic flow problem, flow around a 
cylinder was simulated. A cylinder with diameter 
"D" was placed at the middle of height "H" (=5D) 
and a diameter distance from the inlet in a domain 
with length "L" (=20D). Velocity inlet boundary 
condition was used in the front side of the domain 
(left side) and outlet boundary condition was used 
at the end of the domain (right side). In the top and 
bottom of the domain, periodic boundary condition 
was used. While, on the surface of the cylinder, 
wall boundary condition was implemented. The 
physical domain and the boundary conditions are 
shown in Fig. 9.  

 
Fig. 9. Physical domain of flow around a 

cylinder. 

 
The results show the effectiveness of the presented 
method. Velocity contours (Fig. 10) and streamlines 
(Fig. 11) do not show any discontinuity, which 
confirms correctness of the new algorithm.  
 
Figures 12 and 13 show the X and Y components of 
the velocity at different locations, verifying the 
equality of the results for both new and standard 
algorithms.  

 
Fig. 10. Simulation of Velocity contours around 

a cylinder at Re=500, using the standard 
(bottom) and the new algorithms (top). 

 

 
Fig. 11. Streamlines around a cylinder at 

Re=500, using the standard (bottom) and the 
new algorithms (top). 

 

 
Fig. 12. X –component of the velocity in different 
sections of the flow around a cylinder at Re=500, 
with a 1280x320 grid, using the standard and the 

new algorithms. 
 
Table 2 shows the performance analysis for several 
grid sizes. The performance for 4 grid sizes 
approximately was the same in most of them and 
was about 0.65 of standard method. 

3-D Cavity Flow 

The physical domain contains two rectangular 
cubes, in which the fluid flow is solved, using the 
standard method in one zone and our new method 
in another one (Fig. 14). Flow is solved for Re 1000 
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in a 64x64x64 grid. The velocity contours are 
shown in Fig. 15. The X-component of velocity at 
the middle of the domain in X-direction and 
different levels in Y-direction are shown in Fig. 16. 
Both Figs. 15 and 16 prove the correctness of our 
new algorithm.  

 
Fig. 13. Y-component of the velocity in different 
sections of the flow around a cylinder at Re=500, 
with a 1280x320 grid, using the standard and the 

new algorithms. 

 
Table 2 Computational performance comparison 

of the standard and the new algorithms in 
MLUPS with different grid sizes for 

flow around a cylinder 

         Methods 

 Grid Size 

Standard 

Algorithm 
New Algorithm 

640x160 3.106 2.06 

960x240 3.178 2.073 

1280x320 3.21 2.079 

1600x640 3.22 2.080 

 

 
Fig. 14. Physical domain for the 3-D cavity flow. 

 
To prove the authenticity and the accuracy of the 
new algorithm in 3D, the obtained results have been 
compared to other methods such as pseudo spectral 
method of Ku et. al. (Ku et al. 1987), FVM of Babu 
et. al. (Babu and Korpela 1994), Hybrid FVM-LBM 
of Salimi and Taeibi-Rahni (Salimi and Taeibi-

Rahni 2015). Figure 17 shows the comparative 
velocity plots in the mid-line section at X and Y 
directions, which verify the accuracy and 
correctness of the new algorithm.  
 

 
Fig. 15. Contours of the X-component of velocity 

for a 3D cavity flow at Re=1000, using a 
64X64X64 grid. 

 

 
Fig. 16. The X-component of velocity for a 3D 

cavity flow at Re=1000, using a 64X64X64grid in 
the mid-plane of X (X/L=0.5) at different levels 

in Y direction. 
 

 
Fig. 17. Comparison of the velocity components 
of our new algorithm to others at mid-line of the 

cavity at Re=1000. 
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Table 3 shows the performance analysis for two 
algorithms. This problem has been solved for two 
different grid sizes to compare computational 
performance in MLUPS. Approximately, the 
performance was about 0.73 of standard method. 
 

Table 3. Computational performance 
comparison of the standard and the new 

algorithms in MLUPS on different 
grid sizes for 3-D cavity flow. 

         Methods 

  Grid Size 

Standard 

Algorithm 
New 

Algorithm 

64x64x64 1.32 0.938 

128x128x128 1.38 1.012 

 

Flow Around a Sphere 

In flow around a sphere, computational domain was 
divided into two halves: one half for standard 
method and another half for the new method (Fig. 
18). A sphere with diameter "D" was placed at the 
center of height "H" (=2D) and width "W" (=2D) 
with a half diameter distance from the inlet in a 
domain with length "L" (=4D). Velocity Inlet 
boundary condition was used in the front side of the 
domain and outlet boundary condition was used at 
the end of the domain. At the side panels of the 
domain, periodic boundary condition was used. 
While, on the surface of the sphere, wall boundary 
condition was used. The detailed of the physical 
domain and the boundary conditions are shown in 
Fig. 18. 

 
Fig. 18. The physical domain of flow around a 

sphere. 
 
Figure 19 shows the flow streamline around a 
sphere at Re 20 and 200, obtained from two 
methods. As expected, there was not any 
discontinuity at interface of the computational 
domain. This continuity has been seen of velocity 
contours of Fig. 20.  
 
No differences between 2-D and 3-D in 
performance have been observed. This is due to 
high computational cost of streaming and collision 
part of LBM method (with respect to other parts, 
e.g., boundary conditions).  

 
Fig. 19. Streamline of flow around a sphere at 

Re=20 (up), Re=200 (down). 
 

 
Fig. 20. Contours of X-component of velocity at 

Re=20 (up), Re=200 (down). 

 
3.2    Algorithm Optimization  

At the first step to optimize the presented algorithm, 
instead of a temporary array variable, more 
temporary variable could be used. Therefore, more 
fluid packages could be transferred in each 
collision-streaming step and the rate of call back 
memory reduces, as the number of temporary arrays 
increase. Figure 21 shows the optimized flowchart 
of the new algorithm with "n" temporary arrays.  

This optimization approach is a trade-off between 
the standard and the new algorithms. By increasing 
the temporary arrays, method would be similar to 
standard algorithm and by reducing the number of 
temporary arrays to one, computational  
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Table 4 Computational performance comparison analysis. 

 MLUPS Performance Memory Reduction 

Standard Two-Step 
3.276 

1.56 
 

NA (D2Q9) 

NA (D3Q19) 

New Algorithm* 
2.28 

1.08 

70% 

69% 

~45%(D2Q9) 

~48%(D3Q19) 

Optimized #1** 
2.75 

1.30 

84% 

83% 

~39%(D2Q9) 

~45%(D3Q19) 

Optimized #2*** 
3.1 

1.47 

95% 

94% 

~33%(D2Q9) 

~42%(D3Q19) 

* "n" = 1; New Algorithm with one temporary array. 

** "n" = 2; New Algorithm with two temporary arrays. 

*** "n" = 3; New Algorithm with three temporary arrays. 

 
 
performance reduces, memory conservation is 
improved, and memory usage approximately 
reduces to a half. Thus, as a conclusion, these two 
algorithms (standard and optimized) would be a 
compromise between computational performance 
and memory reduction. 

 

 
Fig. 21. Optimized flowchart of the new 
algorithm, using 'n' temporary arrays. 

 
By increasing the number of temporary arrays to 
two or three fluid packages, the computational 
performance improvement is quite acceptable. This 
optimization approach leads to the improvement of 
performance. Table 4 shows the performance of the 
algorithm in one, two, and three fluid packages in 
each collision-streaming step, compared to the 
standard two-step algorithm. In three temporary 
arrays, computational performance is improved to 
about 95% of standard algorithm (94% in D3Q19) 
and memory reduction is decreased from 45 to 33% 

(48 to 42% in D3Q19). 
 
3.3   Implementation of GPU   

As mentioned before, at each lattice point, the fluid 
packets collide with each other and are restricted 
locally, depending on data from neighboring nodes. 
The spatial locality of LBM to data makes it a good 
candidate for parallelization. For many reasons, 
such as cost, memory bandwidth, energy 
consumption, etc., the best platform for parallel 
processing of LBM is GPU.  

As a regular treatment to reduce ideal processing 
part, which arises from data transfer form PC main 
memory to GPU's onboard memory and vice versa, 
all of the computational domain is loaded on GPU 
memory. As GPU's onboard memory is limited, the 
new algorithm would be more useful to simulate a 
larger physical domain. This limitation is more 
highlighted, when considering heat and mass 
transfers. 
 
Here, two algorithms have been implemented on 
GPU by CUDA compiler. The obtained GPU 
speed-up levels (with respect to CPU in MLUPS) 
are shown in Table 5.  In all cases of optimization, 
speed-up level on 3-D domain is more than 2-D, 
which is because of higher memory bandwidth on 
GPU. Also, higher memory bandwidth causes to 
recover computational performance just by two 
temporary arrays, in compare with run on ordinary 
processors (instead of three temporary arrays). So, 
the new algorithm on GPU recovers computational 
performance inefficiency besides reduction in 
memory consumption.    

4. CONCLUSION 

As presented in this paper, the new algorithm 
reduces memory consumption to nearly a half and 
some computational performance reductions. To 
improve the computational performance, an 
approach was presented which leads to recover this 
deficiency by one or two extra temporary array 
data. Comparison of two different simulations at  
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Table 5 Computational performance comparison of two algorithms analysis 

 CPU 

(MLUPS) 

Tesla C2050 

(MLUPS) 

Speed-Up 

Standard Two-Step 3.276 

1.56 

140 

73 

~ 42 (D2Q9) 

~ 46 (D3Q19) 

New Algorithm* 2.28 

1.08 

109 

55 

~ 47 (D2Q9) 

~ 53 (D3Q19) 

Optimized #1** 2.75 

1.30 

132 

72 

~ 48 (D2Q9) 

~ 55 (D3Q19) 

Optimized #2*** 3.1 

1.47 

154 

81 

~ 50 (D2Q9) 

~ 56 (D3Q19) 

* "n" = 1; New Algorithm with one temporary array. 

** "n" = 2; New Algorithm with two temporary arrays. 

*** "n" = 3; New Algorithm with three temporary arrays. 

 

 
various Re numbers (in both two- and three-
dimensions) were shown that the algorithm give the 
same result by less memory and approximately the 
same computational performance with respect to 
standard two steps algorithm. Implementation of 
this approach is very simple and quiet efficient in 
memory performance. In spite of retaining the 
simplicity in the new algorithm, GPU was simply 
implemented. Note, higher bandwidth in GPU is 
very helpful to gain more memory reduction via 
less computational performance loss.    
 

The optimization approach has been a compromise 
between the new and the standard algorithms, 
whereby it increments the number of temporary 
array, or memory bandwidth, it would be very 
similar to standard algorithm and by decrement the 
number of temporary arrays to one it would be just 
like new algorithm. So, it is a tradeoff between 
memory consumption and computational 
performance. Also, Note, that by performing 
collision and streaming steps of each cite 
individually in the new algorithm, modeling some 
developed features of the standard LBM (such as  
turbulent modeling) may be very difficult and 
would need further investigation.   

5. FUTURE WORK  

Besides working on optimization to increase the 
computational performance and reduction in 
memory consumption, some supplementary tasks, 
such as implementing more complicated boundary 
conditions are on schedule.  
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