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ABSTRACT 

In the present paper, spatial linear stability of adiabatic laminar flat plate boundary layer is computed 
numerically. This work is interested on the non-parallel compressible flow for a two-dimensional (2D) and 
three-dimensional (3D) disturbances. Stability diagrams, in the form of curves of constant spatial amplification 
rates are presented and constitute the original contribution of this paper. However, to assess the validity of the 
present computations, some important results of parallel flow stability are presented in the convenient and 
familiar form of contours of constant spatial amplification rates for both 2D and 3D waves in the Mach number 
range Me= 0.9 to 2.2. Comparisons results for the parallel flow agree with those obtained by Mack and Wazzan, 
Taghavi and Keltner, but differ from the nonparallel flow giving some important spatial stability results and 
showing the importance of the wave angle ψ and the Mach number, even the stability diagrams presented in 
this paper concerned the Reynolds number gives different results for the parallel and nonparallel flows. 

Keywords: Laminar instability; Compressible boundary layer; Transonic flow; Supersonic flow; Stability 
diagrams. 

1. INTRODUCTION

Laminar flow has been the object of study by several 
generations of investigators. One of the earliest 
explanations was that laminar flow is unstable, and 
the linear instability theory was first developed to 
explore this possibility. The most important 
theoretical investigation to date of the stability of the 
compressible boundary layer was carried out by Lees 
and Lin (1946). They developed an asymptotic 
theory in close analogy to the incompressible 
asymptotic theory of Lin (1945). A numerical 
method of solving the Lees-Lin, and the Dunn-Lin 
equations (1947), were first given by Brown (1961, 
1962). Later, Mack presented another numerical 
method for solving the stability equations for the 
compressible laminar flat plate boundary layer 
(1965a, 1965b). A comprehensive investigation on 
general computational using parallel performance 
identifies the numerical methods for the linear 
stability (1990, 2004, and 2008). 

Because of the failure of the parallel theories to 
predict the critical Reynolds number for the Blasius 
flow, considerable interest has developed in 
nonparallel stability analysis. Some incomplete 
attempts to account for nonparallel flow effects 
involved the retention of the normal component of 
the velocity or some of the streamwise derivatives of 

the primary flow. Others used different expansion 
techniques and different conditions for separating 
variables. A summary of these papers was given by 
Saric and Nayfeh (1975). A number of works 
concerned with the nonparallel linear stability 
analyses using different methods and applications 
have been published (1993, 1997, and 2007). 

In the present paper, we compute numerically the 
effect of Mach number on the spatial linear stability 
of adiabatic laminar flat plate boundary layer, 
applied to the parallel flow, in the Mach number 
range 0.9 to 2.2 and the non-parallel flow for 2D and 
oblique disturbances in the range Mach number 0.9 
and 1.1. Numerical methods using for solving the 
stability equations are given in details in section 2. 
Comparison results made in section 3 give similarity 
and differences between the parallel and non-parallel 
flows.     

2. STABILITY EQUATIONS AND
NUMERICAL PROCEDURE

We start in this first section by recalling the general 
equations governing the flow of a compressible 
viscous fluid with the properties of perfect gas fluid, 
Sutherland’s law of viscosity, constant Prandlt number 
and constant specific heat ܥ௩ (at constant volume).    
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2.1.  General Equations in Intrinsic 
Tensoriel Notation 

The equations are, respectively, of continuity, 
momentum, energy and state witch ݑ௜ ,ݑ)= ,ݒ  ,are the velocities in the (x,y,z) directions (ݓ
respectively, where x is the streamwise and z the 
spanwise coordinate; p is the pressure, ߩ  is the 
density, R is the gas constant, T is the temperature, ߤ,
 are the viscosity coefficients, ܥ௩  is the specific 

heat at constant volume and  ௖  is the thermal 

conductibility.   

Continuity Equation:  

  0div v
t

 
 




                                                     (1) 

Momentum Equation: 

1
.

v
gradv v div

t 


  


  
                                             (2) 

Where   is the stress tensor, 

 – 2p divv I D      


                                       (3) 

(I is the identity tensor) and D is the strain rate tensor  

 1

2
D gradv gradv 

 
                                             (4) 

Energy Equation: 

 1 1
. : c

e
grade v D div gradT

t


 


   



             (5)  

The gas considered is a perfect gas and the internal 
energy e is function of temperature: 

 vde C T dT                                                           (6) 

An equivalent form of energy equation is: 

. : .c c

e
grade v D T gradT grad

t
  

    





  (7)
  

Where  ∶  is the double contraction between the ܦ

tensor   and D. 

We adopt in this paper another equivalent form of 
energy equation: 

 2. 2 :v
T

C gradT v pdivv divv D D
t

          

  

.c cT gradT grad                                              (8) 

Equation of state: p RT                                      (9) 

2.2.   General Equations in Index Notations  

We adopt index notations for clarity, where the 
Einstein summation rule applies to repeated indices 

Continuity Equation: 

 ,
0i i

u
t

 
 


                                                    (10) 

Momentum Equation: 

 , , , , , ,μi
i j j i j ji i jj j j i

u
u u p u u u

t
    

      


 , , ,i j j i ju u                                                         (11) 

Energy Equation: 

, , , , 2v j j j j j j k k ij ij

T
C u T pu u u D D

t
          

 

, , ,c jj j c jT T                                                                 (12) 

Equation of state: p RT                                    (13) 

2.3. Mean Flow and Perturbations 
Equations 

All quantities are divided into a steady mean-flow 
(denoted by an overbar) and an unsteady small 
disturbance term (denoted by a prime)  

Formulation:

, , , ,u u u v v v w w w p p p               

, , , cc cT T T                     (14) 

We retain up to now, the hypothesis that the mean 

values  , , , , ,u v w p T  are functions of one space 

variable, y. In this work, this hypothesis defines the 

non-parallel flow; if additional more used 0v   is 
imposed, the flow is conventionally called quasi-
parallel flow. In the application which is 
contemplated and which involves the study of the 
stability of a three dimensional boundary layer of 
compressible flow over a flat plate, the y coordinate 
is along the normal to the plate. 

          , , , , ,iu u y v y w y y p p y   

 ,T T y      , , c cT T T            (15) 
The transport coefficients are functions only of 
temperature, so that their fluctuations can be written 
in first order approximation:      

' ', ,
c

c

d d d
T T T

dT dT dT

                                   (16) 

However, we indicate the properties of the derivates 

of   and  , respectively, this same properties hold 

for  , ' and c , '
c  

0, , ,
d dT d dT

x z y dy x dx zdT dT

          
   




 
 

 

,
d dT

dzdT




 2

2

d dT d dT
T

y dy dydTdT

  
 


 

               (17) 

We should note that the mean flow and the resulting 
flow satisfy the equations of motion and the 
disturbance imposed on the mean flow is small such 
that the nonlinear terms can be neglected. 
Subsequently, we obtain the following equations: 

Continuity Equations: 
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      0u v w
x y z
    

  
  

                             (18) 

   u u v v
t x y

      
   

  


     

  0w w
z

   



                                                       (19) 

Momentum Equations : 

 , , , , ,,i j j j ji i jj j j iiu u p u u u            (20)
 , ,, , ,

i
j i j i j ji j j i j ji

u
u u u u u u p u

t
     

  


       


, , ,, ,'j ji i jj ii jj j j

d d d
u T u u T u

dT dT dT

    
 

      
 



   , , ,,, , , ,' ' ' 'j j i j j iji i j j i ju u u u u              (21) 

Energy Equations: 

, , , , 2j ij ijj j j j j k kv

T
C u T pu u u D D

t
   
 

     
  

, , ,jj jc c jT T                                                       (22)
, ,, ,'j jj jv j j j j

T
C T u u T u T pu

t
       


    

'
, , , ,,2 4 ijj j k k j j k kj j iju p u u u u D D     

, , ,, ,,2 ' ij ij jj jc cj jc jj c jD D T TT T            (23) 

Equations of State: 

p rT                                                                  (24)
 p r T T                                                        (25) 

The boundary conditions at 0y   are

       ’ 0 ’ 0 ’ 0 ’ 0 0u v w T                              (26) 

The boundary conditions at y    are: 

( ), ( ), ( ), ( ), ( ), ( ) 0u y v y w y y p y T y        or are 

bounded as   y                                                  (27) 

2.4.   Stability Equations 

Before proceeding to give nonparallel stability 
equations for the present formulation, it is noted that 
spatial amplification theory is considered in this 
work, where and  (the x and z components of the 

wavenumber vector k


) are complex,  (the 
frequency) is real, the amplitude will change with x, 
however, if and   are real, and   is complex, 
the amplitude will change with time, the former case 
is referred to as the temporal amplification theory. If 
all three quantities are complex, the disturbance will 
grow in space and time. The original, and for many 
years the only, form of the theory was the temporal 
theory. However, in a steady mean flow the 
amplitude of a normal mode is independent of time 
and changes only with distance. The spatial theory, 
which was introduced by Gaster (1965), gives this 
amplitude change in a more direct manner than does 

the temporal theory. 

For the special boundary layers to be considered in 
this paper, spatial wave is defined to be amplified or 
damped according to whether its amplitude increases 
or decreases in the x direction. Therefore, the three 
possible cases are: 0i   damped wave, 0i 

neutral wave and 0i  amplified wave.   

The flow undisturbed being stationary and obviously 
the flow disturbance is not stationary. The system of 
equations describing the disturbed flow will have 
particular solutions of the form:  

   , , , , , , , , , ,u v w p T f h r          

 exp i x z t                                                    (28) 

In the case where the unperturbed flow only depends 
on the coordinate y (1979), , , , ,f h r  and   

depending only on y. Where  and  are the x and 

z components of the wavenumber vector ሬ݇Ԧ,   is the 

frequency and          , , , , , ( )f y y h y y r y y  
are the complex functions, or eigenfunctions, which 
gives the mode structure through the boundary layer. 
The normal modes are travelling waves in the x,z 
plane, and in the most general case, ߙ,  and ߱ are ߚ
all complex. If they are real, the wave is of the neutral 
stability and propagates in the x,z plane with constant 
amplitude and phase velocity /c k , where 

 1/ 22 2k    is the magnitude of k


. If any of ,

 and  are complex, the amplitude will change as 
the wave propagates. 

When Eqs. (28)  are substituted into Eqs. 
(19) , (21)(23)(25) , we obtain a system of non-
parallel compressible flow equations: 

Continuity Equation: 

d dv
i u w r r vr

dy dy

         

  0i f h                                                    (29) 

The x-momentum Equation is: 

du du
i u w f v f v

dy dy
    
 
         



   '' 2 2 d dT
i f f f i

dydT

            

   
2

2

d d u du
i i f h

dy dydT

       
 

           
 

 

2

2

d du dT dv d
i

dy dy dy dTdT

                                         (30) 

The y-momentum Equation is: 

dv dv
i u w v v r

dy dy
      
 
         



   '' i f h             
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 
2

'' 2 2
2

2
d v d d

dy dT dT

      
 

          

 
2

2

d dT dv d d dT
i f h

dy dy dydT dT dT

      
 

         
 

 

2
d dT du d d w d

i i
dy dy dT dy dTdT

      

2

22
dv d d dT

dy dydT dT

  
 

  



 

                                        (31) 

 The z-momentum equation is:  
d w d w

i u w h vh v r
dy dy

    
 
         



   i i i f h              

 '' 2 2d dv
i h h

dydT

         

 
2

2

d dT d d w d w
h i

dy dy dydT dT

   
 

          
 

2

2

d dT d w

dy dydT

                                                        (32) 

Energy Equation: 

v v

dT dT
c i u w v c v r

dy dy
      
 
        


 

 
2

dv dv d
p i f h

dy dy dT

    
 

            
 



 2
dv

i f h
dy

       

   2 2  
du dv d w

f i h i
dy dy dy

   
 

     
  

  

2 2 2
2

2
2

cd T d du dv d w d

dy dy dy dydT dT

  
      
                     

 '' 2 2
c          

2

2 2
c cdT d dT d

dy dy dTdT

  
 

 





                                 (33) 

Equation of state :  
r

p T

 


                                                                (34) 

2.5. Numerical Method of System 
Resolution: 

Considering the boundary conditions derived from 
those associated with disturbances , , , ,u v w p     

and T  ,the differential system , , , ,f h r  and   
corresponds to an eigenvalues problem, and the basic 
Eq. (28) of the compressible stability theory obtained 
are not yet in a form suitable for numerical 
computation. For this purpose we need a system of 
first-order equations (canonical system) ’Z AZ , 

the lengthy equations for the matrix elements are 
listed in Appendix. The numerical resolution of this 
system is obtained using a numerical code adopted 
from the code developed at CERT/DERAT by 
Habiballah (1981) and Jelliti (1986). “This 
numerical resolution is undertaken from the free 
stream to the wall. For this shooting method, a fourth 
order Runge-Kutta technique has been used. The 
method of Gram-schmidt orthonormalization was 
also applied to stability equations and the Newton-
Raphson procedure is satisfactory for obtaining the 
eigenvalues.” 

 On the other hand, profiles      , ,u y v y w y and

 T y  are provided by a numerical code developed 

at CERT/DERAT and solving the equations of the 
compressible boundary layer developing into self 
similar model (2008).    

3. PARALLEL FLOW RESULTS  

The present paper is mainly concerned with the 
spatial stability of the first mode for oblique waves 
nonparallel flow. However, some important parallel 
flow results are first given, to assess the validity of 
the present computations and the method of solution. 

The present code was first used to compute stability 
characteristics for the compressible parallel flow, the 
results were in excellent agreement those obtained 
with the compressible formulation Mack (1984), 
Wazzan et al. (1984). The code was also used to 
compute the spatial stability of two-dimensional 
(2D) and three-dimensional (3D) disturbances at 
several Mach numbers for the transonic to 
supersonic compressible boundary layer. 

For the transonic flow of adiabatic laminar flat plate 
boundary layer, two-dimensional waves, 
comparisons results are given in Figs.1, 2 for Mach 
number 0.9, where ߙ௥ the real part of the wave, R is 
the Reynolds number, Me is the mach number and 

1  

is the boundary layer displacement thickness. 

 

 
Fig. 1. Curves of constant spatial amplification 

rates; r as function of 10log
1

R : 

Computations of Jelliti (1986) 
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It seen the good agreement of the results and the 
similarity of the stability maps. 

 

 
Fig. 2. Curves of constant spatial amplification 

rates; ߙ௥ as function of 10log
1

R : Present 

Computations. 
 

Computations for the three-dimensional (3D) waves 
at ψ = 35° are given in Fig. 3, and showing that the 
maximum amplification rate is 20.9445.10i

 

and has a critical Reynolds number
1

R = 662,6. 

However, as shown in Fig. 1 for the two dimensional 
(2D) waves, the the maximum amplification rate is 

20.9274.10i
   and has a critical Reynolds 

number
1

R = 589.5, consequently these values 

increase with the 3D waves. 

 

 
Fig. 3. Curves of constant spatial amplification 

rates ߙ௥ as function of 10log
1

R : Present 

Computations. 

 
Results for Me=1.1 (ψ = 40°) are shown in Fig. 4 
giving a critical Reynolds number 

1
R = 733,4   for 

the 3D waves.   

Similarly, results, Figs. 3, 5, for the supersonic flow 
are computed for Me =2.2 (ψ = 0° and ψ = 60°), 
whereas the corresponding values decreases with the 
3D disturbances, the critical Reynolds number 

1
R

=901 for the oblique mode is smaller than the 
corresponding value of 1065 for the 2D mode.  

We can also see by comparing the results of two-
dimensional disturbances at Me = 0.9 and 2.2 that the 
critical Reynolds number increase with increasing 
Mach number whereas the maximum amplification 
rate at low Reynolds number decreases with 
increasing Mach number. These results are in good 
agreement with those obtained by Wazzan et al. 
(1984) for Me = 1.6 and Me = 2.2.  

The 2D compressible stability calculations (1947, 
1965) showed a precipitous decrease in viscous 
instability with increasing Mach number. 

 

 
Fig. 4. Curves of constant spatial amplification 
rates ߙ௥ as function of Reynolds number

1
R  : 

present computations. 

 

 
Fig. 5. Computations of neutral stability curve 

௥ as function of 10logߙ )
1

R ). 

 

The 3D waves for the first mode is more unstable 
than the 2D waves only when the Mach number 
becomes higher than 1.The reason why we are 
interested particularly in the Mach number 0.9 by 
comparing it with higher Mach numbers. Indeed, as 
shown in Fig.5 presenting the neutral curve (on the 
wavenumber-Reynolds-number diagram) for Me = 
0.9 and 2.2 at respectively wave angle ψ = 35° and 
60° the wave instability appears clearly at Mach > 1.  

Consequently, the purpose of presenting the 
diagrams of maximum amplification rates for the 
two corresponding Mach numbers  Fig. 6 is to show 
the phenomenon of viscosity instability which its 
mechanism was first demonstrated by Prandtl 
(1921), where the maximum of amplification rates 
increases with decreasing Reynolds number (of a 



Y. Mérida et al. / JAFM, Vol. 10, No. 2, pp. 605-614, 2017.  
 

610 

given frequency). 

The code was also checked against the neutral 
stability computations by Mack (1965) at Mach 2.2 
and measurements of Laufer and Vrebalovich (1970) 
given in Fig. 8; results were made for both two-
dimensional (ψ = 0°) and oblique disturbances (ψ= 
45°, 60°).  

Comparing also with the results given by Wazzan et 
al. (1984), it seen the good agreement between 
computations and measurements. 

 

 
Fig. 6. Maximum amplification rates as function 

of Reynolds number at given frequency. 

 

 
Fig. 7. Neutral stability curve at Mach 2.2 for 

adiabatic flat plate. 

 

Figure 8 gives, the neutral curve for the first mode of 
2D and oblique waves (ψ = 60°) at Me = 2.2, 
showing that the oblique wave is more unstable than 
the two-dimensional disturbance. However, by 
comparing results with those of the transonic flow 
Me = 0.9, it seen that the 2D waves is more unstable 
than the oblique waves. 

We see that given Mach number, there is a critical 
Reynolds number below which all disturbances are 
damped, whatever of their frequency.  

In the present computations, maps of the spatial 
amplification rates on the frequency-Reynolds 
number diagram for Mach numbers Me = 1.6 and Me 
= 2.2, are given in Figs. 9 and 11. 

Results of the two Mach numbers appear similar to 

stability maps given by Wazzan et al. (1984), Figs.10 
and 12, showing that the maximum amplification 
rate at low Reynolds number decreases with 
increasing Mach number.  
 

 
Fig. 8. Neutral stability curve at Mach 2.2 for 
adiabatic flat plate: Present Computations. 

 
 

 
Fig. 9. Curves of constant spatial amplification 

rates: present computations. 

 

 
Fig. 10. Curves of constant spatial amplification 

rates: computations of Wazzan et al. (1984). 

 
However, according to Mack (1969) and Wazzan et 
al. (1984),the most unstable wave angle varies, 
particularly at low Mach numbers, with the Reynolds 
number; this wave angle increases rapidly with Mach 
number (Me = 1.6 to 2.2).They suggest, that the most 
dangerous wave angle for each Mach number 
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(computations for the spatial amplification rate are 
made as a function of frequency for given values of 
the wave angle ψ and at a fixed Reynolds number), 
are respectively ψ = 60° and 50° at Mach Me = 2.2 
and 1.6 

Comparing the results given in Figs.9 and 10, 
disturbances at Me = 1.6 (ψ = 50°) show that the 
maximum viscous amplification rate ( 310i i   ) is in 

order to 0.6, a highest- amplified frequency under than
42.10 , and a critical Reynolds number 

1
R = 775. 

Similarly, results for Me = 2.2 given in Figs.11 and 
12 is in order to 0.77, a highest amplified frequency 

under than 42.10 , and a critical Reynolds number 

1
R = 901. 

 

 
Fig. 11. Curves of constant spatial amplification 

rates: Present Computations. 
 

When Mach number increases the height of 
generalized inflection point increases: 
simultaneously, the range of unstable wave numbers 
at finite Reynolds is expanding, and the inflectional 
instability is seen at low Reynolds number (1986). 

 

 
Fig. 12. Curves of constant spatial amplification 

rates: computations of Wazzan et al. (1984). 

 
According to the comparing results, we deduce the 

good agreement with the general computation given 
by Wazzan et al. (1984) and Mack (1984). 

It should be noted, comparing with the 2D results, 
(according to Wazzan et al. (1984) and Mack (1984) 
that the most unstable first mode is always that the 
oblique waves. 

Effect of the wave angle ψ 

Figure13 shows the evolution of the maximum value 
of local amplification rate as a function of wave 
number ψ at fixed Reynolds number in the range 
Mach 0.9, 1.1, 1.3, 1.6 and 2.2 At Me = 0.9, 

maxi
remains constant in a wide range of wave number. At 
a higher Mach numbers a maximum appears for a 
  0° noted 

max .
max depends on the Reynolds 

number at fixed Mach number,  but this dependence 
is weak.  

 

 
Fig. 13. Coefficients of maximal amplification 

rate as function of the wave angle ψ. 
 

4. NONPARALLEL FLOW RESULTS 

The present code is used to compute the spatial 
stability of bidimensional and three-dimensional 
disturbances nonparallel flow.   

Figures 14, 15 give, for the first mode of 2D and 
oblique waves, maps of the spatial amplification 
rates on the wavenumber-Reynolds number diagram 
for Mach 0.9 and 1.1 
 

 
Fig. 14. Curves of constant spatial amplification 

rates nonparallel flow  
௥ as function of 10logߙ )

1
R ). 
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The neutral curves for 2D at Me = 0.9 and oblique 
waves (ψ = 40°) at Me = 1.1 are shown in Figs. 16 
and 17. 
 

 
Fig. 15. Curves of constant spatial amplification 

rates nonparallel flow ( ߙ௥ as function of 

10log
1

R ). 

 
It covers the wavenumber ߙ௥ =0.05 to 0.29 and has a 
critical Reynolds number 

1
R = 1057 for Me = 0.9,  

 

 
Fig. 16. Comparison Curves of constant spatial 

amplification rates parallel and nonparallel flow 
௥ as function of 10logߙ )

1
R ). 

 
These values compare with  ߙ௥  = 0.09 to 0.22 and 
critical 

1
R = 1030 for Me = 1.1 (ψ = 40°). 

 

 
Fig. 17. Comparison Curves of constant spatial 

amplification rates parallel and nonparallel flow 
௥ as function of 10logߙ )

1
R ). 

It seen that the critical Reynolds number decreases 
with increasing Mach number which differ from the 
parallel flow as shown  previously.  

Figure18 compares also the maximum amplification 
rate curves for the parallel 2D and oblique waves 
with the maximum amplification rate curves for the 
nonparallel 2D and oblique waves.  

 

 
Fig. 18. Comparison Curves of maximal 

amplification rate parallel and nonparallel flow. 

 

It illustrates that the bidimensional parallel flow is 
more unstable than the nonparallel flow for the 
smaller even the higher frequency. However, as 
shown, to the figure for the oblique disturbances, it 
seen that the parallel flow is more unstable than the 
nonparallel flow at a precise frequency value. 

The present results show the importance of the wave 
angle ψ for the parallel and nonparallel flow to the 
2D and oblique disturbances.                     

5. CONCLUSIONS 

The present work treated for the laminar boundary 
layer on a compressible fluid which linearized spatial 
stability of adiabatic flat plate flow to the first mode 
of the bi and three-dimensional disturbances are 
computed numerically over the entire Reynolds 
number and Mach number range of interest Me = 0.9 
(ψ = 0°, 35°) to 2.2 for the parallel flow and Me = 0.9 
to 1.1 for the nonparallel flow which constitute the 
original contribution of this paper.  
Stability maps, in the form of familiar curves of 
constant spatial amplification rate are presented. The 
general computations results presented for the 
parallel flow are in good agreement with those 
obtained by Jelliti, Mack and Wazzan,Taghavi and 
Keltner showing essentially that the most unstable 
first mode is the first mode for oblique waves which 
leads us to conclude the validation of the 
compressible stability calculation code elaborated by 
present calculations. 

The present computations, concerned the nonparallel 
flow give important results by comparing with the 
parallel flow, both for the 2D and the oblique waves; 
illustrating that the parallel flow is more unstable 
than the nonparallel flow for the bidimensional 
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waves (at all frequencies), however, for the oblique 
disturbances the parallel flow is more unstable than 
the non parallel flow only at a precise value of 
frequency. These results even for the parallel flow 
show the importance of the wave angle ψ. 

The stability diagrams presented in this paper give 
important results concerned the Reynolds number of 
nonparallel flow which differ from the parallel flow, 
showing that the critical Reynolds number decreases 
with increasing Mach number.   

IN MEMORY  

On the occasion of this article, the authors honor the 
memory of their late friend Miloud Jelliti who 
initiated this research 
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APPENDIX 

The dependent variables of the system Z’=AZ are 
defined by: 

1 2 3 4 5 6 7, , , , , ,  Z f Z f Z Z Z h Z h Z       

8 9, , 'Z Z      

Where: ' ' ' '
1 2 3 4 5 6 8 9, , ,Z Z Z Z Z Z Z Z     

The system of equations (28) to (34) provides the 
linear forms giving the expressions for the matrix 
elements A: 

'
7 1 3 4 5

1p p d p p
Z i Z Z Z i Z

dyv v v v v

     

  7

1 1i dv dT
u w Z

dy dyv v T
  

 
     
  
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  8

1 1 1i dv d dT p
u w Z

dy dy dyv v T T

  


 
      
  

9

p
Z

T


   ' 2 2 2
2 1Z i u w Z

       
 

  
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2

1 d dT
v Z

dy dy
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3

1du d dT
i Z

dy dydT
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 
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4i Z
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
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5Z
 


  
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v du
i Z

dyp

 
 

 
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2 2

822

1 1v du d d u d du dT dv d
i Z
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4 1
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dyv dT

 
 

           

 
  2

2
i Z

 


 

 
 
  

 
 

 
3

2 2

1

2 1

dv
i u w

dy
Z

p d

dyv

    

    


  
     

            

  4

1
2

2

d dT d dT p
v Z

dy dydT dT v

 
 

            

 
 
 5 6

2 2

i d dT p
Z i Z

dydT v

   
   

                   

 
 

7

1

2 1 1

dv i
v u w

dy p v
Z

dv dT

dy dyv T

   

 

  
    

            

 

 

 

2 2

22

2

82

2
1

2
2

1 1 1

dv d v d d dv d dT
v

dy dy dy dyT dT dT dT

du d d w d dv d dT
Zi

dy dy dy dydT dT dT

i dv d dT p
u w

dy dy dyv v T T

   

     

  


  
       

 
        
 

 
 
 
 
  
 
 
 
  

 
 

       
 

  9

1
2

2

p dv d d
Z

dyT dT dT

 
 

               

 

 '
6 1 3

1 d w d dT
Z Z i Z

dy dydT

    
 

                

 

 
4i Z

 




 
 
 
 

      2 2 2
5

1
i u w Z         


 

       
 

6 7

1 1d dT d w
v Z v i Z

dy dydT p

  
 

      
                     

2 2

822

1 d w d d w d dT d w d dv
v i Z

dy dy dy dy dyT dT dTdT

    


  
          

9

1 d d w
Z

dydT




 
 
  

'
9 1 2

1
2 2

c c

dv du
Z i p i Z Z

dy dy

 
 

    
              

3

1
2 2v

c

dT du dw
c i i Z

dy dy dy
  



  
        

 

4

1
2 4

c

dv dv
p Z

dy dy
 



  
        

 

5 6

1
2 2

c c

dv d w
i p i Z Z

dy dy

 
 

    
              

7

1
v

c

dT dv
c v Z

dy dyp




  
       

 

 

 

2

2 2 2

8

2
2 2

2 2
22

1
2

v v

c

c c
c

dT dv d
ic u w c v

dy dyT dT

d du dv d w
Z

dy dy dydT

d T d d dT

dy dydT dT

    




   

            
                              

   

 
 
 
 
 


       


 
 
 

  


 

 

 

 


