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ABSTRACT 

The paper deals with swirling flow (SF) phenomenon which occurs in fluid flow after local obstacle. The 
phenomenon of SF has been considered in many studies, but here is some different approach to this problem. 
Based on the theorem of conservation and transfer of energy, a mathematical model of SF was developed in 
the form of differential equation which defines the velocity profile. During research, special accent was put on 
the following parameters: swirling parameter, swirling intensity, swirling flux and swirling coefficient. Firefly 
Algorithm (FA) optimization model, in conjunction with Simulink, was used to get velocity profile vs. time 
dependence and to verify the developed model. The diagrams of velocity profile were obtained for variation of 
the initial boundary values of given parameters and conclusions were derived upon mathematical model and 
simulation of the process. 

Keywords: Circumferential component of velocity; Firefly algorithm; Swirling coefficient; Swirling flow; 
Swirling flux; Swirnling intensity; Swirling parameter. 

1. INTRODUCTION

Swirling Flow (SF) phenomenon has occupied minds 
of researchers for the last few decades and since there 
occurs circumferential component of velocity which 
takes away a certain amount of overall flow energy. 
This effect is very important considering energy 
aspect of fluid flow. Although there are numerous 
studies that treat this issue, there is no literature 
which fully describes all the aspects of SF 
phenomenon. Because of its complexity and non-
stationary nature, SF depends on many parameters 
and it is almost impossible to take them all into 
consideration within a single research. Experimental 
investigation of SF and its mathematical modelling 
have been present for the last fifty years. One of the 
earliest investigations in this field was conducted in 
Benišek (1979), where both the mathematical 
modelling and the experimental research of SF in a 
straight circular pipe were done. Recently, 
researchers conducted simulations of these processes 
and obtained the results which were used as a 
platform for further upgrade in this field. Zaets et al. 
(1998) performed experimental study and 
mathematical simulation of an axisymmetric 
turbulent flow in a straight circular pipe and gave a 
good theoretic base for development of mathematical 

models. In addition, the authors investigated 
distribution and dissipation of turbulence energy 

2
0( / )E u and distribution of velocity components,

which was taken as a basis for this research. Good 
theory for SF modelling was also given in Xiong and 
Wei (2001). Although this paper has theoretical 
significance, it is very convenient as a basis for 
further development of particular equations treated 
in this paper. SF is particularly a part of flow process 
in hydraulic turbines, which was clearly presented in 
Susan-Resiga et al. (2011), wherein the swirling 
parameter is considered. There are diagrams of 
distribution of non-dimensional quantity of motion 
flux, which is also studied in this paper through 
consideration of swirling flux. As an example of 
swirling flow, an axisymmetric flow of viscous 
incompressible fluid in rotating pipe was 
investigated in Aktershev and Kuibin (2013). In that 
paper, the analytical dependences of circumferential 
and axial velocity components were given and 
treated in a specific manner, in order to obtain the 
tables and diagrams for velocity distribution in 
relation to swirling parameter and Reynolds number. 
Circumferential flow component, i.e. the formation 
of swirl, is related with an issue of SF in a tube with 
outlet orifices, studied in Chang et al. (2014). 
Original functions were introduced, through which 
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the relation between the circumferential and axial 
component was analysed. The diagrams of kinetic 
energy distribution and energy spectrum were given 
as well as the diagrams of relation of mentioned 
velocity components. Research of SF can be related 
with compressible fluid too, which is presented in 
Francia et al. (2015). The paper defines axial, 
circumferential and radial velocity component, 
which represents the general approach in all papers 
that deal with SF phenomenon, in both the 
compressible or in-compressible fluids. Diagrams 
for each velocity component are given separately for 
various flow parameters and can be used for 
comparison purpose and for further development. 
Particular significance of this paper was in the result 
obtained via experimental tests, which revealed 
velocity de-crease and its stabilization after a period 
of time, also presented in Chang et al. (2014) through 
kinetic energy. Similar investigations were 
conducted in some other references, for example in 
Davailles et al. (2012) and Beaubert et al. (2015), 
where pressure fields were analysed due to their 
direct relation with flow velocity profiles. Ubiquity 
of SF is also shown in Dems et al. (2012), wherein 
the SF modelling is applied on the large eddy 
simulation of particle-laden flow. Mathematical 
modelling was conducted in a similar manner and 
numerical simulation results revealed similar 
velocity profiles as in the next referenced papers. In 
this paper, after setup of the mathematical model, the 
optimization of SF parameters was carried out in 
other to validate correctness of this approach. 

2. MATHEMATICAL MODEL 

One approach in developing the mathematical model 
that accurately describes the flow process is based on 
appliance of the general equation of mass, impulse 
and energy transfer in continuum. Further on, the 
equations for non-stationary one-dimensional flow 
are derived from general equations in order to form 
mathematical models for transient flow processes in 
hydraulic and pneumatic systems. To develop the 
mathematical model that describes SF after the local 
obstacle, it was necessary to start with general law of 
energy transfer. Although the basic equations are 
well known, the approach to this issue is some-what 
different. Therefore, the derivation procedure of 
mathematical model in terms of the SF basic 
parameters is presented with some more details. 
General balance law in the mechanics of a continuum 
medium is ex-pressed by equations 

,φ ψ
m m m

i j i j ki j kV V A

D
f dV dV dA

Dt
            (1) 

where f , ϕ and ψ are arbitrary tensor, vector or 

scalar fields. The conservation law is formulated if 
the physical phenomenon is described by general 
equation of transfer i.e. balance (1). 

Parameter mV  is the material volume, i.e. the fluid 

volume which consists of the same fluid particles 
during flow, while D/Dt stands for material 
derivative. 

The right side of Eq. (1) denotes overall influence on 
considered fluid mass in volume mV , which leads to 

field change of physical value defined by volume 

integral on the left side of Eq. (1). Values f, ϕ and 

ψk  denote fields of physical values constrained by 

formulated physical law, where ϕ and ψk  are given 

as functions of value f. In the first integral on the 
right side of Eq. (1), field can be considered as 
influence distributed upon overall volume mV , while 

the field ψkij denotes influence (e.g. flux), which is 

applied through material surface Am. This surface is 
formed by the same fluid particles, so that it 
continuously encompasses the material volume mV  

in motion. 

Starting equation for solving the energy loss problem 
due to forming the SF is the equation of kinetic 
energy change in case of one-dimensional non-
stationary flow. On the base of energy law, by which 
the derivative of total energy (sum of internal and 
kinetic energy) over time for a certain fluid mass 
equals the sum of power of all forces that act upon it 
and the exchanged energy per time unit be-tween the 
fluid mass and surrounding, the general energy 
transfer law can be written as 

2

ρ ρ
2

ρ

m m

m m m

i iV V

ji i j i iA V A

D v
e dV F v dV

Dt

p v dA QdV q dA

 
    

 

  

 

  
                 (2) 

where Q denotes the energy production within the 
volume, and iq  stands for energy flux through the 

surface in direction of thi  coordinate. So, the last 
two members in Eq. (2) include both the heat ex-
change (conduction, radiation, etc.) and the 
mechanical work exchange (by electric machines 
and so) with surrounding. In order to obtain the 
differential form of Eq. (2), it is necessary to per-

form the identification of values of f, ϕ and ψ in Eq. 

(2). Comparing these two equations, the relations 

follow 
2

ρ
2i j

v
f e

 
   

 
 , ρ( )i j i iF v Q   and 

ψ ,ki j ki i kp v q   by whose further 

transformations and the use of continuity equation, 
we obtain the energy equation in differential form 

2

ρ ρ( ) ,
2

ji i i
i i

j i

p v qD v
e F v Q

Dt x x

   
         

           (3) 

Kinetic energy change equation is obtained by motion 
quantity equation multiplying with ,iv  i.e. scalar 

multiplying of impulse equation by velocity vector 

2

22
ρ ρ ρ ρ .

2

                                                               + . .

ji
i i i

j

v
D

p D v
F v v F v

Dt x Dt

v DivP

 
              

 



(4)  
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Internal energy change equation is now easily 
obtained by subtracting the kinetic energy Eq. (3) 
from total energy Eq. (3). It is obvious that a part of 
surface forces power, given by expression 

i
ji

j

v
v p

x


 




is spent on fluid internal energy 

change. The fluid kinetic energy is changed by the 
power of surface forces, determined by expression 

. . .ji yx z
i

j

p pp p
v DivP v v

x x y z

   
    

    

  
 

To apply the mechanical energy change law to a 
certain system, i.e. a certain fluid mass, it is 
necessary to write Eq. (4) in an integral form. To 
achieve we use this relations 

,

                                ,

1

2

ji i ji i
i ji

j j j

j ji i
ji ji ji ji ji

j i i j

p v p v
v p

x x x

v vv v
p p p p s

x x x x

  
 

  

  
         


   (5) 

based on stress tensor jip symmetry and definition of 

deformation velocity tensor. Based on Eq. (4), the 
low of kinetic energy increase, written for a certain 
fluid mass in material volume mV , reads as follows 

2

ρ ρ
2

                                             . 

m m m

m

i i ji i jV V A

ji jiV

D v
dV F v dV p v dA

Dt

p s dV

 



  

 
        (6) 

This expression, considering later appliance, in some 
cases can be formulated in more convenient form. 
For example, if the field of volume forces Fi has its 
potential ( , )iU x t then by relations 

, ,i i i i
i i

U U DU U
F F v v

x x Dt t

  
      

  
               (7) 

Eq. (4) gets the form 

2

ρ ( ) ρ
2

ji
i

j

pD v U
U v

Dt t x


  

 
                                   (8) 

whence combined with Eqs. (5) and (6) we obtain the 
integral formulation of law on kinetic and potential 
energy increase of a certain material system, i.e. 
considered fluid mass. The Eqs. (7) and (8) are well 
known in fluid mechanics literature, but it is 
important to mention them in order to clearly notice 
the connection with obtained mathematical model in 
this paper. When this integral form of mechanical 
energy law is written for the control volume V on the 
base of relations (6) and (8), we get 

2 2

ρ( ) ρ( )
2 2

ρ .

i iV A

ji i j ji jiV A V

d v v
U dV U v dA

dt
U

dV p v dA p s dV
t
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
  



 

   
            (9) 

Tensor field of total stress for Newton fluid is 
determined by generalized Newton hypothesis, 

which defines the linear relation between the stress 
tensor ijp and deformation velocity tensor ,ijs

where τij stands for viscous stress tensor. When τn


 

denotes the stress vector due to viscosity, while T 
denotes viscosity stress tensor, we can write 

τ τ ,

τ . , τ τ τ τ τ .

ij ij ij n n

n n x x y y z z i i

p p P pE T p pn

T n n n n n

          

    

  

      

(10) 

When the expression for ijp and ,ijs relation for are 

inserted in case of incompressible fluid ( / )k kv x 
into the Eq. (6), while using the relation (1), it is 
obtained 

2 2

2 2

ρ

i i i iV A V

ji
i i i jA A V

j i

d v v
dV v dA F v dV

dt

vvp
v dA v v dA dV

x x

   

 
        

  

  
 (11) 

where the dissipation function τij ijs   for 

incompressible fluid is determined by 

2 2 21 1
τ τ 2η η( ) .

2η 2ij ij

ji
ji ji

j i

vv
s s

x x


     

 
    (12) 

Equations (9) and (11), along with relations (7) and 
(8) give the Bernoulli equation for non-stationary 
flow 

2 2

ρ ρ . ρ .
2 2

( . ). ρF τ .

V A A

i
ijA V V

j

v v
dV v ndA v ndA

t
v

T n vdA dV dV
x


   




  


  

  

   
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        (13) 

By separation of surface and volume integrals out of 
Eq. (13), we obtain the Bernoulli equation for non-
stationary SF of viscous incompressible fluid for the 
finite volume in the form 

2

2

(ρ ρ ) . τ .
2

ρ ( ) 0
2

nA

V

v
p U v n v dA

V
dV

t

 
    

  
 

    
  





   

                        (14) 

Main difference in flow condition before and after 
the local obstacle is in distribution of velocity and 
pressure field. Namely, before the local obstacle, the 
velocity field consists of axial velocity component 
only, while after the obstacle we also have velocity 
components in circumferential and radial directions. 
Total flow velocity square is 

2 2 2 2
φx rv v v v                                                       (15) 

where: 

xV − axial component of flow velocity along axis x, 

rV − radial component of flow velocity, 

φV − circumferential component of flow velocity. 
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Therefore, swirl generation after the local obstacle in 
case of non-stationary flow is characterized by 
occurrence of circumferential velocity component 

φV  . 

Based on numerous researches, it is important to 
notice that the radial velocity values are considerably 
lower compared with axial and circumferential 
component. They can be neglected, i.e. 0.rv   This 

fact is very important, because we can conclude, 
based on the continuity equation, that axial velocity 
component is the function only of coordinate r and 
time t, i.e. ( , )x xv v r t So, at SF formation after the 

local obstacle, the velocity field can 

 

 
a) 
 

 
b) 
 

Fig. 1. Scheme of SF and velocity components 
after local obstacle. 

 
be defined by the relation 2 2 2

φxv v v  . By 

previously defining the velocity field, the SF 
parameters are defined. Namely, through averaged 
circulation 

2
2

0

4 R
xr v v dr

V 


  


  

defined are: 

Swirling parameter, i.e. the parameter of swirling 
flow 

0

0

,

R
x

R
f x

v rdrV

R R rv v rdr
  






                                      (16) 

Swirling intensity, which represents the relation of 
fluxes of circumferential flow kinetic energy and 
axial flow kinetic energy 

φ φ
2 2

0
3 3

0

,
x

R
x xA

R
xA

v v dA v v rdr

v dA v rdr
  

 
 

                                  (17) 

Swirling flux, which represents the relation of the 

motion quantities momentums in circumferential and 
axial direction 

2
φ 0
2 2

0

R
f xxA

R
x xA

r v v drrv v dA
S

v dA rv dr
 


 

                              (18) 

So, the main difference between the swirling and 
non-SF after the local obstacle is the occurrence of 
circumferential component of flow velocity. 
Hence, the proper choice of mentioned velocity 
component profile is a very significant task at 
modelling the swirling flow. Researches show that 
near the pipe axis this velocity is proportional to the 
coordinate r, while near the pipe wall, it is inversely 
proportional to it. Thereby, we constantly should 
keep in mind that circumferential component of 
flow velocity occurs as result of flow 
nonstationarity, so it must de-pend on time. 
Besides, the circumferential velocity component 
can be expressed as a part of axial flow velocity. 
After each member of Eq. (14) analysis, the 
mathematical model of SF after local obstacle in 
hydraulic/pneumatic system can be formed. 
Including all modelled members into Eq. (14) we 
obtain the mathematical model of SF as 

2 2
2 1

2 1 2 1 2 1

2
2

ρ(α α ) ( ) ρ( )
2 2

β1 ρ
ρ β λ 0.

2 2

v v

v
v vx x

u u
p p U U

du u
u dx dx

x dt

     


   

 
   (19) 

The last Eq. (19) represents the original equation that 
came of general flow laws appliance, which are 
given through Eqs. (1-18), that in various forms al-
ready exist in the known literature. Equation (19) is 
the starting equation on the base of which we would 
later on come to differential equation of swirling 
flow. During the model derivation we start from the 
form that is convenient for simulation which further 
enables the obtaining the diagram and the analysis of 
influential parameters on the velocity field after the 
obstacle. 

Variables in Eq. (19) are the field of averaged axial 
velocity component, i.e. current average velocity 
u and its derivative over time du/dt. But, except 
them, there also occur current values of velocities, 
i.e. 1u  and 2u , which creates difficulties in 

forming the differential equation that would 
depend on velocity and its first derivative over 
time. So, we rather use the equations that define 
the overall (to-tal) flow energy. By them, Eq. (19) 
is written as follows 

2 2
2 β1 ρ

ρ ρ β λ 0
2 2

v
v v vx x

u du u
u dx dx

h t dt



   

 
(20)  

In Eq. (20) figures Boussinesq coefficient of SF. In 
literature there is not found the dependence of 
Boussinesq coefficient on integral parameters of 
swirling flow, but there is defined the dependence for 
Coriolis coefficient. Namely, certain papers, on the 
base of experimental results, show that there is the 
following dependence 
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0.34
00.012

αα α+A ,

x

v e R
                                            (21) 

where: αA − swirling coefficient, α − Coriolis 

coefficient of axial non-swirling flow, 0 − swirling 

parameter at the local obstacle, x− the distance from 
local obstacle cross section and R− pipeline radius. 

So, for further analysis of Eq. (20), it is necessary to 
represent the Boussinesq coefficient of SF in 
function of already introduced integral parameters. 

The literature already gives the dependence be-tween 
Coriolis and Boussinesq coefficient, which reads 

α 3β 2.                                                                 (22) 

For swirling flow, when influences of axial and 
circumferential flow components are separated, it 
reads 

φ

φ

3 2
3

2 2
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v dA v dA
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 

 

 
                            (23) 

Transforming the Eq. (19), it can be written 

φ

φ

2
3

3 3

2
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1
α (1 ) ,

1
β (1 ) .
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v xA

xA

A
v xA
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v v dA
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Au v dA

v dA
v dA

Au v dA

 
  
 
 
 
  
 
 


 


 

                        (24) 

From all the above, the expressions (24) are 
transformed into 

α α(1+ )v                                                          (25) 

φ
2

2
β β(1+ )A

v
xA

v dA

v dA





                                                    (26) 

From expression (26), we can define the coefficient 

φ
2

2
A

v
xA

v dA
E

v dA




                                                           (27) 

that can be named as energy parameter of swirling 
flow, because it presents the ratio between the kinetic 
energies of circumferential and axial flows. 

The higher the value of this parameter the higher the 
value of circumferential component of SF velocity, 
i.e. the swirling is more in-tense. From expressions 
(18) and (19) it follows 

β β(1+ )v vE                                                              (28) 

Algebraic transformations lead to the dependence 

1

2 βS
                                                                     (29) 

out of which we can conclude 

1
β

2 S



                                                                    (30) 

So, the Boussinesq coefficient of non-swirling axial 
flow depends on integral parameters of swirling 
flow. Now it is possible to find the dependence 
β (α ).v vf  Based on the expression (28) it follows 

that Boussinesq coefficient of swirling flow, 
expressed via SF parameters, gets the form 

1+
β

2
v

v
E

S



                                                              (31) 

Parameter expressed by eq. (31) is energy parameter, 
very important for the analysis from the point of flow 
energy efficiency, because it depends on the energy 
parameter that directly reflects the swirling intensity. 
By algebraic transformations, swirling flux S and 
swirling parameter Ω are included through relation 

3

1 8
S 

 
                                                                (32) 

In eq. (20), its only left to define the friction co-
efficient of vSF .  Some papers, applying the least 

squares method, show that experimental results can 
be shown by analytic relation 

0,42 0,048
00,007 1,985

0

λ 1,82
1

λ ( )

v

S
e

 
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
                       (33) 

where: λ−friction coefficient of axial, non-swirling 
flow, 0 SF  parameter immediately after local 

obstacle, so in the income cross-section. In this way, 
all elements of eq. (20) are shown through the SF 
parameters and the mathematical model of the 
mentioned flow can be established. Based on 
experimental results, it can be established the 
following dependence 

0,34
00,012

αα α
x

R
v A e

 
                                          (34) 

where: αA  swirling coefficient, α−Coriolis 

coefficient of axial non-swirling flow. Levelling the 
expression (25) where and the expression (34), we 
get the following dependence 

0,34
00,012 .

αα
x

RA
e
 




                                            (35) 

on the base of which eq. (22) reads 
α 2

β
3


 . 

Inserting eq. (35) in the last relation, we finally 
obtain 

the dependence of Boussinesq coefficient for SF as 

0,34
00,012 .

α 2
β (1 )

3

x

R

v v

A
e

E

 


                             (36) 

that is 

0,34
00,012 .

α 2
β (1 )

3

x

R

v v
A e

E

 
 

 


                        (37) 
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The mathematical model given by Eq. (20) can be 
transformed in the form 

2β
(ξ ρ+ ρλ ) 2ρ β 0v

v v vx x

du
dx u dx

t dt


  

           (38) 

Inserting Eq. (37) into Eq. (38), with previously 
solved integral, we get the following equation 

0,42 0,048
0

0,34
0

2

0,141,985
0

0,34
0,012 .

α
0

1,82λ
ρ(ξ λ )

1 0,024ρ
( 2 ) 0.

3

v
S

x
v R R

u
e

E lA du
e l

dt

  

 

  



   


(39)  

Equation (39) can be written as 

2. 0
du

C u
dt

                                                             (40) 

Where 

0,42 0,048
0

0,34
0

0,141,985
0

0,34
0,012 .

α
0

1,82λ
ρ(ξ λ ) /

1 0,024ρ
/ ( 2 )

3

v
S

x
v R R

C
e

E lA
e l

  

 

 
      

   
 
 

 

 (41) 

Equation (39), i.e. Eq. (40), represent the differential 
equation that mathematically describes the SF after 
local obstacle. Naturally, it should be stressed that 
model (39) is just one of possible models. It is given 
in function of swirling parameters and out of it we 
can obtain the velocity field in function of already 
mentioned parameters. This paper presents a special 
manner of model development. In this model, one 
should consider four parameters that influence the 
distribution of velocity field: Aα−swirling co-
efficient, Ω0−swirling parameter, T heta−swirling 
intensity and S−swirling flux. Research and 
combining of these parameters values lead to 
velocity profile and conclusions that are a base for 
further research. It should be mentioned that the 
velocity u represents velocity field observed from the 
local obstacle down the flow. As the flow velocity it-
self could take different values, a non-dimensional 
velocity is used in the model and the simulation. It 
takes value 1 at the local obstacle because the ratio 
of maximum and current values is max / 1.u u 
Down the flow, the velocity value, according to the 
continuity equation, decreases, so the non 
dimensional velocities take values less than 1. 

3. OPTIMIZATION OF SF ENERGY 
PA-RAMETERS 

3.1   Short Description of Firefly Algorithm 
(FA) 

Firefly Algorithm FA first was introduced by X.S. 
Yang (2009). For forming FA it is necessary idealize 
some characteristics of firefly flashing light. Here, 
there are used three idealized rules Yang (2014): 

-All reies are unisex so that one rey will be attracted 
to other reies regardless of their sex; 

-Attractiveness is proportional to their brightness, 
thus for any two ashing reies, the less brighter one 
will move towards the brighter one. The attractive-
ness is proportional to the brightness and they both 
decrease as their distance increases. If there is no 
brighter one than a particular rey, it will move 
randomly; 

-The brightness of a rey is affected or determined by 
the landscape of the objective function. For a 
maximization problem, the brightness can simply 
be proportional to the value of the objective 
function. 

Based on these three rules, the basic steps of the rey 
algorithm (FA) can be summarized as the pseudo 
code shown in Algorithm 1. 

Algorithm 1. Firefly algorithm FA (Yang (2009)) 

1: begin 

2: Objective function 1 2( ),  ( , ,... )Tdf x x x x x  

3: Define the total fireflies number in population n 

4: Generate initial population of fireflies 
 =(1,..., )ix i n  

5: Define the number of variables d 

6: Light intensity iI  and ix is determined by ( )if x

7: Define light absorption coeficient γ 

8: while (k < MaxGeneration) 

9: for i = 1: n %% all n fireflies 

10: for j= 1: i%% all n fireflies 

11: if (I )j iI  

12: Move firefly i towards j in d dimension 

13: Attractiveness varies with distance r via exp [-
γr]  

14: Evaluate new solutions and update light intensity 

15: end if 

16: end for j 

17: end for i 

18: Rank the fireflies and find the current best 

19: end while 

20: Postprocess results and visualization 

21: end 

In FA algorithms, of special significance are: light 
intensity variation and attractiveness formulation. 
For simplicity sake, it always can be assumed that 
attractiveness of a single firefly is determined by 
intensity of light flashing, which is related to the 
value of objective function (Yang 2009, Yang  2014, 
Arora and Singh 2013). 

In the simplest case for maximum optimization 
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problems, the brightness I of a rey at a certain 
location x can be chosen as I (x) ∝ f (x). However, 
the attractiveness is relative, it depends on 
beholders impression or on the other reies 
judgements. So, it will vary with the distance ri j 
between rey i and rey j. Additionally, light intensity 
decreases with the distance increase from its 
source. The light is also absorbed, so the 
attractiveness should be allowed to vary with the 
degree of absorption. In the simplest form, the 
flashing light intensity I(r) varies according to the 

inverse square law 2( ) /sI r I r where I is the 

intensity at the source. For the given medium with 
a fixed light absorption coefficient γ, the flashing 
light intensity varies with the distance r 

γ
0( ) rI r I e                                                             (41) 

where 0I is the initial flashing light intensity. 

To avoid the singularity at r = 0 in the expression 
2/sI r , the combined effect of both the inverse 

square law and absorption can be approximated by 
the equation 

2γ
0( ) .rI r I e                                                           (42) 

The firefly’s attractiveness is proportional to the light 
intensity, thus we can define the attractiveness β of a 
firefly by 

2γ 0
0 2

β
β( )=β   or  β

1
rr e

r
 


                                   (43) 

where 0β is the attractiveness at r = 0. The distance 

between any two fireflies i and j at ix  and ,jx

respectively, is the Cartesian distance 

2
, ,

1

( )
d

ij i j i k j k
k

r x x x x


                              (44) 

where ,i kx is the thk  component of the spatial 

coordinate ix of thi firefly. In 2 − D case, we have 

2 2( ) ( ) .ij i j i jr x x y y     

The movement of a firefly i attracted to another more 
attractive (brighter) firefly j is defined by 

2γ
0

1
β ( ) α( )

2
ijr

i i i jx x e x x rand
                    (45) 

where the second member stands for the 
attractiveness influence, while the third member is 
randomization with being the randomization 
parameter rand is a random number generator 
uniformly distributed in [0,1]. 

The characteristic length is defined as 1 / γ , 
through whose value the attractiveness drastically 

varies from 0β  to 1
0β e , i.e. 0β / 2.  

The parameter γ characterizes the variation of the 
attractiveness, and its middle value is very important 
in determining the speed of the convergence and 
deter-mines how the FA algorithm behaves. In 
theory, γ [0, ]  but in practice, γ=  (1)O  is 
determined by the characteristic length Γ of the 
system to be optimized. Thus, in most applications, 
it varies from 0.01 to 10. 

3.2   Objective Function 

Optimization process is related to solving the Eq. 
(40). For this, Simulink was used and its block 
diagram is shown in Fig. 2. 

 

 
Fig. 2. Model equation block diagram. 

 
 

Coefficient C, existing in Eq. (40), depends on 
parameters which are being optimized: α,A 0,   

and S. FA algorithm calculates the values of these 
parameters, which are within the given boundaries. 
Based on the parameters’ values, determined by FA, 
the new value of coefficient C is calculated, and then 
this value is sent to Simulink model. Also, the 
function initial value (0)u is sent to Simulink. 
Running the Simulink model, two vectors are 
obtained: u that contains function values for 
particular time values in vector t. As the objective 
function, sum of squares of vector u elements is 
adopted: 

2

1

N

obj i
i

F u


   

where N denotes the dimension of vector u. The 
lower the sum, the lower the surface under function 

( ).u t When FA is finished, the function ( ),u t

obtained for optimum values of parameters, is 
shown. 

4. RESULTS 

In all optimization cases, the algorithm parameters 
are: n = 20− number of fireflies, α = 0.25, γ = 0.9, 

0β = 0.9, maxiter = 50− maximum number of 

iterations and d = 4− number of variables being 
optimized. 

First case 

Range of project variables is: α [1000 :10000],A 
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0 [0.01: 0.5],  [0.1 :1] and [0.1 :1].S  Values 

obtained by optimization are: α 7.1728 003,A e 

0 0.01,  Θ=0.920, S=0.1000 and 

0.012467.objf   

 

 
Fig. 3. Velocity dependence on time in the first 

case.  

 
Second case 

Range of project variables is: α [1:1000],A   

0 [0.01: 0.5],  Θ ∈ [0.1 : 1] and § ∈ [0.1 : 1]. 

Values obtained by optimization are: 

α 219.2044A   0 0.102,  Θ = 0.8512, S= 0.1948 

and 0.000215.objf   

In the first phase of parameters optimization, the 
influence of swirling coefficient αA  and swirling 

parameter at the point of local resistance 0 on the 

transient process time was investigated. To get the 
clearer image of these parameters, their boundaries 
were changed for the initial values in presented 
optimization cases. The optimization of parameter 
Aα is firstly conducted in the range α [1:1000]A 

and then in the range α [1000 :10000],A  in order to 

encompass the widest possible interval of values of 
this coefficient. In Figs. 3 and 4, we can notice 
various times of transition process calming. The 
calming time also directly depends on the swirling 
parameter value at the local resistance 0. So, it was 

optimized, too, in two ranges also: firstly for 

0 [0.01: 0.5]  and then for 0 [0.5 :1]  which is 

depicted in Figs. 5 and 6. 

The parameter’s optimum values, α 219.2044A 

and than α 155.5,A  were determined. The result of 

this difference is the increase of transition process 
time. Namely, as Figs. 3, 4, 5 and 6 show, for 
optimum values α 219.2044A  and 0 0.102, 
the calming time is about 0.1s, while in case when 
Aα = 155.5 and 0 0.5,  the calming time is 

approximately 5s. 

Since the swirling parameter is directly related to the 
fluid flow, i.e. to the velocity field, characterized by 
existence of axial and circumferential velocity 
component, it can be concluded that the higher value 
of this parameter corresponds to longer calming 
time. 

As the diagrams confirm this fact, we can conclude 
that the model reflects the process physicality. 
Naturally, the values of mentioned parameter depend 
on the values of parameter Aα itself, but also on the 
values of other SF parameters. 

On the other hand, Fig. 4 and 6 indicate the fact 
that when the values of SF coefficient are in the 
range α [1000 :10000],A   and the range 

0 [0.01: 0.5]  changes, and then 0 [0.5 :1]  , 

then the calming time for Aα = 7172.8 is higher 
than when α 8614.5A  . This relation of 

parameters is a result of expression (21) 
dependence from which 

0,34
00,012 .

α α
0,34
0

α α
  or  (α α)

0,012 .

x
v R

vA A e
x

R


  


 

from which we can see that it depends on Coriolis 
coefficient difference between swirling and non-
swirling flow. The higher the difference, i.e. the 
higher the coefficient αA  value, the higher the 

energy loss, thus the lower the flow velocity value. 
Surely, this value depends also on swirl parameter 

0, which diagrams confirm. Equally, higher value 

of parameter 0 responds to higher value of 

coefficient α 8614.5,A  which the last dependence 

shows. 

 

 
Fig. 4. Velocity dependence on time in the second 

case. 

 
Third case 

Range of project variables is: α [1:1000],A 

0 [0.5 :1],  [0.1 :1] and [0.1 :1].S   
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Fig. 5. Velocity dependence on time in the third 
case. 

 
Values obtained by optimization are: α 155.5316A 

0 0.500,   1.000,   0.6222S  and 

0.575412.objf   

Fourth case 

Range of project variables is: α [1000 :10000],A 

0 [0.5 :1],  [0.1 :1] and [0.1 :1].S   

Values obtained by optimization are: 

α 8.6145 003,A e  0 0.500,   Θ = 1.000, S = 

0.5622 and 0.085555objf   

 

 
Fig. 6. Velocity dependence on time in the fourth 

case. 

 
Fifth case 

Range of project variables is: α [1:1000],A   

0 [0.01:1],  [0.1 :1] and [0.1 :1].S  Values 

obtained by optimization are: αA   .  

02.8689 003, 0.0100, 1.000,

3.5636 and 0.000164.obj

e S

f

     


.. 

Second set of parameters optimization is directed to 
the optimization of swirling intensity Θ and swirling 
flux S. Namely, this optimization set investigates the 
influence of ratio between kinetic energies of 
circumferential and axial flow velocities, i.e. 

investigates the influence of motion quantities of 
these two velocity components. 

 

 
Fig. 7. Velocity dependence on time in the fifth 

case. 
 

For this investigation set it is α [1:10000]A   and 

0 [0.01:1]  in order to investigate the influence of 

two remaining parameters. In Figs. 7 and 8 the 
swirling flux influence was researched and 
presented, due to its interval change from S ∈ [0.1 : 
1] to S ∈ [1 : 10]. The observed parameter contains 
first power of circumferential component of velocity 
in relation to the axial component value, so that there 
is expected its lower influence on the process 
calming time in comparison to previous swirling 
parameter. It is exactly what the diagrams 7 and 8 
present, because here the calming time for optimum 
values S = 0.4271 and S = 0.228 varies from about 3s 
to 0.5s, respectively. Calming time variation is 
slightly lower than in case of optimization of 
swirling parameter and swirling coefficient, which 
should have been expected and additionally con-
firms the model validity regarding the process 
nature. 

Sixth case 

Range of project variables is: α 0[1:10000],A   ∈ 

[0.01 : 1], Θ ∈ [0.1 : 1] and S ∈ [1 : 10]. 

Values obtained by optimization are: αA 

02.93988 003, 0.0406, 0.2282,

2.2668 and 0.078542.obj

e S

f

     



Seventh case 

Range of project variables is: α 0[1:10000],A   ∈ 

[0.01 : 1], Θ ∈ [1 : 10] and S ∈ [1 : 10]. 

Values obtained by optimization are: αA 

02.8689 003, 0.0100, 1.000,

3.6536 and 0.000164.obj

e S

f

     


 

The swirling intensity Θ causes minimum variation 
of calming time, because both for optimum value Θ 
= 1.000 and Θ = 8.61 the calming time is about 0.2s. 
This fact can be explained by the lowest impact of 
this parameter in Eq. (40), i.e. (41), as this parameter 
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figures only in one place, and it is not a part of the 
function where parameters 0  and S exist. 

 

 
Fig. 8. Velocity dependence on time in the sixth 

case 

 
 

 
Fig. 9. Velocity dependence on time in the 

seventh case. 

 

 
Fig. 10. Velocity dependence on time in the 

eighth case. 
 

Eight case 

Range of project variables is: α 0[1:10000],A   ∈ 

[0.01 : 1], Θ ∈ [1 : 10] and S ∈ [0.1 : 1]. 

Values obtained by optimization are: αA 

03.8991 003, 0.0237, 7.8912,

1.000 and 0.000204.obj

e S

f

     


 

This is just a part of the research and there is a great 
number of possibilities to obtain other dependences 
and diagrams. 

5. CONCLUSION 

The paper presents the original mathematical 
procedure which led to formulation of physics-
mathematical model of swirling flow, which occurs 
when the fluid flow runs into the local obstacle, 
which is inevitable in oil-hydraulic systems 
operation. 

In the procedure shown, transfer theorems and the 
basic flow equations, known in literature, were used. 
However, they were combined with some relations 
obtained by experimental researches, carried out in 
the previous period of swirling effects investigation. 
In this way, the advanced mathematical model was 
established, which is in the form of differential 
equation where the velocity field is dominant. 
Surely, as in every investigation, there are doubts if 
the developed model describes the flow nature, 
because some effects were neglected and some taken 
from other authors. 

Therefore, the combination of Firefly Algorithm and 
Simulink was used to conduct the parameters 
optimization, in order to investigate the influence of 
basic parameters of SF on the velocity field after the 
local obstacle. As an indicator, the non-dimensional 
velocity was used and velocity over time diagrams 
were formed. Since the SF is a transient process, it is 
important to study the calming time, i.e. the velocity 
field forming time as before local obstacle. 

The researches revealed that the SF parameters have 
a crucial impact on the process calming time and 
velocity values after local obstacle. Considering the 
structure of model obtained, it can be seen that the 
research was directed to four parameters: swirling 
coefficient α ,A swirling parameter at the very 

obstacle Ω0, swirling flux S and swirling intensity Θ. 
Naturally, there is a vast number of combinations for 
these four parameters, so the paper presents only a 
part of the research. It can be clearly stated that the 
swirling parameter Ω0 has the highest impact, 
because it is directly connected to the flow, and thus 
with the velocity field, but also with the circulation 
that contains circumferential component of velocity. 

The presented diagrams are in conformity with the 
nature of the process, which other authors can utilize 
as a basis for the model improvement, so the 
phenomenon of SF could be studied more 
thoroughly. 
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