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ABSTRACT 

This paper aims at proposing a novel type tunable acoustic metamaterials with complete band gap composed 
of piezoelectric rods (Lithium Niobate) with square array as inclusion embedded polyimide aerogel 
background. The plane wave expansion method and the principles of Bloch-Floquet method used to get a 
band frequency and study the pass band for noise control. The results of this paper provide the required 
guidance for designing tunable wave filters or wave guide  which might be useful in high-precision 
mechanical systems operated in certain frequency ranges, and switches made of piezoelectric; they also 
propose a novel type of tunable mechanical meta composite, where is independent of wave direction and has 
an equal sensitivity in all directions in which reacts omnidirectional and improves the aero acoustic noise 
control (e.g. bladeless fans) as well as general performance of vibrating structures (e.g. wind turbine). 

Keywords: Phononic crystal; Acoustic band gaps; Passive control; Piezoelectricity; Low frequency regime 
shielding.  

NOMENCLATURE 

AG  amplitude vector of the partial waves 

cA area of the primitive unit cell 

ijklc elastic coefficients tensor 

iD electric displacement vector fields 

iE  electric filed 

ijke  piezoelectric coefficients 

f filling fraction ratio 
F( )G  structure function 
G vectors of reciprocal lattice 

1J  first kind Bessel function of first order 

k "Bloch" wave vector 

iu  displacement vector 

( , )tU r  generalized displacement or generalized 
stress vectors  

r radius of cylindrical scattering material 

ij cauchy stress tensor 

ij linear part of the elastic strain tensor 

  material density 
  frequency 

  electric potential 
( ) r fourier component of arbitrary 

material constants 

2
2 / x   normalized reciprocal lattice vector along

2x

1. INTRODUCTION

Structures or materials that protect or isolate their 
payload from unwanted noise and vibrations are key 
and innovative elements in vibrating structures. In 
general, the control of a complex physical process 
like Blade-Vortex Interaction (BVI) requires a 
thorough understanding of the underlying physics. 
Unfortunately, due to the complexity of BVI, prior 

research on noise control has largely been through 
trial and error applications of various control 
strategies based on physical intuition (Collis, 2002).  

Recently, a new type of fans that is called Bladeless 
fans, could multiply volume flow rate of its intake 
by sucking air from backing of the fan, as a result of 
its specific geometry (Jafari, 2016). Frequency 
spectrum over Sound Pressure Level (SPL) from 
bladeless fans (Jafari, 2015) shows that most of the 
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acoustic energy is approximately concentrated in 
the frequency range up to 2000Hz that makes it 
quite annoying as the human ear is very sensitive to 
sound at the higher end of the frequency range. 
Since the produced noise is proportional to inlet and 
outlet flow rate, commercial development of this 
type of fan needs, efficient noise control. 

More in detail, the idea is to improve the aero 
acoustic noise control and general performance of 
vibrating structures (e.g. wind turbine or bladeless 
fans) by applying a new design and control based 
on inherently passive technique and using a novel 
type of tunable acoustic metamaterials where is 
independent of wave direction and has an equal 
sensitivity in all directions in which reacts 
omnidirectional. The Omni shield property requires 
full band gap property, where the wave, 
independent of direction, at specific frequency 
range, cannot propagate through it. 

The phononic crystals have analogue properties to 
photonic crystals (Joannopoulos, 2011), (Pennec, 
2004) and (Soukoulis 2001). Hence, shortly after 
starting research on photonic band gaps, where the 
band gaps or stop bands observed for electron 
waves in semiconductors, the idea was extended to 
both electromagnetic waves in photonic crystals and 
elastic waves in phononic crystals (Thomas et al., 
2011).These types of meta materials, constituted by 
a periodic repetition of two different materials, can 
either show absolute band gaps in their transmission 
spectra. (Sigalas, 1993) and (Kushwaha, 1993), 
where the elastic waves do not propagate at some 
frequencies or dictate the modes, those are allowed 
to be propagated in the material.  Moreover, these 
types of materials can decrease the velocity of the 
elastic waves and even represent negative refraction 
(Ding, 2007). This capability offers constructing 
new meta materials with special performance for 
vibration control (Bergamini, 2014) or acoustic 
shield with applications in designing elastic filters, 
wave guides, mirrors, and transducers. Similarly, 
several phenomena such as guiding (Torres, 1999); 
(Kafesaki 2000); (Khelif, 2003), bending 
(Miyashita, 2002), (Khelif, 2004), filtering (Khelif, 
2002); (Khelif, 2003), demultiplexing (Pennec, 
2004), and super lenses of acoustic waves (Pennec, 
2005) have been predicted, so far. In addition, 
phononic crystals can tailor the allowed modes and 
their wave speeds inside the material, in such a way 
that the frequencies of various material loss 
subjected to different regimes to be matched with 
the density of some states and frequencies of some 
modes provide enhanced energy absorption 
(Thomas et al., 2011). Since mechanical waves 
propagate in a solid in the form of both longitudinal 
and transverse waves, a designated structure with 
complete phononic filters might have band gaps for 
both waves in the same frequency region 
(Gorishnyy, 2005). 

The geometry and composition characteristics of 
acoustic metamaterials have essential roles in 
showing forbidden gaps of wave propagation in 
these filters, regardless of wave polarization and 
propagation directions. However, the larger the 
bandwidth for this forbidden zones is, the more the 

applications for phononic filters are. Actually, the 
bandwidth for this forbidden zone is a key factor for 
the targeted purposes, especially for noise control at 
specific frequencies. Some researchers have tried to 
enlarge the width of band gaps, e.g. see (Phani, 
2006) they showed that the width of band gaps may 
be determined by the contrast of elastic constants, 
the inclusion (filling) volume fraction, and the 
lattice of the constructed parts. Changing either the 
geometry or the elastic characteristics of the 
constitutive materials through external stimuli such 
as wave propagation causes the band structure of 
phononic crystal to be adjusted to a specific range 
of frequencies, and thus, represents either a partial 
band gap or a full band gap. 

The design of geometry of phononic crystals with 
its inclusions, and matrix with tunable band gaps is 
an interesting but challenging issue. Thus, it is 
needed to design a phononic crystal that can be 
tuned in a desired band gap configuration where 
made waveguide with selective frequency. 

To capture a tunable pass band and stop band in 
phononic crystals with higher efficiency, some 
functional materials were selected to make periodic 
structures such as thermally activated shape 
memory alloy, electro-rheological material, 
dielectric elastomeric layer, and either magneto-
elastic or magneto-electro-elastic materials (Yeh, 
2007); (Robillard, 2009); (Wu, 2009); (Ruzzene, 
2000);(Wang, 2008). 

Representing a full band gap for phononic crystals 
could lead to improve the design of transducers and 
vibration controller.  

The high electromechanical coupling factor and low 
wave impedance at piezoelectric materials (Zou, 
2008); (Zhao, 2012) stimulate the piezoelectric-
based phononic crystal developments. Moreover, 
piezoelectric materials have some unique properties 
as compared with other tunable materials such as 
shape memory alloys and electro-rheological 
materials. These unique properties are the high 
accuracy in control of displacement, quick 
response, and strong reduction of the device size, 
made by piezoelectric materials (Park, 1997). But, 
since the piezoelectric substrate is not isotropic, 
they allow the bulk waves to travel at different 
speeds in different directions.  

Since, there are three polarization planes for elastic 
waves in piezoelectric materials and as three 
different body waves namely longitudinal, 
transverse (shear) in the plane, and transverse out of 
the plane are propagated in each plane, it must 
prohibit propagating all types of waves in all 
directions in order to have a structure for a full band 
gap (Dowling, 1998).  

Propagating elastic waves in a medium is usually 
described by a dispersion relationship between 
frequency and wave vector. There are some tools 
for band diagram prediction, which are very 
complicated in inhomogeneous materials. However, 
there are also various methods to obtain high-
quality dispersion curves, including Plane Wave 
Expansion Method (PWEM) (Johnson 2001). 
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Although this method is developed for 
electromagnetic wave and powerful even for 
calculating the dispersion relationships for both 
acoustic and elastic waves, it fails in some cases 
where the material contrast between inclusions and 
matrix is high. In this context, an extremely large 
number of Fourier's components are needed to 
ensure enough accuracy. The principles of Bloch-
Floquet method (Collet, 2011) is carried out to 
calculate the wave modes and group velocities even 
for complex propagation constant.  Recent 
developments in piezoelectric-based smart materials 
(e.g. one dimensional phononic crystal) (Wang, 
2014) or piezoelectric-based vibration control 
(Jalili, 2009) have promised to reach vibration 
control with an enough large band gap through 
suitable rod materials, but at low frequency regime, 
the  passive vibration control or noise control is 
very difficult; therefore, the aero acoustic control 
with complete band gap in such a way that no wave 
is propagated, will have excellent performance, and 
stimulates developments in practical purposes and 
easy use. 

While the traditional types of vibration isolator 
have poor performances or some meta materials 
exhibit partial band gap, in this article, we propose 
a novel type tunable phononic crystal in the form 
of acoustic metamaterials with complete band gap 
and inherently passive behavior, which consists of 
cylindrical piezoelectric rods with square array as 
inclusion embedded in polyimide aerogel 
(Airloy™ X114) background. The Plane Wave 
Expansion Method and the principles of Bloch-
Floquet method are employed to get the band 
structure and study the pass band or forbidden 
band. The results summarize a suitable concrete 
foundation for the development of aero acoustic 
noise control especially at low frequency regime 
for bladeless fans developments. 

This paper consists of six sections as follows: 

Section 2 introduces the candidate piezoelectric 
buffer rods and polyimide aerogel, and associated 
acoustic wave velocities. Section 3 introduces 
utilized Plane Wave Expansion Method (PWEM) 
associated with "Bloch-Floquet" method for 
acoustic pressure filed. In Section 4, the forbidden 
band of this acoustic metamaterials documented and 
Section 5 offers the analysis of the results and 
finally, conclusions are presented in Section 6. 

2.  DETERMINING THE ACOUSTIC 

WAVE VELOCITY AT CANDIDATE 

PIEZOELECTRIC 

"Lithium Niobate" with its inherent high purity 
makes it as a selected candidate for acoustic wave 
applications. Due to its chemical insensitivity, the 
etching techniques are suitable fabrication 
technique to achieve the periodic structures with 
reasonable size and filling fraction. Furthermore, 
these techniques are compatible with acoustic wave 
guides where fabricating a two dimensional 
phononic crystal in which the acoustic waves are 
confined in three dimensions will be possible. The 

material properties of this buffer rod are described 
here. 

Piezoelectricity is described mathematically within 
a material's constitutive equation, which defines 
how the piezoelectric material's stress (T), strain 
(S), charge-density displacement (D), and electric 
field (E) interact. 

The piezoelectric constitutive law (in Strain-Charge 
form) is: 

. .EtS s T dE                                                   (1) 

. .D d T ET                                                    (2) 

The matrix d contains the piezoelectric coefficients 
for the material, and it appears twice in the 
constitutive equation (the superscript t stands for 
matrix-transpose), where 
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The crystal cut determines the properties of the 
crystal and affected mode of vibration, frequency 
stability, acoustic wave velocity, aging and other 
parameters. The cuts are labeled based on the plane 
to, that they are perpendicular. Dominant modes of 
acoustic waves in piezoelectric rods relative to the 
velocities that rods can support, with coupling and 
without coupling effects, based on Modified 
Christoffel’s equation, (Newnham, 2005), and for 
buffers of different orientation (i.e. crystal cut)  of 
them  were calculated and plotted.  

To cover the full band gap, all acoustic wave 
velocity that selected piezoelectric can support, 
was considered to lead toward the full band gap. 
In order to increase the efficiency and 
performance of metamaterials, especially in 
specific frequency regime and reduced the 
phononic crystal size, the polyimide aerogel, 
regarded to Bragg band gap definition, was 
selected. Lower sound velocity in polyimide 
aerogel makes the materials particularly adapted 
to low frequency sound control where space is a 
concern. The acoustic wave velocity at polyimide 
aerogel is assumed 90 meter per second. Airloy 
X103 properties scale with density approximately 
as Table1: 
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Table 1 Airloy 103 properties scale with density 
Density Class Density 

Compressive 
Strengtha 

Compressive 
Modulusa 

Ultimate Yield 
Strengtha 

Thermal 
Conductivitya 

H 0.4 ± 0.02 g/cc 3 MPa 113 MPa 167 MPa 32 mW/m-K 

 

 

 

 

 
Fig. 1. (1-a), (1-b) and (1-c) represent the wave 

velocity of "Z -cut" wafers, denoted by 
longitudinal, in plane and out of the 
plane, for Lithium Niobate with and 

without coupling effect. 
 

3. UTILIZING THE PLANE WAVE 

EXPANSION METHOD 

Although the Plane Wave Expansion Method is 
powerful even for calculating the dispersion 
relationships for both acoustic and elastic waves, it 
fails in some cases where the materials densities 
contrast between inclusions and matrix is high. In 
this case, an extremely large number of Fourier's 
components are needed to ensure enough accuracy, 
so the principle of "Bloch-Floquet" method is 
carried out to calculate the wave modes and group 
velocities even for complex propagation constant, 
and since the acoustic pressure filed rather than 
displacement field, has Bloch form, this method can 
be applied. 

3.1 Geometric Description and Definitions 
of Metamaterials  

The model considered here is a periodic two-
dimensional system of cylindrical rods that play as 
scattering materials (Fig. 2.), infinite long in the 

3X -direction embedded in Air or Aerogel 

background. With this model, we are able to 
calculate the band structure for the propagation of 
plane waves traveling through this structure. The 
depth of the cylinders sets up a certain wavelength 
in such a way that any wave with wavelength 
smaller than the depth of cylinder sees the cylinders 
as infinitely long as far as the scattering process is 
concerned. This subject has been shown by 
(Meseguer, 1999). The Distance between 
cylindrical scattering materials is called as the 
lattice parameter and is denoted by 

1X  along X1  

and
2X long" 2x ", while the radius of cylindrical 

scattering material is denoted by " r ". The lattice 
parameter along 1x  and 2x  is assumed equal 

where means 01 1X X
    .Filing fraction, f, is 

defined as the ratio of the scattered area to the area 
of unit cell, and it is expressed as  

2( / )0f r    for circular scatters at square array 

(Fig. 3). 

 

 
Fig. 2. A square-lattice, two-dimensional 
phononic crystal, consists of cylindrical 

piezoelectric rod embedded in Air or Aerogel 
background. Adopted from © 2012 Antos R, 
Veis M. originally published in (Antos, 2012) 

under CC BY 3.0 license. Available 
in: http://dx.doi.org/10.5772/34679. 

 
3.2   Bloch Form of PWEM 

With a Cartesian coordinate system 1 2 3( , , )x x x  

as reference, the constitutive equations for a 



S. Rezaei et al. / JAFM, Vol. 10, No. 2, pp. 569-579, 2017.  
 

573 

piezoelectricity with the equation of motion and 
Poisson’s condition at dielectric media are given by 
(Wilm, 2002) 

ijklc eij kl kij x k

  
 


                                (3) 

D ek kij ij ki x i

  
 


                                       (4) 

2

,2

u j
ij i

t
 





                                                (5)            

0,Di i                                                                (6) 

 

 
Fig. 3. 2-D periodic arrangements, and the 

associated first Brillouin zones. the 
corresponding first irreducible Brillouin zone 

where, ΓX and ΓM  are related to the (1, 0) and 
the (1, 1) direction, respectively, and XM  is the 

variation wave  vector  from (1, 0) to (1, 1) on the 
side of it. Adopted from © 2012 Antos R, Veis M. 
originally published in (Antos, 2012) under CC 

BY 3.0 license. Available 
in: http://dx.doi.org/10.5772/34679. 

 

where the summation convention has been 
employed and ( , , , )1 2 3x x x tij  is the Cauchy 

stress tensor, ( , , , )1 2 3x x x tij  the linear part of the 

elastic strain tensor, and ( , , , )1 2 3D x x x ti  is the 

electric displacement vector field. In addition, ijklc  

is the elastic coefficient, and eijk  is the 

piezoelectric coefficient. In this paper, all the 
material coefficients are considered depend on 
( , )1 2x x  and independent of 3x . The elastic strain 

tensor, ij , is expressed in terms of displacement 

vector u i  as 

1

2

uu ji
ij x xj i


   
  
 

                                       . (7) 

By the quasi-static approximation, the electric filed 
Ei  may be expressed as the gradient of an electric 

potential ( , , )1 2 3x x x  as 

,E i ix i

 
   


                              . (8) 

The PWEM is a commonly used numerical 
technique to calculate the band structures for 
phononic crystals (Sigalas, 1992; Kushwaha, 1994; 
Chen, 2001-1, and Chen, 2001-2). The PWEM can 
be applied to a phononic crystal with any shape of 
scatter; however, only infinite arrays can be 
modeled (Cao, 2004). According to the Bloch-
Floquet theorem, all fields in a periodic solid such 
as displacements and stresses can be expanded as 
infinite series (Wilm, 2002 and Laude, 2005).  

( , ) ( , )exp( ( . . )),h t h j t   r k k r G rG
G

       (9) 

where h
 
stands for either the displacements, the 

stresses, the electric potential, the electric 
displacements or the acoustic pressure field,

 
1j   , ( , , )1 2 3

Tx x xr . The upper script "T" is 

transposition, and the vectors of reciprocal lattice 
are: 

G( , ) (2 / ,2 / ,0)
1 1 1 2

T
x x x x      , 

 which means that the set of all wave vectors G  

that give plane waves .j
e

Gr  with the periodicity of 
the lattice and the G -vectors correspond to the 
reciprocal lattice points. Here, 2 /

1x  and 

2 /
2x  , are the normalized reciprocal lattice 

vectors and are assumed to be periodic with a 
period of x j

  along the x j  axes (Antos, 2012). 

In this expression, k
 
is the "Bloch" wave vector 

and in a special case 1 2a a a  where a  is lattice 

constant. 

The main part of the PWEM is to expand the 
system functions such as density, speeds and wave 
functions by plane waves exist in the wave equation 
in the form of Fourier series in terms of 1 2,x x  and 

3x  as: 

.( ) ,je    G rr G
G

                              (10) 

Where ( )r  is the Fourier component of material 
constants including the material density, elasticity, 
piezoelectric, and dielectric tensors for periodic 
structure which depend on position or 

{ , , , }c eijkl ijk ij    

i.e. 

.( ) je   G rr G
G

                                            (11) 
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.( ) j ijklc e cijkl   G rr
GG

                                 (12) 

The Fourier harmonics G  are calculated for 

various scatter materials and lattice geometries 
(Wu, 2009); (Wilm, 2002) and (Vasseur, 1994) and, 
the sum is taken only over the reciprocal lattice 
points. One may write G  as follows 

(1 ) when 0

( )F( ) when 0

f fI M

I M

  

  

   

  

GG G G

G GG G G
   (13) 

Where IG  and MG  stand for Fourier 

harmonics for the inclusion (cylindrical rod) and 
matrix (substrate). In addition, f  is the area filling 
fraction that is defined as the cross sectional area of 
a cylinder relative to a unit-cell area. As mentioned 
earlier the subscripts I and M  represent the 
inclusion and matrix, respectively. F( )G  in Eq. (13) 
is called the structure function defined as follows 

.1 2F( ) jA d ec
Ac

 
G rG r                               (14) 

i.e. 

.1 2 ( ) jA d ec
Ac

   
G rr rG                          (15)      

.1 2 ( )
ijkl

cA

jijklc A d c ec
 G

G rr r                         (16)                

Where, cA  is the cross section area of the filling 

structure or the area of the primitive unit cell of a 
two-dimensional phononic structure. The proposed 
system consists of piezoelectric rods with square 
array and circular cross-section embedded in Air or 
Aerogel substrate material, which results in the 
following structure function factors for circular 
scatter, (Kushwaha, 1994) 

( )1 02 ,
0

J r
F f

r


G
G G

2
00 ,
2 4

r
f

a


                     (17) 

Where, 1J  is the first kind Bessel function of first 

order. In each case, the maximum value of the 
filling fraction f  corresponds to the close packing 
of the rods in the matrix. The irreducible part of the 
Brillouin zone of a square lattice is shown in Fig. 3. 

The square lattice configuration has a reciprocal 
lattice vector defined in the PWE method as 

1 1 2 2
2

( )( )n x n x
a


 G                                       (18) 

For the propagation of acoustic waves in the 1x -

plane normal to the axis of cylinders (i.e. the 

3x axis), the wave polarized in the 3x - direction, 

transverse wave is decoupled from the other two 
modes i.e. the other transverse wave and 

longitudinal modes of the waves polarized in the 

1x -plane where the former mode of the wave is 

called  the ‘‘single’’ mode and the latter two modes 
coupled to each other called the ‘‘mixed’’ mode. 
(Tanaka, 2000) 

Using the Bloch theorem and expanding the 
unknown fields ( , )u r t  in Fourier series with respect 
to the 2D reciprocal lattice vectors (RLVs), we have 
as follows: 

3 31 1( , ) ( ),
jk xjk x j t j x

t e e e



G

u r AG
G

                  (19) 

Here, 1 2( , )k kk  is the Bloch wave vector,   is 

the frequency, 3k  is the wave number of the partial 

waves along the 3x -axis, and 1 2 3(A ,A ,A )AG G G G  is 

the amplitude vector of the partial waves. If the 
component of the wave vector 3k equals zero, the 

above equation degenerates into the vector filed of a 
bulk elastic wave. 

One can define either a generalized displacement 

field 31 2{ , , , }
xx x T

u u u G G G G  in which G  represents 

the electrical potential or a generalized stress 

vectors 31 2{ , , , D }
xx x T

G G G G    where DG  represents 

the electrical displacement or acoustic pressure 
field. If one denote either of these vector by U , 
then one may write 

31 2

31 2

{ , , , }

{ , , ,D }

xx x T
u u u

xx x T



  





U GG G G

U GG G G

                              (20) 

On utilizing the Bloch theorem and expanding this 
generalized displacement or generalized stress 
vector, ( , )U r t  ,in Fourier series, and expanding the 
system functions such as density and elastic 
stiffness tensor and substitute both of them into the 
Eq. (5), we have: 

2 RU QU                                                           (21) 

Where, R and Q are two different 4 4N N matrices 
that are functions of K, G, G′, the material constants 
and the filling fraction (Laude, 2005). This equation 
defines a generalized eigenvalue problem which can 

be solved for 2 as a function of K to obtain the band 
structure of elastic waves. For detailed deducing 
process of secular equation, one can refer to the works 
by (Kushwaha, 1994; Miyashita, 2005; Laude, 2005). 

Since the density contrast of piezoelectric rods and 
Air is large, the shear stress and transverse waves 
inside the piezoelectric rods will not have 
significant contribution to the scattering of acoustic 
wave in the Air background, so the PWE method is 
acceptable, and scalar wave equation is adequate to 
describe the system (Elford, 2011); and thus, the 
acoustic wave pressure field rather than 
displacement is carried out to get the corresponding 
band gap for this system. In addition, the acoustic 
wave pressure field has Bloch form.  
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Table 2 Acoustic wave velocities of selected piezoelectric materials with certain wafers that the 
piezoelectric can support 

Lithium Niobate 
Z CUT  

Lithium Niobate 
Y CUT  

Lithium Niobate 
X CUT  

Acoustic Wave Speed 
1

m.s


 

6550 6964 6920 ClongitudianlWave  

4100 4120 3990 CInPlaneTransverseWave  

4980 4954 4669 COutofPlaneTransverseWave  
 

 

The secular equation which gives the dispersion 
relation between the frequency and the wave vector 
for acoustic pressure field by applying the "Bloch 
theorem" is: 

-det[ ]
( ).( )

2det[ (( ) - ( ))(( ) ( )).(( ) ( )) - (( ) - ( )) ] 0( ),( )  

 


     

G G

G G k G k G G G G G



        

                                                   (22) 

Where, ( )k  is the Bloch wave vector, ( )k is the 

frequency and ( )G is the reciprocal lattice vector. 

( )G  and ( )G  are determined from an inverse 
Fourier transform and related to material property in 
acoustic wave equation. 

When scattering occurs coherently from equally 
spaced layers in a phononic crystal, the band gap 
opens up at the border of the first Brillouin zone, 
although the dispersion in the vicinity of the band 
gap will be modified, the center frequency of the 
band gap is approximately given by assuming linear 
dispersion based on the center frequency of a Bragg 

band gap ( v
fc 2a
 ) where the v is the velocity at host 

and "a" is the lattice parameter (Elford, 2011), 
(Kushwaha, 1994). 

Based on this approximation, the acoustic wave 
velocity at polyimide aerogel has direct effect on 
center frequency of a Bragg band gap. 

4. NUMERICAL ANALYSIS 

In this section, to show the effect of piezoelectric 
rods or inclusion on longitudinal, in plan shear 
wave and out of plan shear wave pass bands, 
numerical analysis of band gap structures are 
presented. The acoustic wave velocity of selected 
piezoelectric materials, at certain wafers (because 
the acoustic wave velocity has directional 
dependency), are presented. Table2 shows the 
acoustic wave velocity for different rods calculated 
numerically based on the triple Fig. 1."Z-cut" 
periodically poled lithium Niobate on polyimide 
aerogel substrate is selected as an acoustic 
metamaterials.   

To study the effect of the lattice parameter on band 
gap width, the lattice parameter was variable, and 
the bandwidth variation was measured. The 
geometrical characteristics of this type of 
metamaterials include lattice parameter, and 

inclusion ratios were chosen in order to ensure the 
existence and bandwidth of complete band gap at 
low frequencies regime. 

5. RESULTS ANALYSIS AND 

DISCUSSION 

Figure 4 demonstrate the complete band gap using 
the "Reduced Wave Vector over Frequency" graph, 
for acoustic pressure field for Z-cut periodically 
poled lithium Niobate on polyimide aerogel 
substrate where lead to dispersion relation for an 
acoustic metamaterials. The lattice parameter and 
the cylinder radius equal to 22mm and 9 mm 
respectively (i.e. a = 22 mm, r = 9 mm) that means 
filling fraction is equal to 0.5  for square lattice, and 
the blue line, shows the location of a band gap. The 
acoustic wave velocity for piezoelectric rods was 
calculated based on modified Christoffel’s equation 
provided in Table 2. The acoustic wave velocity at 
polyimide aerogel was assumed 90 meter per 
second and the density for polyimide aerogel was 
assumed 0.4 g/cm3. 

 

 
Fig. 4. Dispersion relation for an acoustic 

metamaterials consisting of " Z - cut" 
periodically poled lithium Niobate on polyimide 
aerogel substrate (f=0.5) for square lattice where 

the blue line shows the location of a band gap 
base on Brillouin zone. 

 

Since, any propagated acoustic wave through the 
acoustic metamaterials have full band gap at 450Hz 
central frequency for all direction, Fig. 5. show that 



S. Rezaei et al. / JAFM, Vol. 10, No. 2, pp. 569-579, 2017.  
 

576 

any type of acoustic wave at this range is shielded 
completely and cannot propagate through this 
acoustic metamaterials. 

Studying the reliability, the width of band gap is 
investigated. Because, broad band devices that work 
over a large frequency domain, is a commercial 
interest, So, the comparison between Figs. 4 and 5 
show that the width of band gap is changed by 
changing the lattice parameter (i.e. the filling 
fraction). Using the filling fractions 0.52 and 0.64 
respectively, the shield range was changed from 
425-475 Hz to 400-600 Hz that means the width of 
band gap was increased.  

 

 
Fig. 5. Dispersion relation for square lattice of 
" Z -cut" periodically poled lithium Niobate on 
polyimide aerogel substrate with filling fraction 

(f=0.64). 

6. CONCLUSIONS 

To demonstrate the efficiency of the suggested 
metamaterials for aero acoustic shielding especially 
at low frequency regime by using the modified 
Christoffel’s equation, the acoustic wave velocity 
that piezoelectric rod can support, associated with 
anisotropy effect was calculated. Using the utilized 
modified PWEM in conjunction with "Bloch-
Floquet" theorem that acoustic wave equation with 
pressure instead of the displacement was applied; 
the complete band gap by the contrast between 
acoustic wave velocities at rods and inclusion was 
achieved.  

The proposed low-frequency phononic crystal 
system showed the feasibility of using acoustic 
metamaterials to attenuate low-frequency noise, but 
at the expense of higher size. Despite of limitations 
in the range for increasing the size, this type of 
metamaterials is a suitable candidate for aero 
acoustic noise shielding or control especially at low 
frequency regime with reasonable size and 
complete band gap, because at low frequency 
regime, other technologies are too large for this type 
of applications.  

The omnidirectional property of this type of 
metamaterials, where the shielding has no 
dependency on wave direction, is a key property for 
excellent performance over traditional acoustic 

isolator or metamaterials with partial band gap.  

The dependency of band gap to lattice parameter 
and filling fraction means that these metamaterials 
are tunable, and the tune-ability is controlled by 
lattice parameter and filling fraction variation, or 
these are waveguide and have the selectivity 
frequency property. 

The tunable property of this type promises to be 
adjustable in real time through filling fraction 
parameter and lattice structure or in an optional 
logic port where in turn is a suitable candidate for 
adaptive noise control. 

Furthermore, a new shield type at low frequencies 
regime or an acoustic transducer with reasonable 
size is promised specially for aerospace applications 
with a new type of background material which is 
called "Aerogel" with ultralow sound velocity 
property (lower than that in the air) where will 
increase the effectiveness and miniaturization with 
wider adaptability with its inherently passive 
behavior. 

The elastic wave attenuation features of this 
acoustic metamaterials and its selectivity property 
could apply to elastic wave shields for unwanted 
noise that occurs at certain frequency ranges (e.g. 
wind turbine).  

Although the vibration properties are determined by 
material selection and geometry, in near future a 
new type of intelligent metamaterials is promised 
that their vibration property not only depends on 
geometry and material properties but also, by an 
optional logic port, will have adaptive vibration 
property, i.e. reacting to vibration and altering their 
property proportional to a specific frequency waves 
spectrum, and promising a practice toward the 
programmable materials commercialization. 

Finally, since the plane wave expansion method, 
associated with "Bloch-Flouqet" theorem, relies on 
Fourier transform, the limitation of Fourier 
transform is inherited; in other words, it does not 
include location information that consequently has 
difficulty in representing transients for periodic 
structures, especially with large acoustic mismatch. 
In this case, a wavelet-based method that has 
location and frequency is recommended. 

Fourier transform does not include location 
information especially with large acoustic 
mismatch, so to overcome this difficulty the 
wavelet-base method can be implemented. With 
expanding the elastic constants and the wave fields 
in the wavelet bases and by variational theory the 
elastic wave equations are reduced to an eigenvalue 
problem that can be solved by the wavelet integral 
technique.  

Wavelets are well localized in both time and space 
domain, unlike the basis function in PWE method, 
so they can be efficient at discontinuities 
description in phononic crystal and spatial 
oscillations of the wave fields or in general 
phononic crystal with defect, or phononic crystal 
with time-dependent elasticity (i.e. viscoelastic 
host). 
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The wavelet-based method with an appropriate post 
processing scheme may be useful to improve the 
total efficiency of the inverse design and 
optimization of the acoustic wave band gap 
metamaterials. 

This method in this particular case can represent the 
fast convergence and time saving.   
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