
Journal of Applied Fluid Mechanics, Vol. 10, No. 1, pp. 55-67, 2017.
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI: 10.18869/acadpub.jafm.73.238.26431

A New Approach to Reduce Memory Consumption in
Lattice Boltzmann Method on GPU

M. Sheida1†, M. Taeibi-Rahni1 and V. Esfahanian2

1 Sharif University of Technology, Tehran, Iran
2 University of Tehran, Tehran, Iran

†Corresponding Author Email: sheida_mojtaba@ae.sharif.edu

(Received April 20, 2015; accepted September 2, 2016)

ABSTRACT

Several efforts have been performed to improve LBM defects related to its computational performance. In
this work, a new algorithm has been introduced to reduce memory consumption. In the past, most LBM
developers have not paid enough attention to retain LBM simplicity in their modified version, while it has
been one of the main concerns in developing of the present algorithm. Note, there is also a deficiency in our
new algorithm. Besides the memory reduction, because of high memory call back from the main memory,
some computational efficiency reduction occurs. To overcome this difficulty, an optimization approach has
been introduced, which has recovered this efficiency to the original two-steps two-lattice LBM. This is
accomplished by a trade-off between memory reduction and computational performance. To keep a suitable
computational efficiency, memory reduction has reached to about 33% in D2Q9 and 42% in D3Q19. In
addition, this approach has been implemented on graphical processing unit (GPU) as well. In regard to
onboard memory limitation in GPU, the advantage of this new algorithm is enhanced even more (39% in
D2Q9 and 45% in D3Q19). Note, because of higher memory bandwidth in GPU, computational performance
of our new algorithm using GPU is better than CPU.

Keywords: Memory reduction; Optimization; Computational performance; Lattice boltzmann method
(LBM).

NOMENCLATURE

d dimensions
e velocity element
f fluid packet
i fluid packet Index
q total lattice cites
Re Reynolds Number

V


 velocity
 density

temp temporary index
new updated Index
t time

1. INTRODUCTION

Recently, Lattice Boltzmann Method (LBM) has
become an appropriate commonly used technique in
fluid flow simulations (Higuera and Jimenez 1989,
Higuera et al. 1989, Chen et al. 1992, Qian et al.
1992, Succi 2001, Di Rienzo et al. 2012). LBM has
emerged from lattice-gas automata in late 1980s
(Frisch et al. 1986, McNamara and Zanetti 1988,
Succi 2001, Mattila et al. 2007), which was itself
derived from Boltzmann equation. LBM has been
applied to many thermo-fluid flow problems, such
as laminar, turbulent, complex geometries, thermal,
multi-component and immiscible fluids, and

multiphase flows (Dawson et al. 1993, Shan and
Chen 1993, Bailey et al. 2009, Rahmati et al. 2014).

LBM Simulation is performed in both two- and
three-dimensions, where like conventional CFD
approach, each lattice node discretize the media to
fluid or solid nodes and the fluid packets propagate
through the lattice in discrete time steps. At each
lattice point, the packets collide with each other,
while they are restricted locally and only depend on
data from the neighboring nodes. Note, the spatial
locality of LBM to data makes it a good candidate
for parallelization.

In addition, simplicity in coding, easy handling of

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

56

complex geometries, and straightforward
incorporation of microscopic interactions make
LBM a favorable method to investigate complex
fluid flows (Mattila et al. 2007).

Nevertheless, there are some restrictions in using
LBM, e.g., boundary conditions; Mach number
limitations; memory restrictions; and memory
bandwidth limitations.

In LBM, the computational grid exchanges
information of each node with its neighbors. Since
there are many packets (with regard to the particle
distribution functions), a high memory bandwidth is
usually needed, which causes some hardware
limitations.

Improvement of LBM computational efficiency is
still an open research. Inefficiency in computations,
which causes low convergence rates (Geller et al.
2006, Mattila et al. 2007) is one of LBM
restrictions. There have been efforts to make this
better by grid refinement (Filippova and Hänel
1998, Mattila et al. 2007), improved algorithms for
explicit time-marching implementations (Massaioli
and Amati 2002, Pohl et al. 2003, Mattila et al.
2007), and code optimization (Pohl et al. 2003,
Velivelli and Bryden 2004, Wellein et al. 2006,
Mattila et al. 2007).

Note, several types of LBM have been
implemented. Generally, they are tagged in DdQq,
where d is dimension (2 or 3) and q denotes the
number of particle distribution functions (PDFs)
(Wittmann et al. 2013). On the other hand, LBM
contains two distinct steps: streaming and collision.
In streaming step, data are coupled to and from
adjacent lattice nodes, while in collision step, data
are usually independent of the underlying lattice
type and computations are performed in this step
(Mattila et al. 2008).

Allocation of nodes in memory can be determined
either by direct addressing of a full grid (“simple
index arithmetic”) or by indirect addressing (Pan et
al. 2004, Zeiser et al. 2009, Wittmann et al. 2013)
(“an index array which holds the full adjacency
information of all nodes, the q−1 neighbors per
node”)(Wittmann et al. 2013).

On behalf of computational inefficiency, high
memory requirement is another bottleneck in using
LBM. Allocation of data can be optimized for
either streaming or collision steps. To optimize for
streaming step, the structure of arrays (SoA) data
layout is used, where each direction of the discrete
velocities is stored in an individual array. While, to
optimize for collision step, array of structures (AoS)
data layout is used. In AoS, only one array stores
the PDFs node-wise. Note, this type of allocation of
PDFs in memory causes better cache utilization
(Wellein et al. 2006, Wittmann et al. 2013).

The differences between basic algorithms are
related to their treatment of this data dependence.
So far, for implementation of LBM, several
algorithms have been identified, e.g., the

Lagrangian, compressed grid (shift), swap, two-
lattice, and two-step algorithm (Massaioli and
Amati 2002, Pohl et al. 2003, Mattila et al. 2007).
Of course, each of these has its own advantages and
disadvantages.

Note, in the basic two-step algorithm, collision and
streaming steps are handled separately, while in
one-step algorithm, collision and streaming steps
are combined to one step. To avoid data
dependencies, in both of these algorithms two
lattices are used.

Lagrangian approach was presented by Massaioli
and Amati (Massaioli and Amati 2002). They
compared it with two-step algorithm, in which
slight improvement in performance was observed.

To reduce memory traffic within the system, the
compressed grid (shift) algorithm was presented by
Pohl et al. to reduce high memory consumption of
two-lattice algorithm by combining collision and
streaming steps. They compared their new
algorithm with the two-lattice algorithm (Pohl et al.
2003) and observed that both methods have the
same performance with almost half the memory
requirements in shift algorithm. The effect of data
layouts on computational performance was studied
by Wellein et al. (Wellein et al. 2006). They found
that data layout had an important role in achieving
high performance.

On the other hand, the swap algorithm was
proposed for implementation of LBM by Guo, Zhao
et al. 2004. They compared the computational
performance and memory consumption of the four
main algorithms, namly, shift, swap, two-lattice,
and two-step with a collision-optimized data layout.

Another study was performed by Mattila et al.
(Mattila et al. 2007). They compared
implementations of the two-step, one-step,
compressed grid, swap, and Langrangian algorithms
with different addressing, e.g., direct, semi-direct,
and indirect.

In the present work, however, a new algorithm has
been introduced, which approximately halfs the
memory requirement in LBM, while preserves the
simplicity of LBM. This approach is more
applicable for GPU, because of onboard memory
restriction in GPU by less performance reduction.

2. LBM

In 1986, Frisch et al. introduced LBM, based on
lattice-gas cellular automata (LGCA) to simulate a
real fluid flow. But It can, also be directly derived
from Boltzmann equation (Abe 1997, He and Luo
1997, Philippi et al. 2006, Shan et al. 2006).
Nowadays, it has become a very acceptable method
in many research and industrial flows.

In Boltzmann equation, a set of fluid particle
populations is used. These populations follow a
Maxwellian distribution function. The number of

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

57

populations has been defined by Hermite–Gauss
integration. By applying the Chapman–Enskog
expansion, the incompressible Navier–Stokes
equations can be recovered from Boltzmann
equation in the low Mach number limit (Zhang and
Seaton 1994, Coppens and Froment 1995, Alvarado
et al. 1997).

Finite difference scheme has been mostly used to
solve the space and time parts of lattice Boltzmann
equation (LBE). In this regard, both time and space
phases are discretized and time is advanced in
lattice-Boltzmann simulation, where each time step
is divided into two parts: collision step, where
momentum is exchanged between the fluid packets
at each node and streaming step, where the fluid
packets are transferred to the neighbor nodes along
their paths.

In contrast to conventional CFD methods, in each
cell, LBM uses a set of particle distribution
functions (PDF) to describe the fluid flow. A PDF
is defined as the expected value of particles in a
volume located at the lattice position X with the
lattice velocity ei. Computationally, LBM is based
on a uniform grid of square/cubic (2D/3D) cells,
which are updated in each time step, using an
information exchange with nearest neighbor cells.
Structurally, this is equivalent to an explicit time
stepping for a regular finite difference scheme. For
LBM, the lattice velocities determine the finite
difference stencil, where index i represents an entry
in the stencil.

In LBM, solution is started by an initial
configuration, which is done using initial
macroscopic values. On each time step, the fluid
packets move from their lattice nodes to the
neighboring nodes according to their velocities.
When all fluid packets are transferred to lattice
nodes, the fluid packets of each lattice node collide
together and change their velocities. The average
motion of the particles describes the macroscopic
behavior of the flow.

By an appropriate collision term, using LBE, the
Navier–Stokes equations with second order
accuracy (Chen and Doolen 1998, Succi 2001) in
the macroscopic limit can be satisfied.

There are many collision operators, in which the
single-relaxation-time approximation is the simplest
one, where in kinetic theory, it is known as the
BGK approximation.

In addition, besides the main collision
approximation, there are several collision rules,
where three of them are used in most simulations,
namely: 1) standard single-relaxation, which is used
for simulating fluid flows, 2) a bounce-back
collision rule, which is used for simulating solid-
fluid boundaries (Coppens and Froment 1995), and
3) a collision rule, which is used for simulating
pressure-controlled boundary conditions.

During the streaming step, almost all fluid packets,
except the stationary ones (usually it is with zero

index), go from each node and propagates to the
corresponding incoming fluid packet locations in
the neighboring nodes. Then, these incoming fluid
packets and the zero index fluid packet are used in
the next collision step.

2.1 Standard LBM

There is a standard implementation of LBM, which
is known as two step-two lattice method. In this
method, collision and streaming are literally as two
separate steps and two lattices, denoted by A and B,
where A stores the distribution values of the nodes
(often denoted as fi) and B stores the post-collision,
pre-streaming, values (often denoted fi

temp).

In each time step, after performing the collision
step, the new computed PDF’s are stored in lattice
B at the same index position. In the streaming step,
the following PDFs in lattice B are replaced with
the neighbor nodes in lattice A. Note, streaming
step has not any computational task and it just
contains the data replacement. By performing this
step, current time step is finished and is ready for
the next time step.

Because of several transfer of data to and from
memory at each time step and since two arrays of
data is needed to store, the memory bandwidth
intensive and high memory consumption are two
major restrictions of this algorithm. On the other
hand, there are two ways in Implementations of
LBM namely, "Push" and "Pull". In "push",
collision step is executed before streaming step, and
in "pull", it is vice versa. A suitable scheme for
most implementations is "pull". Note, LBM
implementation contains several sections, data
storage model, data layouts, and addressing
schemes.

To accomplish the streaming step, accessing the
distribution values of the neighboring nodes is
needed. In this regard, there are three addressing
schemes namely: direct, semi-indirect, and indirect,
where the easiest one to implement is direct
addressing. the explicit time marching is considered
by direct address scheme. In this scheme, the
neighboring lattice nodes are explicitly known
through the structure of the lattice, via array
indexing.

In direct addressing, both V and P are accessed
through enumeration numbers provided by the
enumeration function. This implies that in vector V,
memory must be allocated also for the distribution
values of the solid nodes.

2.2 New Algorithm
In order to reduce memory consumption, a new
algorithm was developed, which approximately
halves memory requirements. Although some other
algorithms have been presented before, keeping the
simplicity of LBM implementation has also been
considered in this new algorithm.

In regard to our new algorithm, simplicity, memory
efficiency, and bandwidth reduction of the standard
LBM algorithm have been easily modifiable.

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

58

Generally, in implementation of this algorithm, the
original two steps have been retained, while each
streaming and collision steps have been done for
each fluid packages, individually. The flowcharts of
the standard two-step and the new algorithm are
shown in Fig. 1.

Fig. 1. Flowcharts of the standard (up) and the

new algorithms (down).

In contrast to the standard algorithm, in our new
method, collision step of the ith fluid package (q)
and then its streaming step were performed. These
steps loop over all fluid packages. In addition,

boundary conditions were implemented after
finishing collision-streaming of all fluid packages.
As seen, there is not any special consideration in
this step. By ending this step, current time step
becomes complete and the next time step begins.

Collision ↓ Streaming ↓
i=1

i=2

After completing of collision and streaming steps

Fig. 2. Collision-streaming consequence of our
new algorithm: initial or previous time step

(top); collision-streaming of each cites (middle);
the end of current time step (bottom).

The collision-streaming consequence is shown in
Fig. 2. By performing the collision of each fluid
package, it would be streamed in its direction. It
could be performed because of the independency of
fluid packages in their own directions. Therefore,
coupling of collision-streaming for each fluid
package would be allowed without any interruption
in operation of the original LBM, which would
indeed lead to the same results at each time step.

Briefly, the steps of our new algorithm in each time

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

59

step are as follow:

1. collision of the ith fluid package,

2. streaming of the ith fluid package,

3. performing steps 1 and 2 for all cites of fluid
packages, and

4. implementing of the boundary conditions.

Thus, the collision-streaming in this method are
completely independent, so that decoupling of fluid
packages from each other is allowed in each time
step.

To find the new macroscopic variable for the next
time step (during streaming of the fluid package),
they are calculated and stored for the next time step,
as:





q

i
if

0

 (1)





q

i
ii feV

0

. (2)

Depending on the dimension and the total number

of lattice cites (q), ie is defined for D2Q9 as:

 1 1,-1,-1,0, 1,-,0,1,0xe

,
 1-1,-1, 1,1,-0, ,1,0,0ye

and, for D3Q19 as:














18~7 1)c1,0,(1)c,1,(0,1,0)c,1,(

6~1 1)c(0,0,1,0)c,(0,1,0,0)c,(

 0)0,0,0(





e

∑ operator could be discretized to multi-steps,
which is performed after streaming and updating of
each f. Therefore, by discretizing the macroscopic
variables, the independency of calculation and
updating of fluid packages are individually retained.
Before beginning of collision and streaming steps
Thus, during collision and streaming of each fluid
package, the new streamed fluid package is
summed (Eqs. 1 and 2). When all fluid packages
have been finished, the fluid properties for the next
time step are ready as well.

Also, as the boundary conditions are implemented
after collision and streaming steps, the changes of
macroscopic values at the boundary nodes are
inevitable. So, as a straight treatment, the
macroscopic values at some boundary conditions
(e.g., inlet) should be recalculated and updated.

In addition, in the new algorithm just a spare
variable is used to store fi

temp to replace in fi
new,

which in D2Q9 lead to memory reduction of 45%
and in D3Q19 lead to memory reduction about
47%, instead of exactly half.

It should be noted that except for the flow
properties, if there are several distribution
functions, the same temporary variables could be

used. This leads to more memory reduction. Thus,
our approach could be used for distribution
functions of other properties, such as temperature,
spices concentration, as well.

3. RESULT AND DISCUSSION

3.1 Benchmark Simulations

To check if our new algorithm is working correctly,
its related results were compared to those of the
standard two-step algorithm. In this regard, several
benchmark problems, i.e., 2-D and 3-D flows with
different Re numbers, were considered. In the 2-D
cases, a standard lid driven cavity flow and flow
around a cylinder were considered, while in the 3-D
cases, a cubic cavity and flow around a sphere were
considered. To ensure that both of these algorithms
have the same result, they were implemented in a
code with two zones, where the new algorithm was
dedicated in a zone and the standard two-step used
in another one. Also, to couple the data of the two
algorithms at intersection of the zones, an interface
boundary condition was developed, which performs
similar to a streaming step.

Note, to compare the computational performance of
both algorithms, use of MLUPS (lattice updated per
second in million) is a suitable choice. Higher
MLUPS, for the same domain size, means better
computational performance. Clearly, it shows less
computational time of the solution. MLUPS is
monitored for several grid resolutions to do
performance analysis. The hardware used here was
a E8400 core 2 Duo by 3 GHz CPU, which only
one of them was used.

2-D Lid-Driven Cavity flow

As a basic fluid dynamic issue, a lid driven cavity
flow was solved with several grid sizes. Fig. 3
shows the related physical domain and its boundary
conditions. The unit lid driven velocity was
converted to LBM velocity, using lattice length (L)
and relaxation factor (Ω) to retrieve the same Re in
both physical and LBM domains.

Fig. 3. Physical domain and boundary conditions

of a 2-D lid driven cavity flow.

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

60

To verify the accuracy of the new algorithm, our
results were compared to some benchmark studies
in lid driven cavity flow. Fig. 4 shows the
comparative plot of our new algorithm at Re 100,
which confirms the accuracy of the new method
very well.

Fig. 4. X and Y-components of the velocity in the

mid-line of a lid driven cavity at Re=100.

(a)

(b)
Fig. 5. Contours of X (a) and Y-components (b)
of the velocity for a lid driven cavity at Re=100
with a 400x400 grid, using the standard and the

new LBM algorithms.

Figure 5 shows the contours of velocity components

in a 400x400 gird size for both algorithms. Note,
there is not any discontinuity at the interfaces.
Because of no interpolation/extrapolation at
intersection boundaries, both algorithms have the
same results (see also Fig. 5). This could also be
observed in streamline contours of Fig. 6.

Fig. 6. Streamlines of a lid driven cavity at
Re=100, using the standard and the new

algorithms.

To do a Re study, numerical simulation was carried
out using both the standard LBM and the new
algorithms for Re of 400, 1000, 5000, 7500, and
10000. Steady state solution was obtained, except
for the last case, since bifurcation takes place
somewhere between Re 7500 and 10,000 (Hou et
al. 1994). As Hou et al. (1994) presented, the
results for Re 10,000 oscillate between a series of
different configurations when using the standard
LBM. It is one of the weaknesses of the standard
LBM to capture turbulence phenomena by
increasing turbulence intensity at higher Re's.

In addition, to simulate an unsteady incompressible
flow, some additional conditions and methods, such
as non-equilibrium extrapolation, multi-relaxation
time scheme, combining LBM with a subgrid
model, etc. are used to eliminate artificial
compressible effects (Xiao-Yang et al. 2004, Zhen-
Hua et al. 2006).

The comparative streamlines of the standard LBM
and our new algorithm at Re 400, 1000, 5000 and
7500 are shown in Fig. 7. In our new method, the
basic discretization of lattice Boltzmann equation
(LBE) has not been changed and no changes in the
obtained results were expected (Figs. 7-8). In our
new approach, collision and propagation steps are
performed serially and sequentially, which does not
influence the final values of the distribution
functions.

The accuracy of the new algorithm is the same as
that of the standard LBM and the result adapted
very well to other benchmark studies at different
Re's (Fig. 8). By refining the grid sizes, the standard
LBM can resolve low Re turbulent flow field very
well. While at high Re, weakness of the standard
LBM (and the present algorithm indeed) is more

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

61

(a) (b)

(c) (d)
Fig. 7. Streamlines for a lid driven cavity at (a) Re=400, (b) Re=1000, (c) Re=5000 and (d) Re=7500

using the standard and the new algorithms.

(a)

(b)

(c) (d)

Fig. 8. Comparison of the velocity components of the new algorithm to others at mid-line of the cavity
at (a) Re=400, (b) Re=1000, (c) Re=5000 and (d) Re=7500.

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

62

visible. This natural weakness refers to
compressible effect of LBM, which leads to an
undesirable error in the numerical simulation. Some
efforts have been proposed to reduce or eliminate
such errors.

Since in the new algorithm collision and streaming
steps for each cite are serialized, to model the
turbulent flow with our new algorithm, may need
further work.

Table 1 shows the performance analysis of several
grid sizes in MLUPS, mentioned earlier. The best
obtained performance for 3 grid sizes was about
76% of the standard method in a 1000x1000 grid.

Table 1 Computational performance comparison

of the standard and the new algorithms in
MLUPS with different grid sizes for 2D Lid-

Driven Cavity

Methods

 Grid Size
Standard

Algorithm
New Algorithm

400x400 2.63 1.92

500x500 2.66 1.97

1000x1000 2.73 2.08

Flow Around a Cylinder

As another 2D basic flow problem, flow around a
cylinder was simulated. A cylinder with diameter
"D" was placed at the middle of height "H" (=5D)
and a diameter distance from the inlet in a domain
with length "L" (=20D). Velocity inlet boundary
condition was used in the front side of the domain
(left side) and outlet boundary condition was used
at the end of the domain (right side). In the top and
bottom of the domain, periodic boundary condition
was used. While, on the surface of the cylinder,
wall boundary condition was implemented. The
physical domain and the boundary conditions are
shown in Fig. 9.

Fig. 9. Physical domain of flow around a

cylinder.

The results show the effectiveness of the presented
method. Velocity contours (Fig. 10) and streamlines
(Fig. 11) do not show any discontinuity, which
confirms correctness of the new algorithm.

Figures 12 and 13 show the X and Y components of
the velocity at different locations, verifying the
equality of the results for both new and standard
algorithms.

Fig. 10. Simulation of Velocity contours around

a cylinder at Re=500, using the standard
(bottom) and the new algorithms (top).

Fig. 11. Streamlines around a cylinder at

Re=500, using the standard (bottom) and the
new algorithms (top).

Fig. 12. X –component of the velocity in different
sections of the flow around a cylinder at Re=500,
with a 1280x320 grid, using the standard and the

new algorithms.

Table 2 shows the performance analysis for several
grid sizes. The performance for 4 grid sizes
approximately was the same in most of them and
was about 0.65 of standard method.

3-D Cavity Flow

The physical domain contains two rectangular
cubes, in which the fluid flow is solved, using the
standard method in one zone and our new method
in another one (Fig. 14). Flow is solved for Re 1000

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

63

in a 64x64x64 grid. The velocity contours are
shown in Fig. 15. The X-component of velocity at
the middle of the domain in X-direction and
different levels in Y-direction are shown in Fig. 16.
Both Figs. 15 and 16 prove the correctness of our
new algorithm.

Fig. 13. Y-component of the velocity in different
sections of the flow around a cylinder at Re=500,
with a 1280x320 grid, using the standard and the

new algorithms.

Table 2 Computational performance comparison

of the standard and the new algorithms in
MLUPS with different grid sizes for

flow around a cylinder

 Methods

 Grid Size

Standard

Algorithm
New Algorithm

640x160 3.106 2.06

960x240 3.178 2.073

1280x320 3.21 2.079

1600x640 3.22 2.080

Fig. 14. Physical domain for the 3-D cavity flow.

To prove the authenticity and the accuracy of the
new algorithm in 3D, the obtained results have been
compared to other methods such as pseudo spectral
method of Ku et. al. (Ku et al. 1987), FVM of Babu
et. al. (Babu and Korpela 1994), Hybrid FVM-LBM
of Salimi and Taeibi-Rahni (Salimi and Taeibi-

Rahni 2015). Figure 17 shows the comparative
velocity plots in the mid-line section at X and Y
directions, which verify the accuracy and
correctness of the new algorithm.

Fig. 15. Contours of the X-component of velocity

for a 3D cavity flow at Re=1000, using a
64X64X64 grid.

Fig. 16. The X-component of velocity for a 3D

cavity flow at Re=1000, using a 64X64X64grid in
the mid-plane of X (X/L=0.5) at different levels

in Y direction.

Fig. 17. Comparison of the velocity components
of our new algorithm to others at mid-line of the

cavity at Re=1000.

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

64

Table 3 shows the performance analysis for two
algorithms. This problem has been solved for two
different grid sizes to compare computational
performance in MLUPS. Approximately, the
performance was about 0.73 of standard method.

Table 3. Computational performance
comparison of the standard and the new

algorithms in MLUPS on different
grid sizes for 3-D cavity flow.

 Methods

 Grid Size

Standard

Algorithm
New

Algorithm

64x64x64 1.32 0.938

128x128x128 1.38 1.012

Flow Around a Sphere

In flow around a sphere, computational domain was
divided into two halves: one half for standard
method and another half for the new method (Fig.
18). A sphere with diameter "D" was placed at the
center of height "H" (=2D) and width "W" (=2D)
with a half diameter distance from the inlet in a
domain with length "L" (=4D). Velocity Inlet
boundary condition was used in the front side of the
domain and outlet boundary condition was used at
the end of the domain. At the side panels of the
domain, periodic boundary condition was used.
While, on the surface of the sphere, wall boundary
condition was used. The detailed of the physical
domain and the boundary conditions are shown in
Fig. 18.

Fig. 18. The physical domain of flow around a

sphere.

Figure 19 shows the flow streamline around a
sphere at Re 20 and 200, obtained from two
methods. As expected, there was not any
discontinuity at interface of the computational
domain. This continuity has been seen of velocity
contours of Fig. 20.

No differences between 2-D and 3-D in
performance have been observed. This is due to
high computational cost of streaming and collision
part of LBM method (with respect to other parts,
e.g., boundary conditions).

Fig. 19. Streamline of flow around a sphere at

Re=20 (up), Re=200 (down).

Fig. 20. Contours of X-component of velocity at

Re=20 (up), Re=200 (down).

3.2 Algorithm Optimization

At the first step to optimize the presented algorithm,
instead of a temporary array variable, more
temporary variable could be used. Therefore, more
fluid packages could be transferred in each
collision-streaming step and the rate of call back
memory reduces, as the number of temporary arrays
increase. Figure 21 shows the optimized flowchart
of the new algorithm with "n" temporary arrays.

This optimization approach is a trade-off between
the standard and the new algorithms. By increasing
the temporary arrays, method would be similar to
standard algorithm and by reducing the number of
temporary arrays to one, computational

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

65

Table 4 Computational performance comparison analysis.

 MLUPS Performance Memory Reduction

Standard Two-Step
3.276

1.56

NA (D2Q9)

NA (D3Q19)

New Algorithm*
2.28

1.08

70%

69%

~45%(D2Q9)

~48%(D3Q19)

Optimized #1**
2.75

1.30

84%

83%

~39%(D2Q9)

~45%(D3Q19)

Optimized #2***
3.1

1.47

95%

94%

~33%(D2Q9)

~42%(D3Q19)

* "n" = 1; New Algorithm with one temporary array.

** "n" = 2; New Algorithm with two temporary arrays.

*** "n" = 3; New Algorithm with three temporary arrays.

performance reduces, memory conservation is
improved, and memory usage approximately
reduces to a half. Thus, as a conclusion, these two
algorithms (standard and optimized) would be a
compromise between computational performance
and memory reduction.

Fig. 21. Optimized flowchart of the new
algorithm, using 'n' temporary arrays.

By increasing the number of temporary arrays to
two or three fluid packages, the computational
performance improvement is quite acceptable. This
optimization approach leads to the improvement of
performance. Table 4 shows the performance of the
algorithm in one, two, and three fluid packages in
each collision-streaming step, compared to the
standard two-step algorithm. In three temporary
arrays, computational performance is improved to
about 95% of standard algorithm (94% in D3Q19)
and memory reduction is decreased from 45 to 33%

(48 to 42% in D3Q19).

3.3 Implementation of GPU

As mentioned before, at each lattice point, the fluid
packets collide with each other and are restricted
locally, depending on data from neighboring nodes.
The spatial locality of LBM to data makes it a good
candidate for parallelization. For many reasons,
such as cost, memory bandwidth, energy
consumption, etc., the best platform for parallel
processing of LBM is GPU.

As a regular treatment to reduce ideal processing
part, which arises from data transfer form PC main
memory to GPU's onboard memory and vice versa,
all of the computational domain is loaded on GPU
memory. As GPU's onboard memory is limited, the
new algorithm would be more useful to simulate a
larger physical domain. This limitation is more
highlighted, when considering heat and mass
transfers.

Here, two algorithms have been implemented on
GPU by CUDA compiler. The obtained GPU
speed-up levels (with respect to CPU in MLUPS)
are shown in Table 5. In all cases of optimization,
speed-up level on 3-D domain is more than 2-D,
which is because of higher memory bandwidth on
GPU. Also, higher memory bandwidth causes to
recover computational performance just by two
temporary arrays, in compare with run on ordinary
processors (instead of three temporary arrays). So,
the new algorithm on GPU recovers computational
performance inefficiency besides reduction in
memory consumption.

4. CONCLUSION

As presented in this paper, the new algorithm
reduces memory consumption to nearly a half and
some computational performance reductions. To
improve the computational performance, an
approach was presented which leads to recover this
deficiency by one or two extra temporary array
data. Comparison of two different simulations at

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

66

Table 5 Computational performance comparison of two algorithms analysis

 CPU

(MLUPS)

Tesla C2050

(MLUPS)

Speed-Up

Standard Two-Step 3.276

1.56

140

73

~ 42 (D2Q9)

~ 46 (D3Q19)

New Algorithm* 2.28

1.08

109

55

~ 47 (D2Q9)

~ 53 (D3Q19)

Optimized #1** 2.75

1.30

132

72

~ 48 (D2Q9)

~ 55 (D3Q19)

Optimized #2*** 3.1

1.47

154

81

~ 50 (D2Q9)

~ 56 (D3Q19)

* "n" = 1; New Algorithm with one temporary array.

** "n" = 2; New Algorithm with two temporary arrays.

*** "n" = 3; New Algorithm with three temporary arrays.

various Re numbers (in both two- and three-
dimensions) were shown that the algorithm give the
same result by less memory and approximately the
same computational performance with respect to
standard two steps algorithm. Implementation of
this approach is very simple and quiet efficient in
memory performance. In spite of retaining the
simplicity in the new algorithm, GPU was simply
implemented. Note, higher bandwidth in GPU is
very helpful to gain more memory reduction via
less computational performance loss.

The optimization approach has been a compromise
between the new and the standard algorithms,
whereby it increments the number of temporary
array, or memory bandwidth, it would be very
similar to standard algorithm and by decrement the
number of temporary arrays to one it would be just
like new algorithm. So, it is a tradeoff between
memory consumption and computational
performance. Also, Note, that by performing
collision and streaming steps of each cite
individually in the new algorithm, modeling some
developed features of the standard LBM (such as
turbulent modeling) may be very difficult and
would need further investigation.

5. FUTURE WORK

Besides working on optimization to increase the
computational performance and reduction in
memory consumption, some supplementary tasks,
such as implementing more complicated boundary
conditions are on schedule.

REFERENCES

Abe, T. (1997). Derivation of the lattice Boltzmann
method by means of the discrete ordinate
method for the Boltzmann equation. Journal
of Computational Physics 131(1), 241-246.

Alvarado, V., H. T. Davis and L. Scriven (1997).

Effects of pore-level reaction on dispersion in
porous media. Chemical engineering science
52(17), 2865-2881.

Babu, V. and S. A. Korpela (1994). Numerical
solution of the incompressible three-
dimensional Navier-Stokes equations.
Computers and fluids 23(5), 675-691.

Bailey, P., J. Myre, S. D. Walsh, D. J. Lilja and M.
O. Saar (2009). Accelerating lattice
Boltzmann fluid flow simulations using
graphics processors. Parallel Processing,
2009. ICPP'09. International Conference on,
IEEE.

Chen, H., S. Chen and W. H. Matthaeus (1992).
Recovery of the Navier-Stokes equations
using a lattice-gas Boltzmann method.
Physical Review A 45(8), R 5339.

Chen, S. and G. D. Doolen (1998). Lattice
Boltzmann method for fluid flows. Annual
Review of Fluid Mechanics 30(1), 329-364.

Coppens, M. O. and G. F. Froment (1995).
Diffusion and reaction in a fractal catalyst
pore—II. Diffusion and first-order reaction.
Chemical engineering science 50(6), 1027-
1039.

Dawson, S. P., S. Chen and G. Doolen (1993).
Lattice Boltzmann computations for reaction
diffusion equations. The Journal of Chemical
Physics 98(2), 1514-1523.

Di R., A. F., P. Asinari, E. Chiavazzo, N.
Prasianakis and J. Mantzaras (2012). Lattice
Boltzmann model for reactive flow
simulations. EPL (Europhysics Letters) 98(3),
34001.

Filippova, O. and D. Hänel (1998). Grid refinement
for lattice-BGK models. Journal of
Computational Physics 147(1), 219-228.

Frisch, U., B. Hasslacher and Y. Pomeau (1986).

M. Sheida et al. / JAFM, Vol. 10, No. 1, pp. 55-67, 2017.

67

Lattice-gas automata for the Navier-Stokes
equation. Phys. Rev. Lett 56(14), 1505.

Geller, S., M. Krafczyk, J. Tölke, S. Turek and J.
Hron (2006). Benchmark computations based
on lattice-Boltzmann, finite element and finite
volume methods for laminar flows.
Computers and Fluids 35(8), 888-897.

He, X. and L. S. Luo (1997). Theory of the lattice
Boltzmann method: From the Boltzmann
equation to the lattice Boltzmann equation.
Physical Review E 56(6), 6811.

Higuera, F. and J. Jimenez (1989). Boltzmann
approach to lattice gas simulations. EPL
(Europhysics Letters) 9(7), 663.

Higuera, F., S. Succi and R. Benzi (1989). Lattice
gas dynamics with enhanced collisions. EPL
(Europhysics Letters) 9(4), 345.

Hou, S., Q. Zou, S. Chen, G. D. Doolen, andA. C.
Cogley (1994). Simulation of cavity flow by
the lattice Boltzmann method. arXiv preprint
comp-gas/9401003.

Ku, H. C., R. S. Hirsh, andT. D. Taylor (1987). A
pseudospectral method for solution of the
three-dimensional incompressible Navier-
Stokes equations. Journal of Computational
Physics, 70(2): 439-462.

Massaioli, F. and G. Amati (2002). Achieving high
performance in a LBM code using OpenMP.
The Fourth European Workshop on OpenMP,
Mattila, K., J. Hyväluoma, T. Rossi, M.
Aspnäs and J. Westerholm (2007). An
efficient swap algorithm for the lattice
Boltzmann method. Computer Physics
Communications 176(3), 200-210.

Mattila, K., J. Hyväluoma, J. Timonen and T. Rossi
(2008). Comparison of implementations of
the lattice-Boltzmann method. Computers and
Mathematics with Applications 55(7), 1514-
1524.

McNamara, G. R. and G. Zanetti (1988). Use of the
Boltzmann equation to simulate lattice-gas
automata. Physical Review Letters 61(20),
2332.

Pan, C., J. F. Prins and C. T. Miller (2004). A high-
performance lattice Boltzmann
implementation to model flow in porous
media. Computer Physics Communications
158(2), 89-105.

Philippi, P. C., L. A. Hegele Jr, L. O. Dos Santos
and R. Surmas (2006). From the continuous
to the lattice Boltzmann equation: The
discretization problem and thermal models.
Physical Review E 73(5), 056702.

Pohl, T., M. Kowarschik, J. Wilke, K. Iglberger and
U. Rüde (2003). Optimization and profiling of
the cache performance of parallel lattice
Boltzmann codes. Parallel Processing Letters
13(04), 549-560.

Qian, Y., D. d'Humières and P. Lallemand (1992).

Lattice BGK models for Navier-Stokes
equation. EPL (Europhysics Letters) 17(6),
479.

Rahmati, A., M. Ashrafizaadeh and E. Shirani
(2014). A Multi-Relaxation-Time Lattice
Boltzmann Method on Non-Uniform Grids
for Large Eddy Simulation of Rayleigh-
Bénard Convection Using Two Sub-Grid
Scale Models. Journal of Applied Fluid
Mechanics 7(1), 89-102.

Salimi, M. and M. Taeibi-Rahni (2015). New lifting
relations for estimating LBM distribution
functions from corresponding macroscopic
quantities, based on equilibrium and non-
equilibrium moments. Journal of
Computational Physics 302, 155-175.

Shan, X. and H. Chen (1993). Lattice Boltzmann
model for simulating flows with multiple
phases and components. Physical Review E
47(3), 1815.

Shan, X., X. F. Yuan and H. Chen (2006). Kinetic
theory representation of hydrodynamics: a
way beyond the Navier–Stokes equation.
Journal of Fluid Mechanics 550, 413-441.

Succi, S. (2001). The Lattice Boltzmann Equation
for Fluid Dynamics and Beyond. Clarendon,
Oxford.

Velivelli, A. and K. M. Bryden (2004). A cache
efficient implementation of the lattice
Boltzmann method for the two-dimensional
diffusion equation. Concurrency and
Computation: Practice and Experience
16(14), 1415-1432.

Wellein, G., T. Zeiser, G. Hager, andS. Donath
(2006). On the single processor performance
of simple lattice Boltzmann kernels.
Computers and Fluids 35(8), 910-919.

Wittmann, M., T. Zeiser, G. Hager and G. Wellein
(2013). Comparison of different propagation
steps for lattice Boltzmann methods.
Computers and Mathematics with
Applications 65(6), 924-935.

Xiao-Yang, Z., S. Bao-Chang, and W. Neng-Chao
(2004). Numerical simulation of LBGK
model for high Reynolds number flow.
Chinese Physics 13(5), 712.

Zeiser, T., G. Hager and G. Wellein (2009).
Benchmark analysis and application results
for lattice Boltzmann simulations on NEC SX
vector and Intel Nehalem systems. Parallel
Processing Letters 19(04), 491-511.

Zhang, L. and N. Seaton (1994). The application of
continuum equations to diffusion and reaction
in pore networks. Chemical Engineering
Science 49(1), 41-50.

Zhen-Hua, C., S. Bao-Chang and Z. Lin (2006).
Simulating high Reynolds number flow in
two-dimensional lid-driven cavity by multi-
relaxation-time lattice Boltzmann method.
Chinese Physics 15(8), 1855.

Journal of Applied Fluid Mechanics, Vol. 10, No. 1, pp. 55-67, 2017.
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.

