
Journal of Applied Fluid Mechanics, Vol. 10, No. 1, pp. 81-94, 2017. 
Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645.
DOI: 10.18869/acadpub.jafm.73.238.25947 

Numerical Investigation of Temporal Variation of Density 
Flow and Parameters 

F. Üneş1† and N. Ağiralioğlu2 

1 Iskenderun Technical University, Civil Engineering Faculty, Civil Engineering Department, Hydraulics 
Division, 31200, İskenderun, Hatay -Turkey 

2 Istanbul Technical University, Civil Engineering Faculty, Hydraulic Division, 34469, Maslak, İstanbul - 
Turkey. 

†Corresponding Author Email: fatih.unes@iste.edu.tr 

(Received November 30, 2015; accepted July 4, 2016) 

ABSTRACT 

Experimental investigations and observations indicate that water quality modeling is related to the formation 
of flows in the dam reservoirs.  Correct estimation of dam reservoir flow, plunging point and plunging depth 
are very important for the dam reservoir sedimentation and water quality problem. Therefore, inflow river-
water into a dam is modeled in two dimensions through a reservoir with sloping bottom. The model is 
developed using nonlinear and unsteady continuity, momentum, energy and k-ε turbulence model equations. 
The equations of the model are solved based on the initial and boundary conditions of the dam reservoir flow 
for a range of bottom slopes. In addition to velocity, temperature and turbulence viscosity variation through 
the dam reservoir, the effects of density flow parameters such as plunging depths, plunging points, mixing 
rate are determined from the simulation results.  The results of the present model are compared to the 
previous experimental works and the mathematical models.  

Keywords: Density current; Mixing rate; Plunging depth; Densimetric Froude numbers; Reservoir flow; 
Temporal variation. 

1. INTRODUCTION

In real reservoir conditions, inflow river water 
rarely has the same density as the quiescent water in 
the reservoir. When an inflow of higher density 
enters ambient dam reservoir water, it plunges 
below the ambient water and becomes a density 
underflow. The density difference may be due to the 
differences in temperature, concentration of 
dissolved or suspended substances or a combination 
of both. If river flow enters an ambient dam 
reservoir waters, then three basic types of currents 
may occur. These are called the over flow; inter 
flow, and plunging (density or negatively) flow. If 
density of incoming flow is smaller than ambient 
water body in the reservoir, this type of flow will 
move along the free surface and is called over flow. 
If reservoir ambient water is stratified due to 
temperature or other effects, incoming flow will go 
forward to an intermediate layer whose density is 
equal to inflow density. This flow is called inter 
flow. However, if the river water flowing into 
ambient dam reservoir water is denser than 
quiescent water density of reservoir, then this type 
of flow will plunge below the ambient water and 
will move along the reservoir bottom. This flow is 

named as underflow, density negatively flows or 
plunging flow. The analysis of this flow is very 
important for reservoir sedimentation studies, water 
quality modeling and management, effluent mixing 
analyses and dam reservoir flows characteristic 
parameters, such as plunging point, mixing rate, 
circulation flows and etc. in ambient waters.  

Real reservoirs do not always have typical geometry 
due to the variation in volume and shape. If inlet of 
reservoir has a narrow valley cross-section, then the 
inflow river water may have little divergence and 
more slope effects. Conversely, density inflow may 
affect reservoir divergence. Such features may lead 
to lateral mixing of the inflow (Üneş, 2010; Farrell 
and Stefan, 1988).  

Plunging phenomenon and density current are very 
difficult to measure and observe in field and also 
laboratory conditions. Therefore, only, a few 
laboratory studies have been performed in the past 
and those experimental works are not even enough 
to understand the longitudinal developments of the 
hydraulic characteristics of density flows 
throughout the reservoirs. On the other hand, since 
plunging flow has been studied theoretically using 
simple models such as two-layer approach in the 
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past, the momentum equation is used for a part of 
the flow.  These approaches concentrate on the 
attention only on the plunge region and effectively 
isolate the plunge region from the rest of the 
reservoir. Because reservoir flow or density flows 
process is developed based on hydrodynamic rules 
throughout the reservoir length, flows are not 
divided into portions such as plunging region, 
underflow region and ambient water in real 
reservoir condition.  

Inflow river properties, such as temperature 
variations and turbidity currents exhibit different 
models of density currents. In the past, density 
currents have been observed in field and 
experimental by many researchers (Wunderlich and 
Elder, 1973; Chung and Gu, 1998; Mehdizadeh et 
al. 2008, Firoozabadi et al. 2010). Experimental 
studies of density plunging flows over both sloping 
bottom and diverging horizontal channel were 
performed by many researchers that most of them 
established a number of semi empirical equations 
and used two dimensional reservoir  shape (Singh 
and Shah, 1971, Dallimore et al., 2004). Some of 
them have been studied the deposition behavior of 
sediment (Stefan 1973; Lee and Yu 1997; Yu et al. 
2000). 

A few researchers have considered the problem by 
solving it using numerical methods (Farrell and 
Stefan, 1986; Fukushima and Watanabe, 1990). 
They established mathematical models and used 
numerical solution to investigate the plunging and 
underflow. In the numerical approach, plunge 
region needs not to be isolated from the rest of the 
reservoir so that the river inflow can be simulated 
along the reservoir. In this solution, plunge region 
will appear in the emerging flow field as a part of 
the overall solution. In recent years, researchers 
used three dimension model simulations and 
experimental studies to understand the influence of 
flow inlet condition, density variation and the 
divergence angle into dam reservoir (Kassem et al. 
2003, Üneş 2008a, 2008b). Üneş (2010) and Üneş 
et al. (2015) used statistical and mathematical 
solution and also used artificial intelligence 
techniques to investigate the plunging flow depth 
variations. Üneş and Varçin (2012, 2015) developed 
a hydrodynamics model of an actual dam reservoir 
in three dimensions for simulating a real dam 
reservoir flows for different seasons. They defined 
temperature profiles and flow visualizations and 
evaluated flow conditions through the real dam 
reservoir. The solutions gave realistic and useful 
results for a real dam reservoir. 

Several researchers suggested different plunging 
flow model criteria. In an experimental study 
performed by Singh and Shah (1971), the reservoir 
configuration for the process and development of 
plunge point (Fig. 1) were used. The temporal 
developments of interfaces between river inflow 
and ambient water and velocity profiles were only 
given in the work.  

Singh and Shah (1971), Savage and Brimberg 
(1975), and Akiyama and Stefan (1984) suggested 
following theoretical equations based on 

dimensional analysis, empirical approach, and 
momentum balance. These relations are used for 
estimating the plunge depth, Hp, from mean flow 
parameters and it is given the following general 
form (Farrell and Stefan, 1986, 1988). 
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where K is a constant related to the flow conditions; 
q is the river discharge per unit width; g΄ is reduced 
gravitational acceleration, g΄=g Δρ/ρo, where g is 
the acceleration of gravity, Δρ=ρ-ρo; Δρ is the 
density difference between quiescent water and 
inflow river water, ρ is inflow river water density 
and ρo is quiescent water density. From the results 
of the experimental runs made by Singh and Shah 
(1971) and the mathematical model of Farrell and 
Stefan (1988) for estimating the plunge depth, Hp, 
the constant K is found as 1.3 and 1.6, respectively. 
In the experiments, the densimetric Froude number, 
Fp, at the plunge point is defined as: 
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The densimetric Froude number varied over the 
range from 0.3 to 0.8. Akiyama and Stefan (1984) 
provided a table summarizing the various formulas 
for plunge depth prediction. When plunging flow 
occurs, the inflow river water becomes a density 
current. This underflow entrains reservoir quiescent 
water at the interface between inflow and ambient, 
and proceeds downstream.  The dynamics of 
entraining density current was investigated firstly 
by Ellison and Turner (1959). They showed that the 
density current quickly adopts to an equilibrium 
state due to the constant entrainment rate. 
Underflow discharge increases along the reservoir 
due to entrainment. At the run time, reverse current 
is generated in ambient water because of density 
flow. The definition sketch of plunging flow and 
initial entrainment coefficient (Fig. 2) are given by 
Farrell and Stefan (1988).   

Herein, HP, is the plunging depth at the plunging 

point, Hd, is the depth of the underflow layer, Ud is 

underflow layer mean velocity, qd is underflow 
layer stream discharge along the density flow and 
Uin is river inflow mean velocity (Fig.2). 

In this type of flow, the river inflow plunges at a 
place on ambient reservoir water surface known as 
plunge point or plunge line. The amount of mixing 
due to plunging is termed the mixing rate, qam/qin, 
and it is always expressed as initial mixing 
coefficient, γ. The increment of discharge in the 
density underflow is characterized by this initial 
mixing rate coefficient at the end of the plunge 
region, γ = qam/qin, where qam is the flow rate of 
entrained ambient water per unit width (the ambient 
water entrainment rate) or the discharge rate that 
was entrainment from ambient water to density  
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 Fig. 1. Development of plunging flow. 
 
 
 

 

 
Fig. 2. Sketch of plunging flow and development of mixing rate. 

 

 

underflow and qin is the river inflow rate per unit 
width. The ratio qam/qin is zero at the plunge point 
or plunge line and grows abruptly in the plunge 
region (Fig. 2). Plunge region brings inflow river 
water from conditions at the plunge line to 
conditions in the underflow. Therefore, γ is defined 
as the value of qam/qin at the end of the plunging 
region. 

In the present study, density plunging (buoyant) 
flow is investigated and explained with simulation 
results. The models are applied to condition for a 
range of flows corresponding to Singh and Shah 
experimental. The results are compared with the 
observations made in the experimental runs of 
Singh and Shah (1971) and the mathematical model 
of Farrell and Stefan (1986).  In this way, variation 
of velocity, temperature and turbulence viscosity 
through the dam reservoir, and plunging depths, 
plunging points, initial mixing rate, mixing 

(entrainment) rate along the underflow are 
determined from the simulation results. Moreover, 
vertical velocity profiles at the plunging point and 
along the reservoir, under flow parameters such as 
densimetric Froude numbers, depths, discharges, 
velocity, dimensionless discharge and velocity are 
evaluated. The obtained results can be used 
reservoir sedimentation studies, water quality 
modeling and management and effluent mixing 
analyses. 

2. MODEL AND FORMULATION 

In the current study, solutions and model 
simulations were obtained for flows corresponding 
to the experimental runs of Singh and Shah (1971). 
This experimental reservoir configuration was 
previously used by Farrell and Stefan (1986) to test 
their mathematical model. Farrell and Stefan used 
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cylindrical coordinates and two-dimensional 
reservoir configuration in their mathematical model.  

The reservoir configuration is accommodated in 
two dimensional (x, y) Cartesian coordinates. Flows 
such as stratified, plunging and circulation can 
occur in different density dam reservoir, and these 
types of flows are very complicated and hard to 
solve. Therefore, some simplification process has to 
be made before presenting the governing equations. 
The assumptions described briefly as in the 
following parts of the manuscript. 

Since this work is limited to two dimensions and so 
the width of the reservoir is not taken into account, 
the reservoir shape and divergence effect is not 
studied. The free surface of the reservoir is modeled 
as a rigid lid during the proposed model simulation. 
Therefore, the free surface phenomena such as wind 
or wave effects are not being considered in 
reservoir surface. So apart from reservoir geometry, 
various extraneous forces or factors such as wind, 
waves and the temperature effects caused by 
meteorological inputs are not taken into account.  

Another simplification is that the temperature 
difference is taken to be the source of the stratified 
and buoyancy flows.  Field and practice 
investigation show that the small temperature 
differences are enough to produce density flow in 
the reservoir. The density-temperature relation can 
be linearized and written as follows (Farrell and 
Stefan, 1986): 

 TT000  βρρρρΔ                   (3) 

where ρ is the water density, T is the water 
temperature and β is the coefficient of thermal 
expansion and calculated as β = - (Δρ/ρo)(1/ΔT), 
where ΔT is the temperature difference between 
ambient and inflow river waters, ρo and To refer to 
the reservoir conditions. The equation placed into 
the momentum equation, and Boussinesq 
approximation and reduced pressure approach is 
applied as another simplification. At the present 
time, since reservoir volumes has reached very big 
and long dimension, the Coriolis force effect is also 
subject to dam reservoir flow. For this purpose, the 
Coriolis force effect (Pedlosky, 1987) is included in 
the mathematical model, though it was so small 
when compared to the other factors or forces, in the 
laboratory study. Since the mathematical model is 
two-dimensional, Coriolis effect is applied only in 
the x-component of the momentum and energy 
equations.  

Because of the continuous entrainment of ambient 
water towards downstream, density or plunging 
flow is analyzed by using unsteady flow 
mathematical model. The existing model uses eddy 
(turbulence) viscosities to describe vertical transport 
due to velocity at the interface on stratified or 
density flow. To calculate eddy viscosities, k-ε 
turbulence model approach is used. This method is 
very useful for the complex reservoirs that have 
inner circulation and temperature stratified flows. 
Gorji et al. (2014) made a comparative study of 
turbulence models in a transient channel flow and 
compared different turbulence models with each 

other. Since the density difference occurs due to 
varying water temperatures, the present 
mathematical model includes an energy equation 
for the heat transport. The model equations are 
solved by using FLUENT software based on the 
initial and boundary conditions of the reservoir 
flow. 

The mathematical model consists of the following 
equations: the continuity equation, momentum 
equations, energy equation and the turbulence 
model equations (Üneş 2004, 2010; Üneş et al. 
2015).  

Continuity equation; 
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Momentum equations; 
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and for the y axis,        
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Energy equation for the temperature; 
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where u  and v  are the mean velocities in the x and 
y directions, respectively, ρ is the water density, the 
source Sm is the mass added to the continuous 
phase from the dispersed second phase, such as the 
effect of water entrainment.  3/2kPP  , 

P  is the mean pressure adjusted to absorb the 
hydrostatic portion of the gravity terms, k is the 

turbulent kinetic energy and T  is the mean 
temperature, fc is the Coriolis parameters, νeff = ν + 
νt, where ν is the kinematics viscosity and νt is the 
kinematics eddy (turbulence) viscosity; and αeff = ( 
ν / Pr) + (νt /σt) is effective thermal diffusivity 
coefficient; where Pr and σt are the Prandtl and 
turbulent Prandtl numbers, respectively. 

2.1   k-ε Turbulence Model Equations 

The modified standard k-ε model is used for 
simulating the effect of turbulence. The model 
includes the suitable buoyancy terms. Standard k-ε 
model is based on transport equations for turbulent 
kinetic energy (k) and its dissipation rate (ε). k-ε 
transport model equations have been implemented 
by Rodi (1980 - 1987). In the derivation of the k- ε 
model, it was assumed that the flow is fully 
turbulent, and the effects of molecular viscosity are 
negligible. Standard k-ε model is therefore valid 
only for fully turbulent flows. In the present study, 
FLUENT software is used to solve buoyancy-
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extended k-ε turbulence model equations proposed 
by Rodi (1980). Standard k-ε model in the program 
is a semi–empirical model of Launder and Spalding 
(1972) based on model transport equations for 
turbulent kinetic energy (k) and its dissipation rate 
(ε). 

For a two dimensional unsteady flow at the sloping 
bottom reservoir, the eddy viscosity νt is computed 
from the following equation, 
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where k is the turbulent kinetic energy and ε is the 
turbulent energy dissipation rate per unit mass. k 
and ε are obtained from the solution of the 
following equations in two-dimensional 
flow(Farrell and Stefan, 1986). 
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G
k

CC
k

CodPr
k

C
xxx

u
t 31

2

21
J

t

jJ
j















































 


                       (10) 

where Prod is the production of turbulent kinetic 
energy from the mean flow and is given as 
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In these equations, G is the production or 
destruction of turbulent kinetic energy by buoyancy 
forces and given as 
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The values of the coefficients Cμ, C1ε, C2ε, C3, σk, 
σk, and σt appearing in the k-ε turbulence model 
equations used herein were given the standard 
values recommended by Launder and Spalding 
(1974). For the standard k-ε model, these constants 
are taken as Cμ = 0.09, C1ε = 1.44, C2ε = 1.92, σk = 
1.00, σ ε = 1.3, and σt = 0.9. C3 is not a part of the 
standard k-ε model but enters through the buoyancy 
terms and the constant C3 is not a stable value. C3 is 
not specified, but instead it is calculated according 
to C3=tanh|v/u|, where v is the component of the 
flow velocity parallel to the gravitational vector and 
u is the component of the flow velocity 
perpendicular to the gravitational vector (FLUENT 
User’s Guide, 2006). 

3. BOUNDARY AND INITIAL 
CONDITIONS 

Flow field boundary conditions must be specified 
individually on the reservoir inlet and outlet planes, 
at the walls and at the free surface because of 
unsteady and turbulence reservoir flow. Moreover, 

initial fields for each variable must also be 
specified. Therefore, for each variable, boundary 
and initial conditions must be chosen individually. 
This is treated as follows:  

- Velocities were given a symmetry condition at the 
free surface. At the reservoir bottom and dam face, 
velocities were determined by using the standard 
wall function that is based on the proposal of 
Launder and Spalding (1974). This function 
assumes a log-law velocity profile near the wall and 
provided in FLUENT as follows.  
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where up, mean flow velocity at point p; u*, friction 
velocity; Kr, von Karman constant; E, empirical 
constant having a value of 9.81; yp, distance from 
point p to the wall; and ΔB, roughness function that 
depends, in general, on the wall roughness height, 
Ks. At the inflow boundary, the horizontal velocity 
component in the x direction, u, is given uniform 
velocity distribution. The vertical velocity 
component in the y direction, v, is set to zero. At 
the outflow point of the reservoir, the horizontal 
velocity component is allocated a value to exactly 
balance inflow and the vertical velocity component 
is taken as zero. The initial velocity field into the 
reservoir is consisted of a forward horizontal 
velocity, u, and zero vertical velocity, v, at all 
points except close to dam.  

- The bottom and the free surface of the reservoir’s 
temperatures are taken as adiabatic. The initial 
temperature field consisted of a constant 
temperature throughout the reservoir. The dam face 
temperature is taken equal to the initial temperature 
of the reservoir water. The inflow river water 
temperature is set to constant value with no 
variation over river depth. Reservoir temperature 
conditions will be changed later during the 
simulation run time. Therefore, initial temperature 
values are not of importance. 

- In the turbulence model, the k and ε were given a 
symmetry condition at the free surface same as the 
velocity condition. Therefore, a zero gradient 
condition for k was valid at the reservoir bottom 
and on the dam face. k and ε in the inflow river  and 
near the wall grid  points were given a linear profile 
related to the river shear velocity, u*, following the 
data of Launder and Spalding (1972). At the 
outflow point, k and ε conditions are the same as 
the velocity conditions. That is, the zero gradient 
condition was imposed at the outflow point for k 
and ε.  

3.1   Numerical Process  

Depending on the appropriate boundary conditions, 
the problem is solved by using Gambit and 
computational fluid dynamics solver FLUENT 
software. The fluxes through the control volume 
faces are computed by using power law scheme 
(Patankar, 1980). Before preparing the 
mathematical model in the program, Gambit is used 
to draw the experimental reservoir configuration. 
Mathematical model are solved with the control  
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Fig. 3. Schematic projection of model simulation for sloping reservoir. 

 

 
Table 1 Details of reservoir plunging flow simulations for the present model with Coriolis force 

        

Farrell & 
Stefan 
Model 

 

After Plunge 
First Appearing 

After Density Flow 
Reached the Dam 

 

Run 
No: 

θ 
d 

(cm) 
V 

(cm/s) 

qin 
(cm3/cm/

s) 

To 
(0C) 

Tin 
(0C) 

(q2/g')1/3 
(cm) 

Hp 

(cm) 
Hp 

(cm) 
X 

(m) 
Hp 

(cm) 
X 

(m) 

SSHAH2 0.01 3.5 3.22 11.3 25 15 4.24 7.7 7.6 3.79 8.2 4.06 

SSHAH3* 0.0104 8.3 3.71 30.8 25 15 8.27 12.4 12.7 4.3 13.83 5.25 

SSHAH4 0.02 16 5.95 95.3 18 15 26.2 35.1 35 9.3 37.5 10.23 

SSHAH5 0.02 16 3.7 59.2 17 15 21.8 29.4 29.8 6.71 32.3 8.13 

SSHAH6 0.02 8 5.3 42.1 18 15 15.2 22.7 22.1 6.95 22.9 7.81 

SSHAH7 0.02 8 3.7 29.6 18 15 12 18.3 18 4.69 20 5.47 

* Model run number 3 (Singh and Shah, 1971; and Farrell and Stefan, 1986) 
 

 

volume approximation by using the software 
program. 

Gambit is used to sketch the reservoir model shape, 
and than the present mathematical model governing 
equations is prepared at FLUENT with the 
appropriate boundary and initial conditions. 
However, it should be noted that the software 
programs do not include the Coriolis effect. 
Therefore, additional user define function is written 
in C language to include Coriolis effects. When the 
velocity fields have complex currents such as 
density flow or circulation flow into the dam 
reservoir, two types of problems arise. These 
problems are nonlinear and velocity field–pressure 
field interdependent. These problems are solved by 
using the SIMPLE procedure of Patankar and 
Spalding (1972). This procedure is an iteration 
method. Since the density flow is unsteady and the 
run time is too large, the fully implicit scheme is 
used in the present model to give a stable and 
realistic solution at large time steps.  

4. MODEL DESCRIPTION AND 
APPLICATION  

Density flow has been studied with a sloping 
reservoir bottom. Basic model data are taken from 

the experimental data of Singh and Shah (1971) and 
model of Farrell and Stefan (1986). Experimental 
reservoir configurations of both studies are taken 
from papers and project report (Fig. 3). In addition, 
different inflow densimetric Froude numbers and 
slopes are taken and investigated herein. Density 
differences are generated using water of different 
temperatures for quiescent and inflow river water.   

In this model figure, dam reservoir length is 12,5 m; 
θ is dam reservoir channel bottom slopes (0.01-
0.02); d  is the reservoir inflow channel depths (3.5 
- 16 cm); and D  is dimensions of the model outlet 
(16 - 41cm). All the parameters used in the model 
(depth and changing reservoir bottom slopes, and 
other flow parameters) are given in Table 1. The 
independent variables governing the density flow in 
sloping dam reservoir channel and six cases model 
runs considered in this study are also shown in 
Table 1. These cases correspond to experimental 
data of Singh and Shah (1971) and model of Farrell 
and Stefan (1986). In Table.1, V, is the mean inflow 
velocity; qin, is inflow discharge; Hp, is plunging 
depth; X, is the distance from reservoir inlet; To 
and Tin are inflow and ambient water temperature 
respectively. 

The computational domains are divided into 125 
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and 17 grids in the x and y directions, respectively. 
As an initial model condition, the inflow channel is 
first filled with warm water, and then the cold water 
is released at the upstream end of the inflow 
channel at a specified rate. The current proceeds 
forward until it reaches to the downstream 
boundary. The inlet densimetric Froude number in 
all cases exceeds unity, indicating an incoming 
supercritical flow condition. The calculation is 
continued for approximately 800 s at which point  
the front has long past the downstream boundary 
and any change in the flow field would be 
insignificant. In order to have the desired converged 
solution, a time step of 10 seconds was chosen after 
the preliminary trials 

5. RESULTS 

In this study, mathematical model simulations were 
carried out at a range of flow conditions. These 
simulations yielded realistic plunging flow fields in 
all runs and were developed in a similar manner as 
described by Singh and Shah (1971) and Farrell and 
Stefan (1986) model results.  The details of these 
runs are given (Table 1). The results obtained for 
each variable are evaluated as follows. 

5.1   Dam Reservoir Parameters  

5.1.1   Plunge Depth 

The plunge points are taken as the position where 
plunging first appears. Plunging flow, details of 
numeric simulations and extracted plunge point 
depths are given for different bottom slopes and 
condition (Table 1). Since Singh and Shah gave 
only details of one experiment for run SSHAH3, the 
run SSHAH3 are used for the present model and 
compared with the model results. The experimental 
plunging depth of SSHAH3 is the same magnitude 
as that from the present model and is equal to 12.7 
cm; however, for this run, Farrell and Stefan model 
give an error of 2.4%. The plunge depths from the 
present study, Hp, are plotted against (q2/g')1/3 
which is the parameter used by Singh and Shah 
(1971)  to correlate their experimental data (Fig. 4). 
These results are fitted to a line and also given K 
coefficient in Equation (1) is extracted from the 
figure for the present model simulations.  

The K multiplier is found to be 1.3 by Singh and 
Shah (1971) experimental predictions and 1.6 by 
Farrell and Stefan (1988) numerical simulation 
results. K multiplier is found as 1.39 in the present 
mathematical model simulations. The mathematical 
model result is very close to the experimental 
measurement. In order to compare the present 
plunge depths variation and compatibility with 
other study, the obtained model results are plotted 
along with Singh and Shah (1971) and Farrell and 
Stefan (1986) results (Fig. 5). As it can be seen 
clearly from the graphs, a good correlation was 
obtained between HP and (q2/g')1/3 for the present 
two dimensional model. 

Plunge depth and plunge point distance from inlet 
are given as HP and X (Table 1), respectively. The 
plunging depth and the plunging distance form inlet 

are found to increase within the ranges of 3.5 – 10 
% and 6 – 18 % between plunging first appearing 
and density flowing reached the dam, respectively. 
The reasons of such increment are the density flow 
development in the reservoir, reservoir bed slope 
and the plunging flow dynamics. 

 

 
Fig. 4. Plunge depths from the present numerical 

simulation. 

 

 
Fig. 5. Comparison of the present numerical 
model simulations with the previous studies. 

 

5.1.2   Variation of Vertical Velocity Profiles 
at the Plunging Point 

A few researchers investigated the plunging 
phenomenon experimentally and theoretically, but 
only Singh and Shah (1971) gave velocity profile 
distribution in plunging point based on one 
experimental condition. Therefore, those data are 
used for comparison of experimental and numerical 
model velocity profiles near the plunge point (Farrell 
and Stefan, 1986). The model was developed using 
the flow and geometric conditions given for run 
SSHAH3. As a result of this model, a plunging depth 
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of 12.7 cm was found. This depth corresponds well 
with the value determined in the experiments. The 
maximum percentage difference between the present 
model results and experimental velocity values is 
about 11%, which is in the acceptable limit (Fig.6). 
The comparison of these profiles shows an excellent 
agreement between the experimental values and the 
present model simulations. 

 

 
Fig. 6. Comparison of experimental and 

numerical velocity profiles near the plunge point, 
for run SSHAH3. 

 

5.1.3 Variation of Vertical Velocity Profiles 
Along the Reservoir  

Development and advance of density flow and 
vertical velocity profiles for different sections can be 
seen graphically (Figs. 7 a, b and c) at different 
distances from inlet. Velocity profiles are 
investigated at three different sections (X/L = 0.5, 
0.75 and 1.0). In the graphics, X is the distance from 
inlet and L is the reservoir length.  

These figures show comparisons among the model 
with Coriolis Effect and without Coriolis force effect 
for run SSHAH3 model data, and at the 600 seconds 
elapsed time. In model with Coriolis force, velocities 
to downstream direction are less than those of model 
without Coriolis force. Similarly, velocities in 
upstream direction in Coriolis model are less than 
those of the model without Coriolis. As seen from 
vertical velocity profiles (Figs. 7 a, b and c), although 
inlet velocities are 3.71 cm/s, mean velocity 
distribution of Coriolis model for the selected cross 
sections varies between –0.66 and 5.5 cm/s. On the 
other hand, without Coriolis model it varies between 
–0.3 and 5.5 cm/s. The negative velocities are shown 
in the circulation zone and the velocities vary 
between 0.3 and 1.45 cm/s. Stratified and under flow 
development can be clearly seen at the present 
profiles.  

5.1.4   Temporal Variation of Velocity Field 

The velocity fields obtained from models are 
developed in a similar manner as both the 
available experimental and mathematical model 
results. In all run simulations, initially the inflow 

river cold water advanced into the reservoir, 
pushed forward under the ambient warm water and 
then the warm water is displaced forward and the 
velocities are in the downstream direction at all 
points. The warm water is initially displaced 
forward and velocities are forward at all points. 
When the denser cold water pushed slightly 
forward under the warm water, consequently a 
small region of (back) recirculation flow appeared 
in the ambient water surface. In this way plunging 
flow started and then the river inflow cold-water 
flow downstream under the ambient warm water 
as a density current. This backflow region grew 
larger as time elapsed and then eventually the 
density current front reached the dam base and the 
entire ambient warm water zone is transformed 
into a recirculation zone and a stratified flow is 
produced along the reservoir.  

Typical velocity fields for the runs of SSHAH3 at 
different elapsed times are given from the simulation 
results. The simulation results are given the vectors 
and contours of the velocity fields. Plunge point is 
well defined in these simulation velocity fields. 
Times in the development of flows are presented 
(Figs. 8 to 10). These fields illustrate the different 
elapsed times that are used in the initial stage and the 
density flow that reaches to the dam.  

The initial condition velocity field and the flows 
are in the downstream direction at all points (Figs. 
8 a- b). Velocity vector and contour field are 
defined in the simulations for the elapsed time 210 
seconds after plunging (Figs. 9 a- b). The situation 
at that time is just the appearance of a small 
region of backflow over the plunging flow where 
the underflow velocities are about 4.68 cm/s 
(Fig. 9).   

The density flow reached to the dam face at the 
elapsed time of 600 seconds and at the same time, 
recirculation region reached to the dam too (Figs. 
10 a- b ). The recirculation region grows and 
covers the entire reservoir and maximum 
velocities appear in the under flow region. Plunge 
point and region of recirculation flow is well 
defined and shown in these simulation velocity 
fields. The velocities in the model simulations 
increase from 3.71 cm/s to 5.60 - 5.79 cm/s during 
the run elapsed time. The reason for the velocity 
increment can be explained with the increase of 
bottom slope and with charging balance of force. 
This feature is appeared in all the other model 
simulations and experimental measurements. 
Thus, all results show development of circulation 
zone and plunging depth typical velocity contour 
and vector fields for the runs of SSHAH3. As 
seen from the model simulation and velocity field 
development, dilution and reduction in density in 
downstream direction is observed during this 
process. 

5.1.5  Temporal Variation of Temperature 
Field 

Contours of the temperature field development are 
defined with simulations for run SSHAH3 at the 
particular elapsed times (Figs. 11 a- b). The  
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Fig. 7. Vertical velocity profiles at the downstream of the plunge point (a) for X/L=0.5; (b) for 

X/L=0.75; and (c) for X/L=1.0 (Run SSHAH3, elapsed time is 600 seconds). 

 

 
Fig. 8. Typical initially flow velocity: a) Vector field;  b) Contour field, (elapsed time is 30 seconds). 

 

 
Fig. 9. Reservoir velocity: a) Vector field; b) Contour field at initiation of circulation flow for 

experimental SSHAH3 (elapsed time is 210 seconds). 
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Fig. 10. Reservoir velocity: a) Vector field; b) Contour field after density flow reached the dam for 

experimental SSHAH3 (elapsed time is 600 seconds). 
 
 

 
Fig. 11. Reservoir temperature contours (oC) field:  a) Initiation of circulation flow for experimental 

SSHAH3 (elapsed time is 210 seconds); b) After the density flow reached dam for experimental 
SSHAH3 (elapsed time is 600 seconds). 

 

 

temperature contour lines on those figures are 
suitable for either the velocity vector and contour 
fields or the limits of the recirculation region. 
Reservoir model temperature varied between inflow 
(15oC), and ambient water temperature (25oC) 
range. The temperature variation occurs after the 
plunging point and in stratified flow region. 

The behavior of plunging flow can be seen on 
those temperature counter lines such as velocity 
fields. Both temperature and velocity contours 
show clearly the upwelling of mixed water at the 
reservoir. The plunge point in the velocity and 
temperature fields appears stable but it is drifted 
continuously a small amount towards the 
downstream. It is associated likely with the 
charging balance of forces as the density current 
moves downstream the reservoir bottom. 
Therefore, the plunge point and depth never 
stabilized and plunge point continued to move 
towards the dam. 

5.1.6 Variation of Turbulence (eddy) 
Viscosity 

As with the other models, the reservoir flow is 
developed in a similar manner in all the turbulence 
simulation runs. In initial stages of a typical run, 
flows are forwarded at all points and turbulence 
(eddy) viscosity in the order of 10-3 - 10-4 m2/sec 
developed through the reservoir. The resulting 
density gradients give rise to a local lowering νt 
values in the reservoir. Stratified flows, plunging 
point, and recirculation zone developed in that area 
of low turbulence viscosity. Longitudinal cross-
section profiles of turbulence viscosity (νt) are 
found with simulation results (Figs.12 a- b). 

Turbulence viscosity fields at the development of 
initial circulation flow for run SSHAH3 are 
determined (Fig.12 a). Turbulence viscosity fields 
for run SSHAH3 just as the cold waterfront reaches  
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Fig. 12. Reservoir turbulence viscosity fields: a) Initiation of circulation flow for experimental SSHAH3 

(elapsed time is 210 seconds); b) After the density flow reached dam for experimental SSHAH3 
(elapsed time is 600 seconds). 

 

Table 2 Underflow parameters for reservoir numerical simulation run 
(Run SSHAH3, Elapsed time 600 seconds) 

 

 

to the dam are displayed (Fig.12 b). The results 
indicate that the G term in k equation (Eq. 9) grows 
larger and νt disappears effectively over much of 
the recirculation flow zone (Farrell and Stefan, 
1986). Therefore, the lowering of eddy viscosity 
appears to be an essential part of the plunging flow 
physics (Fig. 12 a-b).  

5.1.7 Variation of Density Current 
Parameters 

Underflow discharge, velocity distribution, and 
depths variations are determined from the model 
simulation results. The entrainment water quantity 
that is carried from ambient water to density 
underflow can be determined from model 
simulations. Underflow discharge and other 
underflow parameters for run SSHAH3 at the 600 
seconds elapsed time are computed along the 
reservoir and given in the table (Table 2). In the 
table; qam/qin is mixing rate; qin is the river inflow 

rate per unit width; qam is the increase in discharge 

rate per unit width of the underflow; qd= qin +qam, 
qd is underflow layer stream discharge; Hd is 
underflow layer depth; Ud is underflow layer mean 
velocity; Fd is underflow layer densimetric Froude 
number, and γ is Initial mixing coefficient. γ and 
(qam/qin)  were extracted from simulation result of 
SSHAH3.  

The qam/qin values are plotted against the distance 
along the reservoir (Fig. 13). Since the initial 
mixing coefficient is the value of qam/qin  where 
the underflow starts, γ value is found as 0.11 (Table 
2). As expected, the qam/qin values are found to 
increase along the reservoir.  

Variations of dimensionless velocity and discharge 
along the reservoir are found model simulation 
(Fig.14). Mean underflow velocity increases along 
the density underflow. Since underflow current 
starts after plunging, mean velocity and discharge 
are taken zero until the plunging point is reached 
(Fig.14). The model results are found to be the same 

X qin qd = qam+qin Ud Hd Fd qam / qin 

(m) (cm3/cm/s) (cm3/cm/s) (cm/s) (cm)   

2 30.8 30.8 - - - - 

4.3 30.8 30.8 - - - - 

6 30.8 34.43 3.89 8.85 1.01 0.11 

8 30.8 41.91 4.58 9.15 1.17 0.36 

10 30.8 44.10 4.69 9.4 1.18 0.43 

12 30.8 44.36 4.69 9.46 1.18 0.44 
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development and magnitude as the experimental 
measurement. 
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Fig. 13. Typical longitudinal variations of mixing 
rate (Run SSHAH3). 
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Fig. 14. Typical longitudinal variations of 

dimensionless velocity and discharge. 
 

Variation of the underflow depth along the model 
reservoir are determined with the model simulation 
(Fig.15 a). It can be seen the results that the under 
flow depth (Hd) increase linearly according to the 
bottom slope of the stratified flow. Typical 
longitudinal variations of underflow densimetric 
Froude numbers, Fd, is given (Fig.15 b). The inlet 
densimetric Froude number in all cases exceeds 
unity. The Fd variation indicate that underflow 
along the model reservoir are formed supercritical 
flow condition. 

6. CONCLUSIONS 

A mathematical model including Coriolis force is 
derived to investigate the characteristic parameters 
of density flow in a dam reservoir. The 
mathematical model is solved numerically and 
simulated. In the present numerical approach, 
plunge region need not be isolated from the rest of 
the reservoir so that the river inflow can be 
simulated along the reservoir. In this solution, 
plunge region and so other flow parameters will 
appear in the emerging flow field as a part of the 
overall solution. 

 

 
Fig. 15. Typical longitudinal variations of (a) 

Underflow depth (Hd); (b) Underflow 
densimetric Froude numbers. 

 

The model results are compared with the 
experimental data obtained from Singh and Shah 
(1971). The agreement between the model results 
and the experimental data is found to be promising. 
Specifically, the following observations and 
conclusions can be made: 
The simulation results obtained from this study 
compared with previous experimental work and the 
mathematical model studies data on density current 
generated by the plunging of cold water in ambient 
warm water.  The results show that model forecasts 
are much closer to the experimental measurements.   

Developed mathematical model appear to be able to 
successfully simulate turbulent density flow in 
different slope channels. The model simulation 
results were analyzed to determine density flow 
characterizing parameters such as plunging points, 
plunging depths, plunging distance from reservoir 
inlet, initial mixing rate, turbulence effects, mixing 
(entrainment) rate along the underflow. 
Furthermore, variations of underflow depths, 
velocity, temperatures and turbulence viscosity 
through the dam reservoir can be determined.  

As seen in the mathematical model, the effective 
gravitational force is the main driving force in 
density current. The velocity and flow profiles are 
closely related to the density profile in the reservoir.  

The mathematical model including Coriolis effect 
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appear to be able to successfully simulate turbulent 
density flow in a reservoir channel. Therefore, 
effects of Coriolis force on velocity fields and 
plunging point are also investigated and evaluated 
graphically. 

Density and stratified flow are greatly affected by 
reservoir bed slope, densimetric Froude number of 
the inflow, temperature variation and consequently 
reservoir shape. However, simulation results 
illustrate that channel bottom slope is obviously an 
important parameter for defining development of 
plunging depth and region. Another important point 
is that when bottom slope is less then 1o, the 
occurrence of stratified flow becomes difficult. 

The plunging depth and the plunging distance from 
the inlet are found to be increasing within the 
ranges of 3.5 – 10% and 6 – 18% between the 
plunging first appeared and the density flow just 
reaching the dam, respectively. The reasons of 
increment are due to reservoir bed slope and the 
plunging flow dynamics.  The other comparison 
parameter, plunging depth constant, K, is found to 
be very close to each other which are 1.30 for the 
experimental measurement and 1.39 in the present 
mathematical model. Experimental and model 
velocity profile distributions in plunging point are 
defined and the maximum percentage is found 
around 11%. These parameters showed an excellent 
agreement with the ones found in the previous 
studies. Furthermore, plunging flow, density flow 
and recirculation zone development can be well 
defined in the velocity, temperature and turbulence 
fields in the model simulation figures. Therefore, 
the present model simulations provide useful insight 
for understanding and determining plunging flow 
patterns as well as density flow in any point along 
the dam reservoir.  

Those findings are very promising that the 
mathematical model simulations as well as results 
obtained can be used in the studies related to dam 
reservoir such as sedimentation, water quality 
modeling, mixing analyses, water contamination 
and management. 
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