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ABSTRACT 

In this study, radial basis function based differential quadrature (RBF-DQ) method is applied to the natural 
convection in an inclined unit square cavity under the effect of an applied magnetic field in different angles. 
The stream function-vorticity form of the dimensionless governing equations are concentrated on. The change 
in different Hartmann numbers, Rayleigh numbers and inclination angles of the cavity is investigated both in 
terms of streamlines, isotherms, vorticity contours and the average Nusselt number through the heated wall. 
The increase in Hartmann number causes heat transfer to be conductive due to the Lorentz force, and therefore 
the inclination angle of the cavity loses its effect. A remarkable effect of the inclination angle on heat transfer 

for 4 610 10Ra  is presented. The proposed method is a global method and provides to use small number of 
grid points as a result of DQ method. 

Keywords: Radial basis functions; Differential quadrature method; Natural convection; Tilted cavity. 

1. INTRODUCTION

Natural convective heat transfer under the effect of a 
magnetic field in closed enclosures has received 
intense curiosity due to the extensive applications in 
crystal growth process, solar technologies, nuclear 
reactors, micro electronic devices, food and 
metallurgical industries etc. In most of the studies, 
differentially heated horizontal or vertical walls are 
examined. Inclined walls have also taken attention 
due to the effects on heat transfer and fluid flow by 
tangential and normal components of buoyancy 
force. 

Different numerical techniques in different 
geometries are applied to simulate natural 
convection in differentially heated enclosures. 
Cianfrini et al. (2005) numerically studied the 
natural convection in a tilted, differentially opposite 
heated walls in a cavity employing the SIMPLE 
algorithm. They found that the inclination angle 

around 135 , and 315  causes the overall heat 
transfer to be larger than 0◦ along the x-, and y-axes, 
respectively. Finite volume method (FVM) and 
SIMPLE algorithm is applied for simulation of the 
same problem involving a centered, conducting 
block by Das and Reddy (2006). The inclination 

angle between 0 and 90 has no effect at a low Ra 
value while the convective heat transfer increases 
with the increase in the angle. Pirmohammadi and 

Ghassemi (2002) take into account the presence of a 
magnetic field in an inclined cavity. Using the 
SIMPLE algorithm which is based on finite volume 
code, they showed that convective heat transfer 

strongly depends on the angle between 0 and 135  
for Ra = 104 and Ra = 105. Control volume based 
SIMPLER algorithm is also used by Han (2009) to 
simulate natural convection in a tilted cavity 
including electrically conducting fluid. The 
influence of the inclination angle on the 
electromagnetic retarding force is emphasized while 
the effect of inclination angle disregarded with the 
increase in the magnitude of the applied magnetic 
field. Lacerda and Colaço (2014) have examined the 
magneto convection in a tilted cavity using RBF 
approximation. They solved the governing equations 
only in stream function (biharmonic) and 
temperature equation. Lattice Boltzmann method 
(LBM) is applied in Munir et al. (2011) to this 
problem in different types of boundary conditions. 
Up to an inclination angle, average Nusselt number 
is higher in case of adiabatic boundary conditions 
than the case of perfectly boundary conditions. The 
same method is also carried out by Huelsz and 
Rechtman (2013) to discuss the same problem. 
Hysteresis depending on Rayleigh number is 
noticed. Basak et al. (2014) have analyzed the 
inclination angle utilizing the Galerkin finite element 
method with a penalty parameter. Their results 
demonstrated that convective heat transfer is 
pronounced at 15◦ and 30◦ at a high Pr = 998. A finite 
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volume Navier-Stokes solver in combination with 
Adams-Bashforth for nonlinear terms and Crank-
Nicolson for the viscous and diffusion terms is used 
by Williamson et al. (2016) as Ra = 104 − 108 and Pr 
= 7. A critical angle where a bifurcation oc-curs in 
the flow is found. In this case, transient and single 
mode flow is noted while the multi-nodal flow takes 
place with the increase in the angle. Kherief et al. 
(2016) considered the natural convection problem in 
presence of magnetic field in an inclined rectangular 
cavity applying the finite volume method. The 
formation of counter-rotating eddies in the 
counterclockwise inclination is reported. The same 
conclusion is also encountered by Kherief et al. 
(2012) by using the same method in the MHD natural 
convection problem in a cavity filled with mercury. 

Natural convection in an inclined cavity in 3D is also 
investigated in some studies. Lo et al. (2007) and 
Ravnik et al. (2008) applied DQ method and 
boundary element method (BEM), respectively, to 
this problem in velocity-vorticity form of the 
equations. They found that Nusselt number 
decreases at each Rayleigh number as the inclination 

angle increases from 0 to 60 .  In both study, the 
usage of considerably small number grid points 

3(25 )  is noted. 

Radial basis function (RBF) based method have 
taken great deal of interest in the last decade. RBFs 
provide independence from mesh, and therefore they 
become indispensable for meshless free methods. 
The novel books by Buhmann (2003) and Fasshauer 
(2007) involve many details and applications about 
RBFs. 

Having high accuracy, differential quadrature (DQ) 
method discretizes the derivatives by weighting 
coefficients using all grid points in the domain. This 
method is firstly introduced by Bellman et al. (1972), 
and the concise basics on the method are presented 
by Shu (2000). 

The combination of DQ and RBFs is studied in some 
studies. Shu et al. (2004) showed the efficiency of 
RBF based-DQ applying the method to linear and 
nonlinear examples. They showed that considerably 
small number of grid points with arbitrary 
distribution result in good accuracy. To enable one 
to obtain well-conditioned matrices when the 
number of grid points are increased, an upwind local 
RBF based-DQ method is proposed by Shu et al. 
(2005). They applied this approach to inviscid 
compressible flows, and concluded that complex 
geometries can be managed by this method in-
dependently from the node generation. Integrated 
RBF based-DQ method is also investigated by Shu 
and Wu (2007). Better accuracy on Burger’s 
equation and Navier-Stokes equations than RBF 
based-DQ is observed. 

In the present study, natural convection in an 
inclined, differentially heated, unit square cavity un-
der the effect of a magnetic field is investigated by 
using the RBF-DQ method. The objective of this 
study is to analyze the effect of both inclination 
angles in the enclosure and the applied magnetic 
field, and to examine the efficiency of the RBF-DQ 

method using the small number of grid points. 

2. MATHEMATICAL BASIS 

The two-dimensional, unsteady, laminar flow of a 
Newtonian, incompressible, viscous fluid in a unit 
square cavity is considered. Viscous dissipation, 
Joule heating and radiation effect are neglected. The 
magnetic Reynolds number is assumed to be small so 
that the induced magnetic field can be neglected. 

The physical properties of the fluid is constant except 
the density variation following from Boussinesq 
approximation which is 0 0ρ=ρ [1 β( )]T T  with 

β (1 / ρ)[ ρ/ ] ,pT    and subindex 0 refers to 

reference state. 

The governing equations with continuity equation, 
momentum equations and energy equation in terms 

of the velocity , ,u vu pressure p and temperature 

T are written as 

. 0 u                                                                    (1a) 

2

2
20

1
ν

ρ

σ
( sinθcosθ sin θ) β( )sinφ

ρ x c

u u u p
u u v

t x y y

B
v u g T T

   
    

   

   

(1b) 

2

2
20

1
ν

ρ

σ
( sinθcosθ cos θ) β( )cosφ

ρ y c

v v v p
v u v

t x y y

B
u v g T T

   
    

   

   

(1c) 

2α . ,
T

T T
t


   


u                                                  (1d) 

where ν  is the kinematic viscosity, ρ  is the density 
of the fluid, σ is the electrical conductivity of the 
fluid, 0B  is the magnitude of the applied magnetic 

field, θ is the inclination angle of the applied 
magnetic field, φ  is the inclination angle of the 

enclosure, xg  and yg  are x and y components of 

the gravitational acceleration g, β is the thermal 
expansion coefficient, and α is the thermal 
diffusivity. 

In order to obtain dimensionless equations, the 
following non-dimensional variables are defined as 

,     ,     ,     ,
α α

x y ul vl
x y u v

L L
                         (2) 
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p t T

T TL

    


                 (3) 

where L is the characteristic length. 

These dimensionless variables are substituted into 
Eq. (1). Then, the prime notation is dropped, and 
u v p T    form of non-dimensional equations 
are obtained. In order not to tackle with pressure 
terms, the stream function ψ is defined as 
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/ ,y u   / y v    satisfying the continuity 
equation. Vorticity equation is obtained by taking 
difference of the derivative of momentum equations 
as / /v x u y     which is the definition of 
vorticity. 

The dimensionless governing equations in terms of 
stream function ψ, temperature T and vorticity w are 
deduced as 

2 w                                                                   (4a) 

2 T T T
T u v

t x y

  
   

  
                                     (4b) 
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(4c) 

Dimensionless parameters resulting from the non-
dimensionalization are 

3
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α αν ρν
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
      (5) 

Prandtl, Rayleigh and Hartmann numbers, 
respectively. 

Problem geometry is described in Fig. 1. The walls 
with Th and Tc are heated and cold walls, 
respectively, and the jagged walls are adiabatic 

walls. On each walls, 0.u v    The magnitude 

of the applied magnetic field is 0.BB Vorticity 

boundary conditions are unknown. 

 

 
Fig. 1. Problem Configuration. 

 

3. RBF-DQ METHOD AND ITS 
APPLICATION 

DQ method approximates the derivatives of a 
function by a linear weighted sum of all functional 
values in the whole physical domain. 

For a two-dimensional problem, the partial 
derivatives of a function g are approximated by DQ 
method as (Shu 2000) 

1
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                                    (6) 
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                               (7) 

where N, M are the number of grid points, and ξk

and ξk  are the weighting coefficients in x and y 

directions, respectively. 

RBF methods approximate a function g using a ra-
dial basis function χ  as 

1

c χ ,
NM

i j ijg

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

                                                          (8) 

where c j ’s are coefficients to be determined, 

1,...,i NM refers to index of any field point in the 

domain. χ j  is a function of radial distance r = 

2jr  x x in which ( , )x yx is a field point and 

( , )j j jx yx is a collocation point. 

In matrix-vector form, Eq. (8) can be written as 

,g Fc                                                                           (9) 

where F is the matrix of size NM NM formed by 
χ ij ’s columnwise. 

Equivalently, Eq. (9) can be rewritten as 

1 .c F g                                                                      (10) 

Any derivative of g may also be expressed as in Eq. 
(9) using Eq. (10), i.e. 
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(11)  

By means of DQ method, thn  order partial 
derivatives of g may also be written in matrix-vector 
form as 
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where ξn  and ξn  are matrices of size NM NM  
formed by the weighting coefficients. 

From Eq. (11), we can also derive nth order partial 
derivative by RBF method for any point (xk,yk) as 

1 1,      .
n n n n

n n n n

g F g F
F g F g

x x y y
    

 
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              (14) 

Thus, the weighting coefficients ξn  and ξn  of 
RBF-DQ method in Eqs. (12) and (13) are obtained 
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using Eq. (14) as 

1 1ξ ,      ξ .
n n

n n
n n

F F
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x y
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 
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                           (15) 

As an application of RBF-DQ method to the 
described problem in this study, once the space 
derivatives are discretized by RBF-DQ and 
employing the Backward Euler time integration 
scheme for the time derivatives, the iterative system 
on the dimensionless governing equations are 
constructed as follows 
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where D2 is the Laplacian matrix formed by second 
order weighting coefficients of RBF-DQ as 

2 2
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and yD  are first order 

weighting coefficients of RBF-DQ as 1
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matrix of size ,NM NM  and m shows the iteration. 

The unknown vorticity boundary conditions are 
easily handled by 

1 1.m m
x y

v u
w D v D u
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                            (17) 

The sequential iteration starts with the initial values 
of ψ, w, T which are taken as zero except on 
boundary. After solving Eq. (16a), velocity 
components are computed by Eq. (16b). The 
boundary conditions for u, v are inserted. Then, u, v 
are used in M matrix, and also in the computation of 
vorticity boundary conditions. 

The criterion to stop the iterations is as follows 
(Khanafer et al. 1999) 

1 1 1

ε,

m m m m m m

m m m

T T w w

T w

  
  

  

   
  


 

(18)  

in which 5ε=10 is the tolerance. Satisfaction of Eq. 
(18) means that the steady-state is reached. 

The Dirichlet type boundary conditions are inserted 
into the system matrix directly. The Neumann 
boundary conditions are added to the system matrix 

which results in an overdetermined system. The 
systems of the form Ax = b are solved by Gaussian 
elimination with partial pivoting, and QR 
factorization is carried out for overdetermined system. 

Multiquadric (MQ) RBF 2 2f r c  is chosen in 
this study. c is called the ‘shape parameter’ which 
controls the shape of the basis functions. As c gets 
larger, the shape becomes flat and the matrix be-
comes more ill-conditioned. 

MQ collocation matrices are conditionally positive 
definite (Fasshauer (2007); Michelli (1986)). Also, 
the exponential convergence of the error of MQ 
approximation have been demonstrated by Madych 
and Nelson (1992). 

The convenient shape parameter c is determined by 
an idea similar to LOOCV (leave one out of cross 
validation). 

• An interval of c, for which the well-conditioned 
system matrices are provided, is taken firstly. 
The interval is divided into equal c values. 

• At any ic  value, average Nusselt number 

through the heated wall Nu is computed with 
NM and NM − 1 number of grid points. 

• The value of ic  giving the result of the error 

1NM NM

NM

Nu Nu

Nu




smallest, in which 
NM

Nu

and 
1NM

Nu


are the average Nusselt numbers 

with NM  and 1NM  grid points, is chosen, 
respectively. 

Inverse matrices in Eq. (16) are managed by using 
right back slash operator in Matlab which is based on 
Gaussian elimination with partial pivoting. For 

instance, 1
x

F
D F

x





is computed as

x
F

D F
x





 while .x
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The average Nusselt number through the heated left 

wall is defined by 
1

0
,

T
Nu dy

x


 

 and computed by 

Clenshaw Curtis quadrature (Trefethen 2000) due to 
the usage of Chebyshev non-uniform grid 
distribution. 

4. NUMERICAL RESULTS 

Prandtl number is fixed as Pr = 0.71. After finding 

the vorticity at ( 1)thm  time, a relaxation parameter 

is used as 1 1γ (1 γ)m m mw w w    for 

accelerating the convergence in which 0 γ 1. 
Because, reaction terms in vorticity equation involve 
all parameters. 

The proposed method is validated by the bench-mark 
problem in Davis (1983) comparing the average 
Nusselt number values through the heated wall. As 
can be seen from Table 1, the results with RBF-DQ 
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Table 1 Comparison of Nu  through the left heated wall 

Present 

Ra c ∆t γ Grids Nu  Davis(1983) 

103 0.08 0.01 0.1 21×21 1.117 1.118 

104 0.09 0.01 0.1 21×21 2.245 2.243 

105 0.075 0.005 0.1 23×23 4.53 4.519 

106 0.05 0.001 0.1 29×29 8.868 8.8 

 

 
Fig. 2. The angle ϕ changes when 510 ,Ra  Ha = 10, θ = 0. 

 
 

yield well agreement with the results in Davis 
(1983), in which the resolution is 41×41, using the 
small number of grid points. As Ra increases, the 
value of the shape parameter decreases, and instead 
of decreasing γ, ∆t is decreased. 

Grid independence is presented for φ=π/4, θ=0, Ra 
= 105 in different Ha values in Table 2. Even 

 
Table 2 Grid independence 

 Nu  

Grids Ha = 150 Ha = 50 Ha = 100 

2121 1.26 2.57 4.44 

2323 1.25 2.55 4.43 

2525 1.25 2.55 4.43 

2727 1.25 2.54 4.42 
 

 
if 23×23 number of grid points are enough for Ha = 
10 and Ha = 50, 25×25 number of grid points are 
fixed for all Ha values unless otherwise declared. 

In Fig. 2, the variation of the inclination angle φ  of 
the enclosure is depicted by vorticity contours, 
isotherms and streamlines from top row to bottom 
row. In case of φ=π/4 and φ=3π/4, symmetric 
behaviour is seen in each contours. Regarding the 
contour signs of streamlines, clockwise ( φ=π/4 ) and 

counter-clockwise (φ=3π/4) centered cells appear. 

φ=π/2  exhibits the Rayleigh-Benard convection 
with counterclockwise rotation in stream-lines. The 

temperature gradient through the top and bottom 
walls is intensified in isotherms. With φ=5π/4 and 

φ=7π/4, convective heat transfer is reduced as is 
seen from nearly orthogonal isotherms to the 
adiabatic walls. The main, centered cell in 
streamlines noted in φ=π/4, 3π/4 is divided into two 

cells in both φ=5π/4 and φ=7π/4 values. 

Figure 3 demonstrates u and v velocity profiles along 

the line y=x in some angles φ  when 510 ,Ra  Ha = 
10 are fixed. u-velocity increases up to x = y = 0.5 at 
φ=3π/4 and φ=5π/4 while it decreases at φ=π/4 and 

φ=7π/4. From x = y = 0.5 to x = y = 1, this state turns 

out, and u-velocity increases for φ=π/4 and φ=7π/4.

while it decreases for φ=3π/4 and φ=5π/4. Absolute 

value of u-velocity is almost the same for φ=π/4 and  

φ=3π/4,  and is greater than for other φ  values. 

v-velocity has a symmetric, almost sinusoidal 
behaviour at φ=5π/4 and φ=7π/4. due to the counter 
rotating secondary cells in streamlines. Absolute 
value of v-velocity increases at a shorter x-value at 
φ=3π/4 than φ=π/4 because of more rapid rising of 

heat in v-velocity direction at φ=3π/4. Similar rapid 

rising is also noticed at φ=π/2.  

In Fig. 4, Nu  is investigated as the angle φ  changes 
in different Ha values. Most of the change is noticed 
at Ha = 10 (θ = 0). In this case, buoyancy force 
dominates over the applied magnetic field at a small 
Ha value. A symmetry is seen from φ=0 to φ=π.  
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Due to the buoyancy force over the rising heat, Nu 
decreases at φ=π/2. . From φ=π to φ=3π/2, a 
reduction is observed in Ha = 10 and Ha = 50. Then, 

Nu  increases from φ=3π/2 to φ=7π/4 at only Ha = 

10. For large Ha (Ha = 100), the effect of φ on heat 
transfer almost disappears. This points to the 
retarding effect of the applied magnetic field on heat 

transfer. What’s more, φ=300 5π/3   and 

φ=315 7π/4  can also be interpreted as φ 60 

and φ 45 .   

 

 
(a) u-velocity change 

 
(b) v-velocity change 

Fig. 3. Velocity profiles along the line y = x with 

respect to φ  when 5=10 ,Ra Ha = 10, θ = 0. 

 
Figure 5 reveals the relation between Nu  and φ  in 

various Ra values. No variation in Nu  for 3=10Ra  
indicates that heat transfer is not affected by φ  at a 
small Ra value. As in Fig. 4 in the case of Ha = 10, 

the variation of Nu at 4 6=10 10Ra  is similar to 
each other. Only an increase in convective heat 

transfer is pronounced at 410Ra  at φ 60  and 

φ 45 .  This may be due to the buoyancy force 
causing the rapid movement of the heated fluid when 
the enclosure took the rightly inclined position in 
which the heated wall becomes almost at the top. 

 
Fig. 4. hNu variation in different inclination 

angles φ  of the cavity and in different Ha 

numbers when 5=10 ,Ra θ = 0. 

 

 
Fig. 5. hNu  variation in different inclination 

angles φ  of the cavity and in different Ra 

numbers when Ha = 10, θ = 0. 
 
 

 
Fig. 6. Hartmann number variation with Ra = 

105, ϕ = π/4, θ = 0. 

 
The Lorentz force inhibits the heat transfer and also 
fluid flow. This is well observed at Ha = 300 in Fig. 
6. Centered cell in streamlines is divided into 
secondary cells at Ha = 100. Then, a strong 
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clustering of streamlines through the heated and cold 
walls, and a reduction in fluid velocity (as is seen in 
marked contour values in streamlines) are 
emphasized at Ha = 300. For Ha = 300, 31 × 31 grids 
with ∆t = 0.001, γ = 0.01 and c = 0.032 have been 
used. Almost stationary behaviour in vorticity con-
tours is also noted due to decrease in fluid motion. 

 

 
Fig. 7. Average Nusselt number variation in 

different angles θ of applied magnetic field and 

in different Ha numbers when 5=10 ,Ra φ 0.  
 

 
 

 
Fig. 8. Shape parameter variation in different φ

with different Ha and Ra values. 
 

The impact of the angle of the applied magnetic field 

on Nu  is represented in Fig. 7. No much alteration 

is seen in Nu  in each Ha values. Only a small peak 
is noticed at the angles φ=π/4 and φ=5π/4  for Ha = 
50 and Ha = 100 which points to a small increase in 
convective heat transfer. Regardless of φ,  
conductive heat transfer arises as Ha increases. 

In Fig. 8 and Fig. 9, the influence of inclination angle 
φ  on the shape parameter c in various values of Ha 
and Ra values is illustrated. c values for any Ha value 

when 5=10 ,Ra θ = 0 in Fig. 8 are very close to each 
other, small changes are seen in c values. Also, for a 
very large Ha (Ha = 300), c values are smaller than 
the c values for other Ha values. Notable oscillations 
in c values occur in different Ra values when Ha = 
10, θ = 0. 

 

 
 

 
Fig. 9. Shape parameter variation in different θ 

with different Ha, and N values. 
 

Shape parameter c almost take the same values in 
different angles θ and Ha. As Ha increases, c de-
creases for all angles θ as can be seen in Fig. 9 with 

5=10 ,Ra φ 0.  Moreover, the increase in the 
number of grid points causes c to be reduced in 

which 5=10 ,Ra Ha = 10, θ = 0, φ=π/4 are 
performed. 

5. CONCLUSION 

The efficiency of RBF-DQ method in a concise ex-
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planation is presented simulating the natural 
convective heat transfer in presence of an applied 
magnetic field and in a differentially heated tilted 
cavity. The values of average Nusselt number are in 
well agreement with the benchmark results 
performing the small number of grid points. The 
effect of inclination angle of the enclosure is noted at 
small values of Hartmann numbers, and Rayleigh 

numbers greater than 410 . Convective heat transfer is 
much pronounced at φ 0 π  than 

φ 5π/4 7π/4.   
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