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ABSTRACT 

The standard lattice Boltzmann equation, LBE, is inadequate for simulating gas flows in nano scale flows 
with Knudsen numbers higher than 0.1. In the present study, rarefied gas flow in nano porous structures is 
simulated using the modified Lattice Boltzmann Method, LBM, which is able to cover wide range of flow 
regimes. The present study, reports the effects of the Knudsen number and porosity on the flow rate and 
permeability in slip and transitional flow regimes. For the first time, the Knudsen’s minimum effect in 
micro/nano porous was observed. A new correlation between the permeability, the porosity and the Knudsen 
number is then proposed which is able to predict the permeability of in-line and staggered nano porous 
structures in slip and transitional regimes. 
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NOMENCLATURE 

D hydraulic diameter 
Da Darcy number 
DF darcy-Forchheimer drag 
e microscopic velocity 
f particle distribution function 
H characteristic length 
h channel height 
k permeability 
Kn Knudsen number 
L porous media length 
p pressure 
Re Reynolds number 
s slip reflection coefficient 

t time 
u x component of the velocity 
v  y component of the velocity 
U average velocity  
V volume 
Vs obstacles volume 

ρ density 
τ relaxation time 
ε porosity 
µ viscosity 
Ω  collision function 

1. INTRODUCTION

Fluid flow and transport processes in porous media 
are relevant in a wide range of fields, including 
hydrocarbon recovery, groundwater flow, CO2 
sequestration, metal foam, fuel cell, and other 
engineering applications (Dullien 2005). 
Understanding the fluid dynamics in porous media 
and predicting effective transport properties 
(permeability, effective diffusivity, etc.) is of 
paramount importance for practical applications 
(Chen et al. 2005, 2014). 

Recent technological developments have made it 

possible to design various micro/nano devices such 
as micro/nano channels, nozzles and pumps, where 
fluid flow and heat transfer are involved. The 
extensive engineering applications of nano-scale 
fluid flow through porous media have popularized 
the wide-ranging topics related to this subject of 
research. In micro/nano devices, porous media can 
be used for micro filtration, fractionation, catalysis 
and microbiology related applications (Jeong et al. 
2006). For example, micro packed beds or sintered 
metal fibers can be used in micro structured reactors 
for catalytic reaction (Yuranov et al. 2005, Kiwi-
Minsker et al. 2005) and the filter medium prepared 
from commercially available glass fibers of 70-
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140 m  thickness is suitable for applications in bio 
filtration systems (Assis et al. 2003). Also charged 
porous media structures have been employed in 
micro devices to magnify the pumping (Brask et al. 
2005, Bazant et al. 2004), mixing (Oddy et al. 
2001, Biddiss et al. 2004) and separating (Wong et 
al. 2004) effects. 

Conventional numerical methods using the Navier-
Stokes equations fail to predict some aspects of 
micro/nano flows. Flow in micro/nano scales is 
divided into four flow regimes based on the 
Knudsen number Kn /L  , which is the ratio of 
molecular mean free path to characteristic length 
scale (Karniadakis et al. 2005). There are two 
methods for definition of L in porous media. Roy et 
al. (2003) defined the hydraulic diameter of 
obstacles, D, as the characteristic length scale, 
while Kast et al. defined the average void diameter, 
Dh, as the characteristic length L. Considering the 
fact that the fluid flows between the obstacles, it is 
better to define hKn /D  . For 3Kn 10  the 

continuity assumption with no slip boundary 
conditions is valid. In the slip regime, 
0.01 0.1 Kn , flow can be assumed to be 
continuous, but slip velocities will appear on the 
solid walls. For transitional and free molecular flow 
regimes, 0.1Kn , the continuity assumption and 
therefore the validity of Navier-Stokes equation are 
under question. In these flows, the effect of solid 
walls causes the fluid behavior to be basically 
dependent on geometric dimensions (Arkilic et al. 
1994). 

Lattice-Boltzmann method, LBM, is an efficient 
method for simulation of fluid flows in porous 
media. This method is a particle-based mesoscopic 
method independent of actual number of molecules, 
so it has a low computational cost. In addition, 
LBM is more general than Navier-Stokes equations 
and holds true for a wider range of Knudsen 
numbers (Gad-el-Hak 1999).  

Many researchers have used the LBM to simulate 
the gaseous flows in slip flow regime (Agrawal et 
al. 2005, Guo et al. 2006, 2007, 2008, Kim et al. 
2005, Lee et al. 2005, Verhaeghe et al. 2009) but 
the efforts to simulate transitional flows have been 
limited (Shan et al. 2006, Chikatamarla et al. 2006, 
Ansumali et al. 2007, Kim et al. 2008, Zhang et al. 
2006, Tang et al. 2008a, b). For the slip flow 
regime in porous media, Jeong et al. (2006) 
simulated the two-dimensional and three-
dimensional flow passing through porous media for 
in-line and staggered geometries and Knudsen 
numbers of up to 0.1, and proposed an equation for 
permeability based on porosity and Knudsen 
number. 

So far, only two methods have been proposed for 
simulation of transitional flows: one is based on 
high-order LBM (Shan et al. 2006, Chikatamarla et 
al. 2006, Ansumali et al. 2007, Kim et al. 2008) 
and the other is based on modification of mean free 
path length (Zhang et al. 2006, Tang et al. 2008a, 
b). High-order or multi-velocity LBM increases the 
order of accuracy for discretization of velocity 

phase space. Ansumali et al. (2007) showed that 
using high-order LBM improves the capabilities of 
the method, but Kim et al .(2008) argued that the 
high-order method can only predict the rarefaction 
effects of Knudsen numbers of the order of 0.1, and 
fails to predict the mass flow rate at large Knudsen 
numbers. In addition, high-order LBMs with large 
numbers of velocity directions are not numerically 
stable (Succi 2002). In nanoflows, the values of 
mean free path and characteristic length are closer 
to each other and the wall boundaries reduce the 
local mean free path. So Tang et al. (2008a, b) used 
a geometry dependent local mean free path to study 
the nonlinear high-order rarefaction, but this local 
mean free path is complicated and could not be used 
for complex geometries such as porous media. 

To cover wide range of the flow regimes, 
(Homayoon et al. 2011, Shokouhmand and 
Meghdadi 2011) proposed a relaxation time 
formulation, named as modified LBM, by 
considering the rarefaction effect on the viscosity. 
The modified LBM was also utilized in some 
researches. For example, Zhuo and Zhong (2013) 
simulated the micro channel gas flows with a wide 
range of Knudsen numbers covering from the slip 
regime up to the entire transition regime via the 
D2Q9 LBM. For all test cases conducted in this 
study, the results are found to be in quite good 
agreement with the solutions of the linearized 
Boltzmann equation, the results of the DSMC and 
IP-DSMC methods. Also Liou and Lin (2013) 
performed numerical simulations on the pressure-
driven rarefied flow through channels with a sudden 
contraction–expansion of 2:1:2 using D2Q9 and 
D3Q19 lattice Boltzmann methods covering the slip 
and transition flow regimes. The numerically 
computed results are found to be in reasonably good 
agreement with the experimental ones. In another 
work, Li et al. (2011) used this effective relaxation 
time with a multiple relaxation time LBM to 
account for the rarefaction effect on gas viscosity. 
The results, including the velocity profile, the non-
linear pressure distribution along the channel, and 
the mass flow rate, are in good agreement with the 
solution of the linearized Boltzmann equation, the 
direct simulation Monte Carlo, DSMC results, and 
the experimental results over a broad range of 
Knudsen numbers. Kalarakis et al. (2012) employed 
a single relaxation time model with this modified 
D2Q9 lattice Boltzmann method to simulate flow 
between parallel plates and flow in porous media. 
They tested the modified LB method against the 
DSMC method in the simple case of a straight 
channel. It was found that the velocity profiles were 
reproduced with reasonable accuracy for Knudsen 
numbers in the range of 0.1–10. In addition, the 
permeability predictions of the two methods for 
computer-aided reconstructions of porous media are 
in very good agreement with each other over the 
entire transition flow regime. They concluded that 
the modified D2Q9 LB method is suitable for 
prediction of the gas permeability in porous media 
over the entire slip and transition flow regimes. 

Permeability k is a key variable to describe the 
transport capacity of a porous medium. The 
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permeability of a porous medium, for which there is 
no slip on the fluid-solid boundary, only depends on 
the porous structures. However, when the Knudsen 
number is relatively high, the gas slippage effect on 
solid boundaries occurs. Gas slippage in porous 
media and its effects on permeability was first 
studied by Klinkenberg (1941). It was found that 
due to the slippage phenomenon, the measured gas 
permeability (apparent permeability) through a 
porous medium is higher than that of the liquid 
(intrinsic permeability). 

In the present work, by using this new relaxation 
time formulation, two-dimensional gas flows in 
porous structures with in-line and staggered 
arrangements is studied. This paper also presents a 
new equation for prediction of the permeability of 
nano porous structures in slip and transitional 
regimes.  

2. MODIFIED LATTICE BOLTZMANN 

METHOD 

The following is the continuum Boltzmann equation 
discretized in different velocity directions 
(Cercignani 1988): 

.
f

e f
t


  


  


Ω                          (1) 

where f  is the particle distribution function, e  is 

the microscopic velocity and Ω  is the collision 

term. In D2Q9 model, space is discretized as a 
rectangular lattice with nine discrete velocities as 
shown below: 
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where /c x t    , x is the lattice spacing and 

t  is the time steps; here both x and t  are set 
to 1. Using BGK collision operator, Eq. (1) yields 
to (Bhatnagar 1954): 
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The value of equilibrium distribution function can 
be calculated from the following equation: 
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The macroscopic flow variables such as density   
and velocity u are then calculated in terms of the 

particle distribution function ( , )


f x t , by: 
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In the standard Lattice Boltzmann Method, LBM, 
the relaxation time is related to the Knudsen 
number by the following relation (Nie 2002): 

6
0.5 KnH


                            (7) 

where H is the characteristic length. The 
performance of standard LBM with the relaxation 
time formulation of Eq. (7) is confined to the slip 
flow regime with a Knudsen number less than 0.1. 
To cover wide range of the flow regimes, by 
considering the rarefaction effect on the viscosity an 

effective relaxation time formulation, eff , is 

proposed by Homayoon et al. (2011): 
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             (8) 

The concept of effective relaxation time is based on 
the consideration that, when a wall is included in a 
gas flow system, in the near-wall region some gas 
molecules will hit the wall and their flight paths 
will be terminated by the wall, so that the local 
mean-free-path is smaller than that defined in 
unbounded systems. As a result, the gas viscosity 
and the relaxation time will be reduced (Li et al. 
2001). 

3. GEOMETRY AND BOUNDARY 

CONDITIONS 

Porous structures shown in Fig. 1 are modeled by 
square obstacles, distributed with in-line and 
staggered arrangements in the flow field. Because 
of the periodicity of the porous geometry, it can be 
assumed that the porous structures used in this work 
consist of patterns which have been reproduced by 
repetition of the cells shown in Fig. 2. 

The calculated permeability (in lattice units) under 
mesh refinement is shown in Table 1 for 0.885   
and oKn 0.01  which indicates that the lattice 

366*366 is sufficient. 

 

Table 1 Permeability under mesh refinement 

10981098  732732  366366  lattice 

433.313 428.576 426.927 LBK
 

 

The inlet and outlet pressures are imposed using the 
method proposed by Lim et al. (2002). At the inlet 
and outlet boundaries, the unknown velocities u and 
v are computed from interior fluid nodes according 
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to the extrapolation method. After the extrapolation 
the unknown distribution functions are computed by 
the equilibrium distribution functions (Eq. (4)). For 
the entrance region the unknown boundary 
conditions are: 

1 1
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a  

b  
Fig. 1. Porous structure with square obstacles a) 

in-line structure, b) staggered structure. 

 

 

 
Fig. 2. Pattern of repetition cells. 

 

For both in-line and staggered arrangements, the 
periodic boundary conditions are imposed at the top 

and bottom boundaries; meanwhile, the velocity 
slip on the solid walls is modeled with slip 
reflection boundary condition (Succi 2002). For 
example, at the lower boundaries, the unknown 

particle distribution functions 
2 5,f f  and 6f , can 

be calculated as follows: 
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where s=0.7 is the slip-reflection coefficient on the 
solid wall. 

The presented numerical method has been 
implemented on a FORTRAN 90 code. Which has 
been run on Intel® core(i7) CPU Q720 @ 1.60GHz. 
In all of the cases the convergence criteria is:  

1
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where NI and NJ are the number of mesh elements 
in x and y directions respectively and the 
superscript n denotes the time step number.  

4. RESULTS 

According to the Darcy’s law, for creeping flows, 
moving with a slow steady velocity (Re<1), the 
average velocity, U, is a linear function of pressure 
drop, as follow: 

dp
U

dx k


                                   (12) 

where k is the permeability. For pressure driven 
flows in micro/nano channels, using the second 
order slip boundary conditions, results in the 
following analytical solution for the corresponding 
volumetric flow rate (Tang et. al. 2005): 

 
2

2
1 21 6 12

12

h
k C Kn C Kn                       (13) 

where h is the channel height and 1C  and 2C  are the 

first-order and second-order slip coefficients 
respectively. 

For the micro/nano scale flows, the rarefaction 
effects lead to a nonlinear pressure drop resembling 
an incompressible flow (Karniadakis et. al. 2005). 
Therefore the gas permeability should be evaluated 
using the solution of compressible gas flows 
(Scheidegger et. al. 1972): 

2 2

2 o o

i o

Lu p
k

p p


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
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where ip , op , ou  and L are the inlet pressure, 

outlet pressure, outlet velocity and porous media 
length respectively. 

The non-dimensional permeability, Darcy number, 
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can be estimated using the following relation: 

2

k
Da

D
                                (15) 

where D is the equivalent hydraulic diameter of the 
obstacles s defined as the D 4A/P  where A is the 
obstacle area and P is the wetted perimeter. For 
higher Reynolds numbers (Forchheimer regime) the 
relationship is (Jeong et al. 2006): 

dp
U C U U

dx k

                         (16) 

The parameter C is called the Forchheimer constant. 
Thus, the above equation may be rewritten as: 

2
.

dp U
DF

dx D


                              (17) 

where DF called as Darcy-Forchheimer drag, can be 
calculated by the following relation: 

2 2

 
D D

DF C U
k


                         (18) 

An experimental correlation for the flow through a 
packed bed of solid obstacles was proposed by 
Ergun (1952) that relates the DF drag to the flow 
and the porous medium parameters: 

2
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(1 ) (1 )
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 
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where 1C 150  and 2C 1.75  are model constants 

and porosity   represents the fraction void volume 
in the porous structure as follows: 

sV VV                                   (20) 

Figure 3 presents the computed permeability in the 
slip flow regime of 0.05oKn   for in-line and 

staggered arrangements. The figure shows a good 
agreement with the results of Jeong et al. (2006).  

 

 
Fig. 3. Permeability obtained for Kno=0.05. 
 

 
The DF drag for the in-line and staggered 
arrangements is presented in Fig. 4. The results of 
Jeong et al. (2006) are also presented for 

comparison. They are in close agreement which 
proves the validity of present work. It can be 
concluded from the figure that for the same 
Reynolds numbers, the DF drag of the staggered 
arrangement is higher than that of the in-line 
arrangement. This may be attributed to the fact that, 
for the in-line arrangement the pressure distribution 
in the narrow flow passage is similar to channel 
flow. For instance, Fig. 5 presents the pressure 
distribution and streamlines obtained for in-line and 
staggered porous structures. There exist high 
pressure stagnation regions in the staggered 
arrangement, while for the in-line arrangement the 
flow bears a resemblance to channel flow over open 
cavities. Also the figure shows that, for low 
pressure gradients ( LB 0.001  ) the creeping 

flow regime is observed, while in the Forchheimer 
flow regime, higher pressure gradient LB 0.1   

leads to vortex generation.  

 

 
Fig. 4. Darcy-Forchheimer drag for the in-line 

and staggered arrangements. 

 
Figure 6 shows the average velocity as a function of 
the pressure difference between the inlet and outlet 
for the in-line and staggered arrangements. The 
axes are in LB units. Since the Reynolds number is 
small, the curves are linear which indicates that the 
flow in porous media is in Darcian regime but for 
Kn=0.1 a little curvature can be observed in the 
figures which indicates that the flow approaches to 
the Forchheimer regime due to the increase in 
Reynolds number. 

Figure 7 shows the estimated non-dimensional 
permeability in the slip and transitional flow 
regimes for the in-line and staggered arrangements. 
The Knudsen minimum effect can be observed. 
Increasing Kn causes the increase in velocity slip 
which leads to increase in flow rate in the slip flow 
regime (Kn<0.1). On the other hand increase in Kn 
causes the increase in the effective viscosity which 
leads to the decrease in flow rate. The net result is 
that by increasing the Knudsen number, the flow 
rate has a minimum value about Kn≈0.4 and then it 
increases. This phenomenon is called Knudsen’s 
minimum effect. For low Knudsen numbers (slip 
flow regime), the effect of higher order Kn in the 
Eq. (13) can be neglected, therefore the non- 
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a             b  

c           d  
Fig. 5. Pressure distribution and streamlines for in-line and staggered porous structures a, c) 

0.001LB   b, d) 0.1LB  . 

 

a           b  

c       d  
Fig. 6. Volume flow rate versus the pressure difference a) staggered Kn=0.05 b) staggered Kn=0.1 c) in-

line Kn=0.05 d) in-line Kn=0.1. 
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dimensional permeability is a linear function of Kn 
while for the free molecular regime, the rate of 
increase in permeability decreases with increasing 
Kno. This is in consistent with the other numerical 
and experimental result for free molecular flow 
regime in micro and nano channels (Karniadakis et. 
al. 2005).  

 

 
Fig. 7. Knudsen minimum effect in porous 

structures. 

 

 
Fig. 8. Permeability versus Kno in transitional 

flow regime. 

 
Figure 8 displays the porosity effect on the non-
dimensional permeability in the transitional flow 
regime. By increasing the porosity, the obstacles 
decrease and the flow rate increases. Also, in the 
transitional regime, by increasing the Knudsen 
number, the permeability increases continuously. 
The rate of increase in the permeability is higher for 
higher porosities. It is also observed that the rate of 
increase is slightly larger for the in-line 
arrangement than that for the staggered 
arrangement. According to the fig. 8, despite of the 
fact that the porosity of the inline structure is less 
than that of the staggered one; the flow rate is 
higher. This phenomenon is related to existence of 
the high pressure stagnation regions in the 
staggered arrangement and less tortuosity (defined 
as the ratio of the flow path to the length scale) in 
the inline porous structure. By decreasing the 
tortuosity the pressure drop decreases and the 

permeability increases. It should be noted that the 
the computational time for the inline arrangement 
with 0.8485   and Kno=1, is 1923 s. 

Figure 9 presents the dimensionless permeability 
( 2/k D ), which represents the first term of the 
Ergun correlation, versus 3 2/(1 )   for transitional 

flow regime of Kn=4. The abscissa is chosen so that 
the results can be directly compared with the Ergun 
correlation. The correlation of Ergun is also plotted 
in the figure for comparison. According to the 
figure, the results do not agree with the Ergun 
correlation. It may be concluded that the Ergun 
correlation is not applicable to porous media in 
transitional flow regime. 

 

 
Fig. 9. Permeability against porosity for in-line 

and staggered structures. 

 
Figures 10 and 11 show the non-dimensional 
permeability versus the porosity in transitional flow 
regime for in-line and staggered arrangements, 
respectively. With increasing the porosity 
( 3 2/(1 )  ), the obstacles decreases and the 

permeability increases. 

In order to attain the correlation between the 
permeability and Kno data curve fitting is carried 
out for Kno =1, 4, 8, 10. According to the Figs. 10 
and 11 a linear relation can be considered between 

2ln( / )k D  and 3 2ln( /(1 ) )  . Therefore the 

resulting equation can be considered in the form of: 

3
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A) Kn=1 

 
B) Kn=4 

 
C) Kn=8 

 
D) Kn=10 
 

Fig. 10. Changes in porosity with respect to 
permeability for in-line porosity and different 

Knudsen numbers. 

A) Kn=1 

B) Kn=4 

C) Kn=8 

 
D) Kn=10 
 

Fig. 11. Changes in porosity with respect to 
permeability for staggered porosity and different 

Knudsen numbers. 
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a  

b  
Fig. 12. Coefficients in the correlation of 
permeability for a) in-line b) staggered 

arrangements. 

 
The coefficients A and B are functions of Kno, 
whose relationship can be curve fitted from the data 
exhibited in Table 2. Equation (22) presents the 
relations for coefficients A and B: 

0

0

0.00077795 0.024 in-line
A=

0.00046615 0.0122 staggered


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Kn

Kn
 

0

0

0.00069897 0.4979 in-line
B=

0.00038462 0.6842 staggered


 

Kn

Kn
     (22) 

 
Table 2 Coefficients A and B 

Kn 
In-line staggered 

A B A B 

1 0.0233 0.4972 0.0118 0.6843 

4 0.0291 0.5026 0.0154 0.6863 

8 0.0305 0.5037 0.0162 0.6872 

10 0.0308 0.504 0.0163 0.688 

 
Figure 12 shows the curves fitted to coefficients 
obtained for in-line and staggered geometries. 

5. CONCLUSION 

The nanoscale fluid flow in porous media with in-
line and staggered patterns, is simulated by the 
modified Lattice-Boltzmann method assuming the 

dependence of the effective relaxation time on the 
local Knudsen number. The results obtained for slip 
regime demonstrated good agreement with the 
results of previous studies. The new permeability 
equation expressing the relationship between 
permeability, porosity and Knudsen number for 
transitional flow regime, is presented. This equation 
can be used to determine the permeability of porous 
media with in-line or staggered geometry for 
different Knudsen numbers. For the conditions 
considered, the following main results can be 
drawn: 

- The DF drag of the staggered arrangement is 
higher than that of the in-line arrangement. 

- In the slip flow regime, the non-dimensional 
permeability is a linear function of Kn, while 
for the free molecular regime, the rate of 
increase in permeability decreases with 
increasing Kno. 

- In the transitional flow regime the permeability 
increases with increasing the Knudsen number 
and porosity, but the rate of increase in 
permeability is higher for higher Knudsen 
numbers. 
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